生物多样性 ›› 2014, Vol. 22 ›› Issue (1): 80-87.doi: 10.3724/SP.J.1003.2014.13237

所属专题: 基因组和生物多样性

• • 上一篇    下一篇

南极鱼类多样性和适应性进化研究进展

许强华1, 3, 4, 吴智超1, 2, 陈良标1, 2, , A;*()   

  1. 1 .上海海洋大学海洋科学学院, 水产与生命学院, 上海 201306
    2 .水产种质资源发掘与利用省部共建教育部重点实验室, 上海 201306
    3 .大洋渔业资源可持续开发省部共建教育部重点实验室, 上海 201306
    4 .国家远洋渔业工程技术研究中心, 上海 201306
  • 收稿日期:2013-11-07 接受日期:2014-01-17 出版日期:2014-01-20
  • 通讯作者: 陈良标 E-mail:lbchen@shou.edu.cn
  • 基金项目:
    国家自然科学基金国际合作项目(30910103906)、国家自然科学基金重大研究计划培育项目(91131006)、上海市教委水产学一流学科项目

Biodiversity and adaptive evolution of Antarctic notothenioid fishes

Qianghua Xu1, 3, 4, Zhichao Wu1, 2, Liangbiao Chen1, 2, *()   

  1. 1. College of Marine Sciences, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306
    2. Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, Shanghai 201306
    3. Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306
    4. National Distant-water Fisheries Engineering Research Center, Shanghai 201306
  • Received:2013-11-07 Accepted:2014-01-17 Online:2014-01-20
  • Contact: Chen Liangbiao E-mail:lbchen@shou.edu.cn

南极地区是地球上唯一未被人类活动大量影响的地区, 其极端寒冷的环境为南极生物的进化提供了“温床”。过去三千万年间, 南极鱼亚目鱼类在南极海洋逐渐变冷的过程中快速进化, 从一个温暖海域的底栖祖先分化成南极海域最为多样化的鱼类类群。由于其在南极圈内和南极圈外的各种温度区间都有分布, 因而成为研究鱼类适应性进化和耐寒机制的良好生物模型。本文综述了有关南极海域鱼类区系组成与物种多样性现状, 南极鱼亚目鱼类适应低温的一系列特化的生物学性状及其关键的遗传进化机制。现有研究表明: 南极鱼类在几千万年零度以下低温环境的进化中发生了大量基因的大规模扩增和基因表达的改变, 如铁调素、卵壳蛋白和逆转座子等118个基因发生了显著的扩增。另外, 有些从南极鱼中获得的抗寒基因已经用于提高动植物低温抗性的研究并取得了良好的效果。在今后的几年中, 将会有多个南极鱼物种的全基因组得到破译, 在低温适应相关基因的功能和进化方面的研究也会更加深入, 这些研究将深入揭示低温压力下基因组的进化规律以及鱼类低温适应的分子机制。

关键词: 南极海域, 南极鱼亚目鱼类, 多样性, 适应性进化

The sea surrounding the Antarctic continent is one of the coldest regions in the world. It provides an environmentally unique and isolated “hotbed” for evolution to take place. In the past 30 million years, species of Perciform suborder Notothenioidei evolved and diversified from a benthic and temperate-water ancestor, and now dominate the fish fauna of the coldest ocean. Because of their distribution across temperature zones both inside and outside the Antarctic Polar Front, notothenioid fishes are regarded as excellent model organisms for exploring mechanisms of adaptive evolution, particularly cold adaptation. We first summarize research progress on the biodiversity of Antarctic fish and then review current findings on the peculiar biological characteristics of Antarctic notothenioids that evolved in response to a freezing environment. Research has revealed that extensive gene duplication and transcriptomic changes occurred during the adaptive radiation of notothenioid fish. Examples of highly duplicated genes in the Antarctic lineages include genes encoding hepcidin, and zona pellucida proteins, in addition to various retrotransposable elements. A few genes from Antarctic notothenioid fishes have been used as transgenes and demonstrated to be effective in making transgenic plants cold-hardy. In the coming years, the genomes of some Antarctic notothenioid species will be fully sequenced and the adaptive functions of duplicated genes will be further elucidated. Such studies will deepen our understanding of how genomes evolve in freezing environments, and provide an improved knowledge of molecular mechanisms of cold adaptation.

Key words: the Southern Ocean, Antarctic notothenioid fishes, diversity, adaptive evolution

[1] Acierno R, MacDonald JA, Agnisola C, Tota B (1995) Blood volume in the hemoglobinless Antarctic teleost Chionodraco hamatus (Lönnberg).Journal of Experimental Zoology, 272, 407-409.
[2] Anderson ME (1994) Systematics and osteology of the Zoarcidae (Teleostei: Perciformes), pp. 1-60. Smith Institute of Ichthyology, Grahamstown JLB.
[3] Andriashev AP (1965) A general review of the Antarctic fish fauna.Monograph Biology, 15, 491-550.
[4] Andriashev AP (1991) Possible pathways of Paraliparis (Pisces: Liparididae) and some other North Pacific secondarily deep-sea fishes into North Atlantic and Arctic depths.Polar Biology, 11, 213-218.
[5] Bagis H, Akkoç T, Tasş A, Aktoprakligil D (2008) Cryogenic effect of antifreeze protein on transgenic mouse ovaries and the production of live offspring by orthotopic transplantation of cryopreserved mouse ovaries.Molecular Reproduction and Development, 75, 608-613.
[6] Boron I, Russo R, Boechi L, Cheng CHC, di Prisco G, Estrin DA, Verde C, Nadra AD (2011) Structure and dynamics of Antarctic fish neuroglobin assessed by computer simulations.IUBMB Life, 63, 206-213.
[7] Buckley BA, Place SP, Hofmann GE (2004) Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii.Journal of Experimental Biology, 207, 3649-3656.
[8] Cao LX (曹立雪) (2009) Adapative Evolution of the Zona Pellucida Gene Family in Antarctic Notothenioids Fishes (南极Notothenioids鱼类Zona pellucida基因家族的适应性进化). PhD dissertation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)
[9] Cheng CHC, Chen LB, Near TJ, Jin Y (2003) Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin.Molecular Biology and Evolution, 20, 1897-1908.
[10] Cheng CHC, Detrich HW (2007) Molecular ecophysiology of Antarctic notothenioid fishes.Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 2215-2232.
[11] Cheng CHC, di Prisco G, Verde C (2009) Cold-adapted Antarctic fish: the discovery of neuroglobin in the dominant suborder Notothenioidei.Gene, 433, 100-101.
[12] Chen LB, DeVries AL, Cheng CHC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences,USA, 94, 3811-3816.
[13] Chen ZZ, Cheng CHC, Zhang JF, Cao LX, Chen L, Zhou LH, Jin YD, Ye H, Deng C, Dai ZH, Xu QH, Hu P, Sun SH, Shen Y, Chen LB (2008) Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences,USA, 105, 12944-12949.
[14] Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna.Geological Society, London, Special Publications, 47, 253-268.
[15] Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW (1995) Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes . Proceedings of the National Academy of Sciences,USA, 92, 1817-1821.
[16] Coppe A, Agostini C, Marino IAM, Zane L, Bargellioni L, Bortoluzzi S, Patamello T (2013) Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function.Genome Biology and Evolution, 5, 45-60.
[17] Coppes PZL, Somero GN (2007) Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology, 147, 799-807.
[18] De Broyer C, Clarke A, Koubbi P, Pakhomov E, Scott F, VandenBerghe E, Danis B (2013) Register of Antarctic Marine Species. (2013.08.15).
[19] Deng C, Cheng CHC, Ye H, He XM, Chen LB (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proceedings of the National Academy of Sciences,USA, 107, 21593-21598.
[20] Deng G, Andrews DW, Laursen RA (1997) Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis.FEBS Letters, 402, 17-20.
[21] Detrich HW, Parker SK, Williams RC, Nogales JE, Downing KH (2000) Cold adaptation of microtubule assembly and dynamics structural interpretation of primary sequence changes present in the α- and β-tubulins of antarctic fishes.Journal of Biological Chemistry, 275, 37038-37047.
[22] di Prisco G, Eastman JT, Giordano D, Parisi E, Verde C (2007) Biogeography and adaptation of notothenioid fish: hemoglobin function and globin gene evolution. Gene, 398, 143-155.
[23] Duman JG, DeVries AL (1976) Isolation, characterization, and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus.Comparative Biochemistry and Physiology, Part B: Comparative Bioche- mistry, 54, 375-380.
[24] Eastman JT (1993) Antarctic Fish Biology: Evolution in a Unique Environment. Academic Press, San Diego.
[25] Eastman JT (2005) The nature of the diversity of Antarctic fish.Polar Biology, 28, 93-107.
[26] Ewart KV, Fletcher GL (1993) Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin.Molecular Marine Biology and Biotechnology, 2, 20-27.
[27] Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proceedings of the National Academy of Sciences,USA, 95, 11476-11481.
[28] Francis JE, Poole I (2002) Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood.Palaeo-geography, Palaeoclimatology, Palaeoecology, 182, 47-64.
[29] Giordano D, Russo R, di Prisco G, Verde C (2012) Molecular adaptations in Antarctic fish and marine microorganisms. Marine Genomics, 6, 1-6.
[30] Gon O, Heemstra PC (1990) Fishes of the Southern Ocean. Smith Institute of Ichthyology, Grahamstown JLB.
[31] Grove TJ, Hendrickson JW, Sidell BD (2004) Two species of Antarctic icefishes (genus Champsocephalus) share a common genetic lesion leading to the loss of myoglobin expression.Polar Biology, 27, 579-585.
[32] Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (family Nototh- eniidae).Journal of Experimental Biology, 203, 2331-2339.
[33] Iwami T, Kock KH (1990) Channichthyidae. In: Fishes of the Southern Ocean (eds Gon O, Hemstra PC), pp. 381-399. Smith Institute of Ichthyology, Grahamstown JLB.
[34] Jin Y, DeVries AL (2006) Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation.Com-parative Biochemistry and Physiology, Part B, Biochemistry and Molecular Biology, 144, 290-300.
[35] Johnston IA (2003) Muscle metabolism and growth in Antarctic fishes (suborder Notothenioidei): evolution in a cold environment.Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology, 136, 701-713.
[36] Khanna HK, Daggard GE (2006) Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures.Plant Cell Report, 25, 1336-1346.
[37] Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide.Blood, 95, 189-197.
[38] Lucassen M, Schmidt A, Eckerle LG, Pörtner HO (2003) Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish.American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 285, 1410-1420.
[39] Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS (1999) Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’. Nature, 401, 497-502.
[40] Montgomery J, Clements K (2000) Disaptation and recovery in the evolution of Antarctic fishes.Trends in Ecology & Evolution, 15, 267-271.
[41] Near TJ, Parker SK, Detrich HW (2006) A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes.Molecular Biology and Evolution, 23, 2008-2016.
[42] Near TJ, Pesavento JJ, Cheng CHC (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA.Molecular Phylogenetics and Evolution, 32, 881-891.
[43] Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proceedings of the National Academy of Sciences,USA, 101, 16507-16512.
[44] Place SP, Hofmann GE (2001) Temperature interactions of the molecular chaperone Hsc70 from the eurythermal marine gobyGillichthys mirabilis. Journal of Experimental Biology, 204, 2675-2682.
[45] Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proceedings of the National Academy of Sciences,USA, 74, 2589-2593.
[46] Rizzello A, Romano A, Kottra G, Acierno R, Storelli C, Verri T, Daniel H, Maffia M (2013) Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter. Proceedings of the National Academy of Sciences,USA, 110, 7068-7073.
[47] Scher HD, Martin EE (2006) Timing and climatic consequ- ences of the opening of the Drake Passage.Science, 312, 428-430.
[48] Shevenell AE, Kennett JP, Lea DW (2004) Middle Miocene southern ocean cooling and Antarctic cryosphere expansion. Science, 305, 1766-1770.
[49] Sidell BD, O’Brien KM (2006) When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes.Journal of Experimental Biology, 209, 1791-1802.
[50] Skora KE, Neyelov AV (1992) Fish of Admiralty Bay (King George Island, South Shetland Islands, Antarctica).Polar Biology, 12, 469-476.
[51] Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes.Science, 156, 257-258.
[52] Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD (1998) Increased vascularization in mice overexpressing angiopoietin-1.Science, 282, 468-471.
[53] Van de Putte AP, Van Houdt JKJ, Maes GE, Hellemans B, Collins MA, Volckaert FAM (2012) High genetic diversity and connectivity in a common mesopelagic fish of the Southern Ocean: the myctophid Electrona antarctica. Deep Sea Research, Part II, Topical Studies in Oceanography, 59, 199-207.
[54] Verde C, Parisi E, di Prisco G (2006) The evolution of thermal adaptation in polar fish.Gene, 385, 137-145.
[55] Voronina EP, Neelov AV (2001) Structural traits of alimentary tract of fishes of the family Channichthyidae (Nototh- enioidei).Journal of Ichthyology c/c of Voprosy Ikhtiologii, 41, 778-788.
[56] Wallis JG, Wang H, Guerra DJ (1997) Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures.Plant Molecular Biology, 35, 323-330.
[57] Xu QH, Cheng CHC, Hu P, Ye H, Chen ZZ, Cao LX, Chen L, Shen Y, Chen LB (2008) Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.Molecular Biology and Evolution, 25, 1099-1112.
[58] Yang N, Peng C, Cheng D, Huang Q, Xu G, Gao F, Chen L (2013) The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco.Gene, 521, 32-37.
[59] Zhao Y, Ratnayake-Lecamwasam M, Parker SK, Cocca E, Camardella L, di Prisco G, Detrich HW (1998) The major adult α-globin gene of Antarctic teleosts and its remnants in the hemoglobinless icefishes calibration of the mutational clock for nuclear genes.Journal of Biological Chemistry, 273, 14745-14752.
[1] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657.
[2] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响[J]. 生物多样性, 2019, 27(6): 607-618.
[3] 刘艳, 杨钰爽. 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性[J]. 生物多样性, 2019, 27(6): 677-682.
[4] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629.
[5] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[6] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J]. 生物多样性, 2019, 27(5): 543-556.
[7] 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504.
[8] 何杰丽 石甜甜 陈凌 王海岗 乔治军 王瑞云. 糜子EST-SSR的开发及种质资源遗传多样性分析[J]. 植物学报, 2019, 54(5): 0-0.
[9] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. 海南岛翼手目物种多样性现状与分布预测[J]. 生物多样性, 2019, 27(4): 400-408.
[10] 马燕婕, 何浩鹏, 沈文静, 刘标, 薛堃. 转基因玉米对田间节肢动物群落多样性的影响[J]. 生物多样性, 2019, 27(4): 419-432.
[11] 张亚红, 贾会霞, 王志彬, 孙佩, 曹德美, 胡建军. 滇杨种群遗传多样性与遗传结构[J]. 生物多样性, 2019, 27(4): 355-365.
[12] 娄明华, 白超, 惠刚盈, 汤孟平. 7个林木大小多样性指数表达能力比较[J]. 生物多样性, 2019, 27(4): 449-456.
[13] 朱柏菁, 薛敬荣, 夏蓉, 靳苗苗, 吴攸, 田善义, 陈小云, 刘满强, 胡锋. 不同土壤线虫功能团对水稻生长及地上部植食者的影响[J]. 生物多样性, 2019, 27(4): 409-418.
[14] 李强, 王彬, 邓云, 林露湘, 达佤扎喜, 张志明. 西双版纳热带雨林林窗空间分布格局及其特征数与林窗下植物多样性的相关性[J]. 生物多样性, 2019, 27(3): 273-285.
[15] 王颖灿, 林家怡, 许涵, 林明献, 李意德. 海南尖峰岭热带山地雨林60 ha大样地木本植物性别系统数量特征[J]. 生物多样性, 2019, 27(3): 297-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed