生物多样性 ›› 2013, Vol. 21 ›› Issue (4): 401-410.doi: 10.3724/SP.J.1003.2013.10031

所属专题: 微生物多样性专辑

• • 上一篇    下一篇

基于新一代高通量测序的环境微生物转录组学研究进展

蔡元锋, 贾仲君*()   

  1. 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室, 南京 210008
  • 收稿日期:2013-01-31 接受日期:2013-03-09 出版日期:2013-07-20
  • 通讯作者: 贾仲君 E-mail:jia@issas.ac.cn
  • 基金项目:
    国家自然科学基金重大项目(41090281)

Progress in environmental transcriptomics based on next-generation high-throughput sequencing

Yuanfeng Cai, Zhongjun Jia*()   

  1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
  • Received:2013-01-31 Accepted:2013-03-09 Online:2013-07-20
  • Contact: Jia Zhongjun E-mail:jia@issas.ac.cn

环境微生物转录组学是一门新兴学科, 它以复杂环境样品中的微生物mRNA为研究对象, 利用近年兴起的RNA-Seq高通量测序技术, 在整体水平上对环境微生物的基因表达水平和调控规律进行研究。本文概述了环境微生物转录组研究从样品的采集保存、RNA提取、mRNA的富集、cDNA合成直到高通量测序及数据分析的基本流程。总结了该技术面临的主要瓶颈: 环境样品mRNA含量低、腐植酸等干扰杂质多、rRNA去除程度有限。针对 RNA的提取、纯化以及mRNA的富集这些重点步骤, 详细阐述了近年来在提高mRNA的得率与纯度上的方法学进展。重点介绍了高通量测序数据的处理及分析方法, 从测序数据的质量控制、序列组装、rRNA的鉴定及去除、功能基因注释及分类到差异表达基因的鉴定。最后总结了近年来环境微生物转录组学在新基因的发现、不同环境条件下微生物的基因表达及调控规律研究、有机物的代谢路径分析等3个主要研究领域的广泛应用。随着测序技术及生物信息学分析工具的发展进步, 环境微生物转录组学将具有更广阔的应用前景。

关键词: 转录组学, RNA-seq, 高通量测序, 环境微生物学

Environmental transcriptomics, which focuses on microbial mRNA derived from complex environmental samples using the RNA-Seq method, allows investigation of expression and patterns of regulation of functional genes in natural microbial communities. This review outlines the basic protocol of environmental transcriptomics, from sample collection and preservation, total RNA isolation, mRNA enrichment, cDNA synthesis to high-throughput sequencing and data analysis. Main technological problems are pointed out, such as low yield of mRNA in environmental samples, contamination of mRNA by various impurities like humic substances and limited degree of rRNA removal. Recent progresses in specific methodologies to improve the quantity and quality of mRNA, especially in RNA extraction, purification and the enrichment of mRNA, are outlined. Bioinformatics methods that deal with the large volume of RNA-Seq data are addressed, such as quality control of the sequence data, sequence assembly, detection and removal of rRNA, gene annotation and functional classification, and detection of differently expressed genes. The widely application of environmental transcriptomics, including detection of new genes, study of gene expression and regulation of microorganisms in different environments, and the analysis of metabolic pathways of special organic substances, are also highlighted. Environmental transcriptomics, combined with the further development of sequencing technology and bioinformatics tools in the future, are likely to be comprehensively used in the study of environmental microbiology.

Key words: transcriptomics, RNA-Seq, high-throughput sequencing, environmental microbiology

1 Altermann E, Klaenhammer TR (2005) PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.BMC Genomics, 6, 60.
2 Armour CD, Castle JC, Chen RH, Babak T, Loerch P, Jackson S, Shah JK, Dey J, Rohl CA, Johnson JM, Raymond CK (2009) Digital transcriptome profiling using selective hexamer priming for cDNA synthesis.Nature Methods, 6, 647-649.
3 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene Ontology: tool for the unification of biology.Nature Genetics, 25, 25-29.
4 Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: Rapid Annotations Using Subsystems Technology.BMC Genomics, 9, 75.
5 Balzer S, Malde K, Lanzén A, Sharma A, Jonassen I (2010) Characteristics of 454 pyrosequencing data-enabling realistic simulation with flowsim.Bioinformatics, 26, i420-i425.
6 Booijink CC, Boekhorst J, Zoetendal EG, Smidt H, Kleerebezem M, de Vos WM (2010) Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed.Applied and Environmental Microbiology, 76, 5533-5540.
7 Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo SJ, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao JI, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays.Nature Biotechnology, 18, 630-634.
8 Bürgmann H, Widmer F, Sigler WV, Zeyer J (2003) mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil.Applied and Microbiology, 69, 1928-1935.
9 Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity.Current Opinion in Biotechnology, 19, 544-549.
10 Chu YJ, Corey DR (2012) RNA sequencing: platform selection, experimental design, and data interpretation.Nucleic Acid Therapeutics, 22, 271-274.
11 Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data.Nucleic Acids Research, 35, D169-D172.
12 Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.Bioinformatics, 21, 3674-3676.
13 de Menezes A, Clipson N, Doyle E (2012) Comparative metat- ranscriptomics reveals widespread community responses during phenanthrene degradation in soil.Environmental Microbiology, 14, 2577-2588.
14 Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA.Nucleic Acids Research, 34, 659-666.
15 Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences,USA, 105, 3805-3810.
16 Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J, Levin JZ, Livny J, Earl AM, Gevers D, Ward DV, Nusbaum C, Birren BW, Gnirke A (2012) Efficient and robust RNA-Seq process for cultured bacteria and complex community transcriptomes.Genome Biology, 13, r23.
17 Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities.PLoS ONE, 3, e3042.
18 Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE, Latorre A, Moya A (2011) Metatranscriptomic approach to analyze the functional human gut microbiota.PLoS ONE, 6, e17447.
19 Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition.Applied and Environmental Microbiology, 66, 5488-5491.
20 Hewson I, Poretsky RS, Dyhrman ST, Zielinski B, White AE, Tripp HJ, Montoya JP, Zehr JP (2009) Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean.The ISME Journal, 3, 1286-1300.
21 Hewson I, Poretsky RS, Tripp HJ, Montoya JP, Zehr JP (2010) Spatial patterns and light-driven variation of microbial population gene expression in surface waters of the oligotrophic open ocean.Environmental Microbiology, 12, 1940-1956.
22 Hollibaugh JT, Gifford S, Sharma S, Bano N, Moran MA (2011) Metatranscriptomic analysis of ammonia-oxidizing organisms in an estuarine bacterioplankton assemblage.The ISME Journal, 5, 866-878.
23 Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4.Genome Research, 21, 1552-1560.
24 Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2008) KEGG for linking genomes to life and the environment.Nucleic Acids Research, 36, D480-D484.
25 Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G, Prosser J, Schuster S, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils.Nature, 442, 806-809.
26 Liu ZF, Klatt CG, Wood JM, Rusch DB, Ludwig M, Wittekindt N, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2011) Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat.The ISME Journal, 5, 1279-1290.
27 Martin JA, Wang Z (2011) Next-generation transcriptome assembly.Nature Reviews Genetics, 12, 671-682.
28 McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, Chisholm SW, DeLong EF (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proceedings of the National Academy of Sciences, USA, 107, 16420-16427.
29 McGrath KC, Thomas-Hall SR, Cheng CT, Leo L, Alexa A, Schmidt S, Schenk PM (2008) Isolation and analysis of mRNA from environmental microbial communities.Journal of Microbiological Methods, 75, 172-176.
30 Mettel C, Kim Y, Shrestha PM, Liesack W (2010) Extraction of mRNA from soil.Applied and Environmental Microbiology, 76, 5995-6000.
31 Meyer F, Paarmann D, D’souza M, Olson R, Glass E, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes.BMC Bioinformatics, 9, 386.
32 Mills HJ, Reese BK, Shepard AK, Riedinger N, Dowd SE, Morono Y, Inagaki F (2012) Characterization of meta- bolically active bacterial populations in subseafloor Nankai trough sediments above, within, and below the sulfate- methane transition zone.Frontiers in Microbiology, 3, 113.
33 Mitra S, Rupek P, Richter D, Urich T, Gilbert J, Meyer F, Wilke A, Huson DH (2011) Functional analysis of metage- nomes and metatranscriptomes using SEED and KEGG.BMC Bioinformatics, 12, S21.
34 Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nature Methods, 5, 621-628.
35 Neidhardt FC, Umbarger HE (1996) Chemical composition of Escherichia coli. In: Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt FC), pp. 13-16. ASM Press, Washington, DC.
36 Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein R, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuy D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye YZ, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes.Nucleic Acids Research, 33, 5691-5702.
37 Ozsolak F, Milos PM (2010) RNA sequencing: advances, challenges and opportunities.Nature Reviews Genetics, 12, 87-98.
38 Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples.Applied and Environmental Microbiology, 71, 4121-4126.
39 Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA (2009) Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre.Environmental Microbiology, 11, 1358-1375.
40 Poroyko V, White JR, Wang M, Donovan S, Alverdy J, Liu DC, Morowitz MJ (2010) Gut microbial gene expression in mother-fed and formula-fed piglets.PLoS ONE, 5, e12459.
41 Qi YX (祁云霞), Liu YB (刘永斌), Rong WH (荣威恒) (2011) RNA-Seq and its applications: a new technology for transcriptomics. Hereditas (Beijing)(遗传), 33, 1191-1202. (in Chinese with English abstract)
42 Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data.Nature Methods, 6, 639-641.
43 Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T, Schleper C (2012) Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community.Environmental Microbiology, 14, 1308-1324.
44 Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications.Biotechnology Advances, 26, 576-590.
45 Rougemont J, Amzallag A, Iseli C, Farinelli L, Xenarios I, Naef F (2008) Probabilistic base calling of Solexa sequencing data.BMC Bioinformatics, 9, 431.
46 Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics.Trends in Biotechnology, 16, 301-306.
47 Shendure J, Ji H (2008) Next-generation DNA sequencing.Nature Biotechnology, 26, 1135-1145.
48 Shi YM, Tyson GW, DeLong EF (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column.Nature, 459, 266-269.
49 Stewart FJ, Ottesen EA, DeLong EF (2010) Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics.The ISME Journal, 4, 896-907.
50 Stewart FJ, Sharma AK, Bryant JA, Eppley JM, DeLong EF (2011a) Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities.Genome Biology, 12, R26.
51 Stewart FJ, Ulloa O, DeLong EF (2011b) Microbial metatranscriptomics in a permanent marine oxygen minimum zone.Environmental Microbiology, 14, 23-40.
52 Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Nature Biotechnology, 28, 511-515.
53 Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, Affourtit J, Egholm M, Henrissat B, Knight R, Gordon JI (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proceedings of the National Academy of Sciences,USA, 107, 7503-7508.
54 Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome.PLoS ONE, 3, e2527.
55 Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression.Science, 270, 484-487.
56 Vila-Costa M, Rinta-Kanto JM, Sun SL, Sharma S, Poretsky R, Moran MA (2010) Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoni-opropionate.The ISME Journal, 4, 1410-1420.
57 Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-Seq data.Bioinformatics, 26, 136-138.
58 Wang Y, Hayatsu M, Fujii T (2012) Extraction of bacterial RNA from soil: challenges and solutions.Microbes and Environments, 27, 111-121.
59 Wang Y, Morimoto S, Ogawa N, Oomori T, Fujii T (2009a) An improved method to extract RNA from soil with efficient removal of humic acids.Journal of Applied Microbiology, 107, 1168-1177.
60 Wang Z, Gerstein M, Snyder M (2009b) RNA-Seq: a revolutionary tool for transcriptomics.Nature Reviews Genetics, 10, 57-63.
61 Xiong X, Frank DN, Robertson CE, Hung SS, Markle J, Canty AJ, McCoy KD, Macpherson AJ, Poussier P, Danska JS, Parkinson J (2012) Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing.PLoS ONE, 7, e36009.
62 Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations.Nucleic Acids Research, 34, W293-W297.
63 Yi H, Cho YJ, Won S, Lee JE, Jin YH, Kim S, Schroth GP, Luo S, Chun J (2011) Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-Seq.Nucleic Acids Research, 39, e140.
64 Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge.PLoS ONE, 7, e38183.
65 Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences.Journal of Computational Biology, 7, 203-214.
66 Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA, Shagin DA (2004) Simple cDNA normalization using kamchatka crab duplex-specific nuclease.Nucleic Acids Research, 32, e37.
[1] 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. 用于蜜蜂和熊蜂肠道微生物分类的细菌16S rRNA数据库优化[J]. 生物多样性, 2019, 27(5): 557-566.
[2] 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533.
[3] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. 直刺变豆菜叶绿体全基因组及其特征[J]. 生物多样性, 2019, 27(4): 366-372.
[4] 邓晓娟, 刘建利, 闫兴富, 刘培贵. 用传统分离培养法和高通量测序技术分析印度块菌子囊果内细菌的群落结构[J]. 生物多样性, 2018, 26(12): 1318-1324.
[5] 李巧丽, 延娜, 宋琼, 郭军战. 鲁桑叶绿体基因组序列及特征分析[J]. 植物学报, 2018, 53(1): 94-103.
[6] 曹云, 沈文静, 陈炼, 胡飞龙, 周蕾, 徐海根. Metabarcoding技术在真菌多样性研究中的应用[J]. 生物多样性, 2016, 24(8): 932-939.
[7] 朱珣之, 李强, 李扬苹, 韩洪波, 马克平. 紫茎泽兰入侵对土壤细菌的群落组成和多样性的影响[J]. 生物多样性, 2015, 23(5): 665-672.
[8] 赵爱花, 杜晓军, 臧婧, 张守仁, 焦志华. 宝天曼落叶阔叶林土壤细菌多样性[J]. 生物多样性, 2015, 23(5): 649-657.
[9] 吕艳艳, 付三雄, 陈松, 张唯, 戚存扣. 利用RNA-seq技术分析淹水胁迫下转BnERF拟南芥差异表达基因[J]. 植物学报, 2015, 50(3): 321-330.
[10] 伍自力, 余孟瑶, 陈露, 魏静, 王晓琴, 胡勇, 闫妍, 万平. 小立碗藓对重金属镉胁迫的应答特征[J]. 植物学报, 2015, 50(2): 171-179.
[11] 周伟, 王红. 基于DNA分子标记的花粉流动态分析[J]. 生物多样性, 2014, 22(1): 97-108.
[12] 黄儒, 苍晶, 于晶, 卢宝伟, 刘丽杰, 王健飞, 郭人铭, 徐琛. 冬小麦小RNA高通量测序及生物信息学分析[J]. 植物学报, 2014, 49(1): 8-18.
[13] 孙欣, 高莹, 杨云锋. 环境微生物的宏基因组学研究新进展[J]. 生物多样性, 2013, 21(4): 393-400.
[14] 董淼, 黄越, 陈文铎, 徐涛, 郎秋蕾. 降解组测序技术在植物miRNA研究中的应用[J]. 植物学报, 2013, 48(3): 344-353.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed