生物多样性 ›› 2014, Vol. 22 ›› Issue (5): 596-607.doi: 10.3724/SP.J.1003.2014.14005

• • 上一篇    下一篇

秦岭两栖、爬行动物物种多样性海拔分布格局及其解释

郑智, 龚大洁*(), 孙呈祥, 李晓军, 李万江   

  1. 西北师范大学生命科学学院, 兰州 730070
  • 收稿日期:2014-01-07 接受日期:2014-08-13 出版日期:2014-09-20
  • 通讯作者: 龚大洁 E-mail:gongdj@nwnu.edu.cn
  • 基金项目:
    秦岭地区野生动物物种资源评估项目(2012-12)

Elevational pattern of amphibian and reptile diversity in Qinling Range and explanation

Zhi Zheng, Dajie Gong*(), Chengxiang Sun, Xiaojun Li, Wanjiang Li   

  1. College of Life Sciences, Northwestern Normal University, Lanzhou 730070
  • Received:2014-01-07 Accepted:2014-08-13 Online:2014-09-20
  • Contact: Gong Dajie E-mail:gongdj@nwnu.edu.cn

物种多样性和种域宽度沿环境梯度的分布格局及其成因机制一直是生物地理学和生态学讨论的重要议题。本研究采用多元回归模型和方差分离的方法判断面积、水分和能量、边界限制对秦岭两栖、爬行动物及其不同区系成分的物种丰富度海拔梯度分布格局的影响。结果表明, 秦岭两栖爬行动物及其不同区系成分的物种丰富度均呈单峰分布格局, 但峰值分布的海拔段有所差异。形成这种格局是各种因素相互作用的结果, 3种假设的独立解释力较低。水分能量动态假设对两栖、爬行动物物种的丰富度格局有很强的解释能力, 但水分和能量的解释力中有很大一部分属于边界限制、面积的协同作用, 在解释两栖动物的海拔分布格局时, 边界限制与水分和能量之间存在较强的共线性, 而在解释爬行动物的海拔分布格局时, 面积与水分和能量之间存在较强的共线性。同时, 本研究采用Stevens法和逐种法对Rapoport法则进行了验证。结果表明, 爬行动物物种种域的海拔梯度格局基本上支持Rapoport法则, 两栖动物很难判断是否支持Rapoport法则。

关键词: 物种丰富度, 气候, 中域效应, 面积, 海拔梯度格局, Rapoport法则, 秦岭

Spatial patterns of species diversity and range size along environmental gradients and their underlying mechanisms have long been controversial issues in biogeography and ecology. The species-area relationship, water-energy dynamic hypothesis and mid-domain effect were used here to explain the elevational patterns of amphibian and reptile species richness and their different faunal components in China’s Qinling Range using multivariate regression models and the variance partitioning algorithm. Our results showed unimodal patterns for the elevational distributions of amphibians, reptiles and their faunal components, but the peaks of the patterns differed among groups. The underlying mechanisms shaping the patterns revealed intensive interactions, while the independent explanatory strengths of the three proposed hypotheses (exclude reptile oriental realm) were relatively weak. The water-energy dynamic hypothesis was the most parsimonious explanation of the observed patterns. The majority of water-energy dynamic explanation belonged to interaction of three hypotheses. The interaction between mid-domain effect and water-energy dynamics was larger for amphibians and that between species-area relationship and water-energy dynamic hypothesis was larger for reptiles. The Steven’s and cross-species methods were used to examine whether species-specific elevational range sizes of amphibians, reptiles and their different faunal components are applicable to Rapoport’s rule. The results showed that reptile range sizes supported Rapoport’s rule at the various elevational gradients, while amphibian range sizes were difficult to support Rapoport’s rule.

Key words: species richness, climate, mid-domain effect, area, elevational gradient pattern, Rapoport’s rule, Qinling Range

图1

两栖动物及其不同区系成分的物种多样性海拔分布格局。实心点表示实际的物种丰富度, 实线为中域效应模型预测的物种丰富度, 虚线表示模型预测的95%置信区间。"

图2

爬行动物及其不同区系成分的物种多样性海拔分布格局。实心点表示实际的物种丰富度, 实线为中域效应模型预测的物种丰富度, 虚线表示模型预测的95%置信区间。"

表1

不同假设对秦岭两栖、爬行动物物种多样性海拔梯度格局的解释百分率(%)"

类群
Group
种-面积关系
Species-area relationship (SAR)
水分-能量假设
Water-energy dynamics (WED)
中域效应假设
Mid-domain effect (MDE)
两栖动物 Amphibian 74.56*** 94.59*** 85.76***
东洋界 Oriental 83.65*** 81.94*** 81.3***
广布种 Widespread 47.50** 87.8*** 84.65***
爬行动物 Reptiles 43.47** 97.86*** 21.49
东洋界 Oriental 18.34 91.44*** 34.14
广布种 Widespread 46.66** 95.35*** 23.22
古北界 Palaearctic 0.001 98.48*** 41.39

表2

秦岭两栖、爬行动物及其不同区系成分的物种丰富度与不同因子的最优线性模型"

丰富度
Richness
变量
Variables
AIC 模型解释力
Model explanation (R2, %)
两栖动物 Amphibian Area, PET, PET2, PAN -98.12 99.05
东洋界 Oriental Area, PR, PET, PET2, PAN -72.52 96.99
广布种 Widespread PR, PAN -84.55 94.08
爬行动物 Reptile Area, PR, PET, PET2 -80.82 99.44
东洋界 Oriental Area, PR, PET, PET2, PAN -61.12 97.55
古北界 Palaearctic Area, PR, PET, PAN -57.67 98.98
广布种 Widespread Area, PR, PET, PET2 -69.34 97.98

图3

不同环境因子对秦岭两栖、爬行动物及其不同区系成分的物种丰富度海拔梯度格局的影响(以变异解释百分率表示)。a、b、c分别为SAR、MDE、WED的独立作用; d、e、f、g分别表示三种假设之间的交互作用; u表示三种变量未解释量; AM为两栖动物不同区系成分; RE为爬行动物不同区系成分。"

表3

秦岭两栖、爬行动物及其不同区系成分物种种域大小与环境因子的线性回归模型"

物种种域 Species range 模型 Model 模型解释力 Model explanation (R2, %) P
两栖动物 Amphibian R = -2.86 PAN + 3,459.22 61.64 5.33×10-4
R = 15.64 MAT + 1,169.32 4.35 0.23
东洋界 Oriental R = -3.13 PAN + 3,342.92 66.83 2.17×10-4
R = 18.61 MAT +823.87 7.85 0.17
广布种 Widespread R = 15.99 PAN - 8,215.62 68.52 1.57×10-4
R = 32.74 MAT +3,067.28 1.8 0.65
爬行动物 Reptile R = -1.88 PAN +2,714.46 5.4 0.22
R = -67.81 MAT + 2,137.26 81.6 1.42×10-5
东洋界 Oriental R = 0.25 PAN + 850.63 0.6 0.82
R= -16.46 MAT +1,249.15 10.25 0.34
古北界 Palaearctic R = 1.19 PAN + 191.52 12.71 0.38
R=-62.29 MAT + 1,968.37 53.34 0.02
广布种 Widespread R = 1.4 PAN + 2,480.54 0.47 0.33
R = -65.11 MAT + 2,224.88 90.57 3.47×10-7

图4

两栖动物种域海拔分布的Rapoport法则验证。(A)所有种Steven方法; (B)所有种逐种法; (C)东洋界物种Steven方法; (D)东洋界物种逐种法; (E)广布种Steven方法; (F)广布种逐种法。"

图5

爬行动物种域海拔分布的Rapoport法则验证。(A)所有种Steven’s方法; (B)所有种逐种法; (C)东洋界物种Steven方法; (D)东洋界物种逐种法; (E)古北界物种Steven方法; (F)古北界物种逐种法; (G)广布种Steven方法; (H)广布种逐种法"

附表1

秦岭两栖、爬行动物物种名录及其海拔分布"

物种
Species
区系成分
Faunal components
海拔分布
Elevational range (m)
两栖动物 Amphibain
隐鳃鲵科 Cryptobranchidae
大鲵* Andrias davidianus 广布种 700-1,900
小鲵科 Hynobiidae
秦巴拟小鲵* Pseudohynobius tsinpaensis 东洋界 1,700-2,700
黄斑拟小鲵** P. flavomaculatus 东洋界 1,850-2,300
西藏山溪鲵* Batrachuperus tibetanus 广布种 1,260-2,700
蝾螈科 Salamandridae
文县瑶螈* Yaotriton wenxianensis 东洋界 1,100-1,300
角蟾科 Megophryidae
峨山掌突蟾** Paramegophrys oshanensis 东洋界 950-1,700
小角蟾** Megophrys minor 东洋界 1,400-2,100
南江角蟾** M. nankiangensis 东洋界 1,600-1,850
巫山角蟾* M. wushanensis 东洋界 950-1,450
川北齿蟾** Oreolalax chuanbeiensis 广布种 960-1,450
宁陕齿突蟾** Scutiger (Scutiger) ningshanensis 东洋界 1,250-2,550
平武齿突蟾** S. (Scutiger) pingwuensis 东洋界 2,050-2,500
胸腺猫眼蟾** S. (Aelurophryne) glandulatus 东洋界 1,600-1,800
蟾蜍科 Bufonidae
华西大蟾蜍* Bufo gargarizans 东洋界 300-1,700
中华大蟾蜍* B. gargarizans 广布种 140-2,400
花背蟾蜍* Strauchbufo raddei 古北界 350-2,000
雨蛙科 Hylidae
秦岭雨蛙* Hyla tsinlingensis 东洋界 890-2,300
蛙科 Ranidae
黑斑侧褶蛙* Pelophylax nigromaculatus 广布种 140-2,800
叉舌蛙科 Dicroglossidae
泽陆蛙* Fejervarya multistriata 东洋界 140-1,200
绿臭蛙* Odorrana margaretae 东洋界 1,000-1,300
大绿臭蛙* O. graminea 东洋界 1,200-1,400
棘腹蛙* Quasipaa boulengeri 广布种 610-1,900
太行隆肛蛙* Feirana taihangnica 东洋界 500-1,700
康县隆肛蛙* F. kangxianensis 东洋界 780-1,962
隆肛蛙* F. quadranus 广布种 500-2,200
中国林蛙* Rana chensinensis 广布种 450-2,500
崇安湍蛙* Amolops chunganensis 东洋界 670-1,200
四川湍蛙* A. mantzorum 东洋界 1,100-2,250
树蛙科 Rhacophoridae
斑腿泛树蛙* Polypedates megacephalus 东洋界 600-1,200
姬娃科 Microhylidae
合征姬蛙* Microhyla mixtata 广布种 610-1,700
饰纹姬娃* M. fissipes 东洋界 140-1,650
花姬蛙** M. pulchra 东洋界 550-750
北方狭口蛙* Kaloula borealis 广布种 450-860
四川狭口蛙** K. rugifera 东洋界 950-1,600

爬行动物

Reptile
龟科 Testubinidae
乌龟* Chinemys reevesil 广布种 450-1,550
鳖科 Trionychidae
* Trionyx sinensis 广布种 450-1,500
山瑞鳖** T. steindachneri 广布种 500-600
石子龙科 Scincidae
蓝尾石龙子* Eumeces elegans 广布种 700-900
中国石龙子** E. chinensis 东洋界 2,110-2,310
黄纹石龙子* E. xanthi 广布种 640-1,900
秦岭滑蜥* Leiolopisma tsinlingensis 广布种 890-2,100
铜蜓蜥* Sphenomorphus indicus 东洋界 450-1,900
丽斑麻蜥* Eremias argus 300-1,100
北草蜥* Takydromus septentrionalis 450-2,100
鬣蜥科 Agamidae
丽纹龙蜥** Japalura splendida 东洋界 450-900
草绿龙蜥** J. flaviceps 东洋界 450-900
米仓龙蜥* Japalura micangshanensis 东洋界 760-1,300
壁虎科 Gekkonidae
多疣壁虎* Gekko japonicus 东洋界 400-1,400
无蹼壁虎* G. swinhonis 广布种 300-1,400
太白壁虎* G. taibaiensis 东洋界 900-1,600
蝰科 Viperidae
白头蝰** Azemiop feae 东洋界 980-1,700
短尾蝮* Gloydius brevicaudus 广布种 850-2,590
中介蝮* G. intermedius 古北界 500-1,894
高原蝮* G. strauchi 广布种 890-2,800
山烙铁头* Ovophis monticola 东洋界 1,150-2,000
菜花原矛头蝮* Protobothrops jerdonii 广布种 800-2,500
竹叶青* Trimeresurus stejnegeri 广布种 600-2,300
游蛇科 Colubridae
黑脊蛇* Achalinus spinalis 东洋界 450-1,900
绣链腹链蛇** Amphiesma craspedogaster 东洋界 650-1,700
棕黑腹链蛇** A. sauteri 东洋界 650-1,100
绞花林蛇* Boiga kraepelini 东洋界 700-900
黄脊游蛇** Coluber spinalis 古北界 430-1,300
翠青蛇* Cyclophiops major 广布种 450-1,700
赤链蛇* Dinodon rufozonatum 广布种 300-1,700
王锦蛇* Elaphe carinata 广布种 450-1,800
白条锦蛇* E. dione 古北界 300-1,500
玉斑锦蛇** E. mandarian 广布种 300-1,550
紫灰锦蛇** E. porphyracea 东洋界 600-1,700
黑眉锦蛇* E. taeniura 广布种 450-1,700
棕黑锦蛇** E. schrenckii 东洋界 300-900
团花锦蛇** E. davidi 古北界 850-900
双斑锦蛇* E. bimaculate 广布种 500-1,200
黑背白环蛇** Lycodon ruhslratilyoo 东洋界 1,100-1,450
双全白环蛇** L. fasciatus 广布种 650-1,700
宁陕小头蛇** Oligodon ningshanensis 东洋界 1,400-1,650
横纹小头蛇** O. multizonatum 东洋界 790-1,350
福建颈斑蛇** Plagiopholis styani 东洋界 500-700
大眼斜鳞蛇* Pseudoxenodon macrops 广布种 600-2,000
颈槽蛇* Rhabdophis nuchalis 广布种 600-2,000
虎斑颈槽蛇* R. tigrina 东洋界 300-1,900
黑头剑蛇** Sibynophis chinensis 广布种 610-1,400
乌华游蛇* Sinonnatrix percarinate 东洋界 450-1,700
小头坭蛇** Trachischium tenuiceps 东洋界 600-800
乌梢蛇* Zaocys dhumnades 广布种 450-1,800
[1] .Báldi A (2008) Habitat heterogeneity overrides the species-area relationship. Journal of Biogeography, 35, 675-681.
[2] .Barry RG (2008) Mountain Weather and Climate. Cambridge University Press, Cambridge.
[3] .Beketov MA (2009) The Rapoport effect is detected in a river system and is nested on nested organization. Global Ecology and Biogeography, 18, 498-506.
[4] .Blackburn TM, Gaston KJ (2006) There’s more to macroecology than meets the eye. Global Ecology and Biogeography, 15, 537-540.
[5] .Chi XL (池秀莲), Tang ZY (唐志尧) (2011) Effects of area, temperature and geometric constraints on elevational patterns of species richness: a case study in the Mountain Taibai, Qinling Mountains, China. Chinese Journal of Plant Ecology(植物生态学报), 35, 362-370. (in Chinese with English abstract)
[6] .Colwell RK (2008) RangeModel: tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography, 31, 4-7.
[7] .Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far?The American Naturalist, 163, E1-E23.
[8] .Cooper N, Bielby J, Thomas GH, Purvis A (2008) Macroe- cology and extinction risk correlates of frogs. Global Ecology and Biogeography, 17, 211-221.
[9] .Currie DJ, Kerr JT (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecological Monographs, 78, 3-18.
[10] .Diniz-Filho JAF, Tôrres NM (2002) Rapoport effect in South American Carnivora (Mammalia): null models under geometric and phylogenetic constraints. Brazilian Journal of Biology, 62, 437-444.
[11] .Editorial Board for Mountains Climate Collected Works (山地气候文集编委会) (1984) Mountain Climate Collected Works (山地气候文集). Meteorological Press, Beijing. (in Chinese)
[12] .Editorial Board of Physical Geography of China, CAS (中国科学院中国自然地理编委会) (1980) The Physical Geography of China, Volume of Physiognomy (中国自然地理·地貌卷). Science Press, Beijing. (in Chinese)
[13] .Fang JY (方精云), Shen ZH (沈泽昊), Tang ZY (唐志尧), Wang ZH (王志恒) (2004) The protocol for the survey plan for plant species diversity of China’s Mountains. Biodiversity Science(生物多样性), 12, 5-9. (in Chinese with English abstract)
[14] .Fei L (费梁), Ye CY (叶昌媛), Jiang JP (江建平) (2012) Colored Atlas of Chinese Amphibians and Their Distributions (中国两栖动物及其分布彩色图鉴). Sichuan Publishing House of Science and Technology, Chengdu. (in Chinese)
[15] .Fraser RH, Currie DJ (1996) The species richness-energy hypothesis in a system where historical factors are thought to prevail: coral reefs. The American Naturalist, 148, 138-159.
[16] .Fu CZ, Hua X, Li J, Chang Z, Pu ZC, Chen JK (2006) Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: geometric constraints, area and climate effects. Ecography, 29, 919-927.
[17] .Fu CZ, Wang JX, Pu ZC, Zhang SL, Chen HL, Zhao B, Chen JL, Wu JH (2007) Elevational gradients of diversity for lizards and snakes in the Hengduan Mountains, China. Biodiversity and Conservation, 16, 707-726.
[18] .Gaston KJ (2003) The Structure and Dynamics of Geographic Ranges. Oxford University Press, New York.
[19] .Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
[20] .Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. Journal of Biogeography, 35, 483-500.
[21] .Gouveia SF, Dobrovolski R, Lemes P, Cassemiro FAS, Diniz-Filho JAF (2013) Environmental steepness, tolerance gradient, and ecogeographical rules in glassfrogs (Anura: Centrolenidae). Biological Journal of the Linnean Society, 108, 773-783.
[22] .Grytnes JA, Beaman JH (2006) Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. Journal of Biogeography, 33, 1838-1849.
[23] .Hawkins BA, Diniz-Filho JAF, Weis AE (2005) The mid- domain effect and diversity gradients: is there anything to learn. The American Naturalist, 166, E140-E143.
[24] .Hawkins BA, Field R, Cornell HV, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of spec- ies richness. Ecology, 84, 3105-3117.
[25] .Heikkinen KR, Luoto M, Kuussaari M, Pöyry J (2005) New insights into butterfly-environment relationships using partitioning methods. Proceeding of the Royal Society B: Biological Sciences, 272, 2203-2210.
[26] .Hu JH, Xie F, Li C, Jiang JP (2011) Elevational patterns of species richness, range and body size for spiny frogs. PLoS ONE, 6, e19817.
[27] .Hunter ML, Yonzon P (1993) Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conservation Biology, 7, 420-423.
[28] .Letcher A, Harvey P (1994) Variation in geographical range size among mammals of the Palearctic. The American Naturalist, 144, 30-42.
[29] .Li C (李成) , Li SQ (李胜全), Wang YZ (王跃招), Zhang T (张涛) (2000) Herpetological survey of southern Gansu Province, China. Sichuan Journal of Zoology(四川动物), 19(2), 74-76. (in Chinese with English abstract)
[30] .Li QY (李巧燕), Wang XP (王襄平) (2013) Elevational pattern of species richness in the Three Gorges Region of the Yangtze River: effect of climate, geometric constraints, area and topographical heterogeneity. Biodiversity Science(生物多样性), 21, 141-152. (in Chinese with English abstract)
[31] .Liang J (梁军), Shen ZH (沈泽昊) (2010) On the test of the Rapoport’s rule, algorithm comparison, and weakening of mid-domain effect: with a case study on the seed plants in Mt. Wuliang, Yunnan Province. Journal of Mountain Science(山地学报), 28, 526-533. (in Chinese with English abstract)
[32] .Lu QY (卢绮妍), Shen ZH (沈泽昊) (2009) Altitudinal pattern of species range size of vascular plants in Mt. Shennongjia: a test of Rapoport’s Rule. Biodiversity Science(生物多样性), 17, 644-651. (in Chinese with English abstract)
[33] .Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, USA, 104, 5925-5930.
[34] .McCain CM (2010) Global analysis of reptile elevatoional diversity. Global Ecology and Biogeography, 19, 541-553.
[35] .McCain CM, Grytnes JA(2010) Elevational gradients in species richness. In: Encyclopedia of Life Sciences (ELS), pp. 1-10. John Wiley & Sons, New York.
[36] .O’Brien EM (1993) Climatic gradients in woody plant species richness: towards an explanation based on an analysis of southern Africa’s woody flora. Journal of Biogeography, 20, 181-198.
[37] .O’Brien EM (1998) Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography, 25, 379-398.
[38] .de Oliveira G, Diniz-Filho JAF (2010) Spatial patterns of terrestrial vertebrate richness in Brazilian semiarid, northeastern Brazil: selecting hypotheses and revealing constraints. Journal of Arid Environments, 74, 1418-1426.
[39] .Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens LPF (2005) Global hotpots of species richness are not congruent with endemism or threat. Nature, 436, 1016-1019.
[40] .Parmesan C (2006) Ecological and evolutionary responses to recent climates change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
[41] .Qiao XJ, Tang ZY, Shen ZH, Fang JY (2012) What causes geographical variation in the species-area relationship? A test from forests in China. Ecography, 35, 1110-1116.
[42] .Rahbek C (1995) The elevational gradient of species richness: a uniform pattern?Ecography, 18, 200-205.
[43] .R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. .
[44] .Ruggiero A, Werekraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Global Ecology and Biogeography, 16, 401-414.
[45] .Shaanxi Institute of Zoology (陕西省动物研究所), Institute of Hydrobiology of Chinese Academy of Sciences (中国科学院水生生物研究所), Biological Department of Lanzhou University (兰州大学生物系) (1987) The Fishes of Qinling Range (秦岭鱼类志). Science Press, Beijing. (in Chinese)
[46] .Shen ZH (沈泽昊), Lu QY (卢绮妍) (2009) The Rapoport’s rule for the geographic patterns of species range size. Biodiversity Science(生物多样性), 17, 560-567. (in Chinese with English abstract)
[47] .Stevens GC (1989) The latitudinal gradient in geographical range: How so many species coexist in the tropics?The American Naturalist, 133, 240-256.
[48] .Stevens GC (1992) The elevational gradient in altitudinal range, an extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140, 893-911.
[49] .Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fishchman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.
[50] .Tang ZY (唐志尧), Fang JY (方精云) (2004) A review on the elevational patterns of plant species diversity. Biodiversity Science(生物多样性), 12, 20-28. (in Chinese with English abstract)
[51] .Tang ZY (唐志尧), Ke JH (柯金虎) (2004) Altitudinal patterns of plant species diversity in Mt. Niubeiliang, Qinling Mountains. Biodiversity Science(生物多样性), 12, 108-114. (in Chinese with English abstract)
[52] .Triantis KA, Mylonas M, Lika K, Vardinoyannis K (2003) A model for the species-area-habitat relationship. Journal of Biogeography, 30, 19-27.
[53] .Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291-301.
[54] .Vitt LJ, Caldwell JP (2009) Herpetology: An Introductory Biology of Amphibians and Reptiles. Science Press, New York.
[55] .Wang XP, Fang JY (2012) Constraining null models with environmental gradients: a new method for evaluating the effects of environmental factors and geometric constraints on geographic diversity patterns. Ecography, 35, 1147-1159.
[56] .Wang XP (王襄平), Fang JY (方精云), Tang ZY (唐志尧) (2009) The mid-domain effect hypothesis: models, evidence and limitations. Biodiversity Science(生物多样性), 17, 568-578. (in Chinese with English abstract)
[57] .Wang ZH, Tang ZY, Fang JY (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, in China’s mountains. Diversity and Distributions, 13, 845-854.
[58] .Whitton FJS, Purvis A, Orme CDL, Olalla-Tárraga MA (2012) Understanding global patterns in amphibian geographic range size: does Rapoport rule?Global Ecology and Biogeography, 21, 179-190.
[59] .Xie F (谢锋), Liu HN (刘惠宁), Stuart SN, Chanson JS, Cox NA, Fischman DL (2006) Review on protective demands of Chinese amphibians. Science in China Series C: Life Sciences(中国科学C辑), 36, 570-581. (in Chinese)
[60] .Zhang MW (张孟闻), Zong Y (宗愉), Ma JF (马积藩) (1998) Fauna Sinica, Reptile, Vol. 1 (中国动物志·爬行纲·第一卷). Science Press, Beijing. (in Chinese)
[61] .Zhang RZ (张荣祖) (2011) Zoogeography of China (中国动物地理). Science Press, Beijing. (in Chinese)
[62] .Zhang WJ (张婉君), Lu QY (卢绮妍), Liang J (梁军), Shen ZH (沈泽昊) (2010) Altitudinal gradients of species richness and range size of vascular plants in Taiwan: a test of Rapoport’s rule. Biodiversity Science(生物多样性), 18, 312-322. (in Chinese with English abstract)
[63] .Zhao EM (赵尔宓) (2006) Snakes of China (中国蛇类). Anhui Science and Technology Publishing House, Hefei. (in Chinese)
[64] .Zhao EM (赵尔宓), Jiang YM (江耀明), Huang QY (黄庆云), Zhao H (赵惠), Zhao KT (赵肯堂), Zhou KY (周开亚), Liu YZ (刘月珍), Liu MY (刘明玉), Li DJ (李德俊), Zhang YX (张玉霞) (1999) Fauna Sinica Reptile Vol. 2 (中国动物志·爬行纲·第二卷). Science Press, Beijing. (in Chinese)
[65] .Zheng Z (郑智), Gong DJ (龚大洁), Sun CX (孙呈祥) (2014) Elevational pattern of species richness and species range size of herpetofauna in Baishuijiang Nature Reserve: a test of Rapoport’s rule. Chinese Journal of Ecology(生态学杂志), 33, 537-546. (in Chinese with English abstract)
[66] .Zhu ZC (朱志诚) (1991) Features of vegetation zones on the Qinling Mountain and its loess plateau. Scientia Geographica Sinica(地理科学), 11, 157-164. (in Chinese)
[1] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响[J]. 生物多样性, 2019, 27(6): 607-618.
[2] 刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6): 677-682.
[3] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[4] 刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣. 中国东部海岛维管植物的beta多样性及其驱动因素[J]. 生物多样性, 2019, 27(4): 380-387.
[5] 谢峰淋, 周全, 史航, 舒枭, 张克荣, 李涛, 冯水园, 张全发, 党海山. 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征[J]. 生物多样性, 2019, 27(4): 439-448.
[6] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局[J]. 生物多样性, 2019, 27(2): 177-185.
[7] 任鹏,余建平,陈小南,申小莉,宋虓,张田田,余永泉,丁平. 古田山国家级自然保护区白颈长尾雉的分布格局及其季节变化[J]. 生物多样性, 2019, 27(1): 13-23.
[8] 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27-36.
[9] 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925.
[10] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987.
[11] 秦运芝, 张佳鑫, 刘检明, 刘梦婷, 万丹, 吴浩, 周阳, 孟红杰, 肖之强, 黄汉东, 徐耀粘, 卢志军, 乔秀娟, 江明喜. 湖南八大公山25 ha常绿落叶阔叶混交林动态监测样地群落组成与空间结构[J]. 生物多样性, 2018, 26(9): 1016-1022.
[12] 刁励玮,李平,刘卫星,徐姗,乔春连,曾辉,刘玲莉. 草地生态系统生物量在不同气候及多时间尺度上对氮添加和增雨处理的响应[J]. 植物生态学报, 2018, 42(8): 818-830.
[13] 徐翔, 张化永, 谢婷, 孙青青, 田永兰. 西双版纳种子植物物种多样性的垂直格局及机制[J]. 生物多样性, 2018, 26(7): 678-689.
[14] 张宇, 冯刚. 内蒙古昆虫物种多样性分布格局及其机制[J]. 生物多样性, 2018, 26(7): 701-706.
[15] 刘秀嶶, Douglas Chesters, 武春生, 周青松, 朱朝东. 环境变化对中国野生蜜蜂多样性的影响[J]. 生物多样性, 2018, 26(7): 760-765.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed