生物多样性 ›› 2013, Vol. 21 ›› Issue (4): 411-420. DOI: 10.3724/SP.J.1003.2013.10033
收稿日期:
2013-02-02
接受日期:
2013-04-16
出版日期:
2013-07-20
发布日期:
2013-07-29
通讯作者:
贺纪正
基金资助:
Jizheng He1,*(), Jing Li1,2, Yuanming Zheng1
Received:
2013-02-02
Accepted:
2013-04-16
Online:
2013-07-20
Published:
2013-07-29
Contact:
He Jizheng
摘要:
自20世纪50年代以来, 生物多样性与生态系统稳定性的关系一直是生态学中重点讨论的理论问题之一。在当今人类活动对自然生态系统产生重大影响的情况下, 全面理解生态系统多样性与稳定性的关系, 有助于我们更好地应对环境变化和生物多样性丧失等生态问题。在陆地生态系统中, 关注重点多集中在地上植物生态系统; 而对地下生态系统, 尤其是对微生物多样性与系统稳定性关系的研究尚重视不够。事实上, 土壤微生物作为生命元素循环的驱动者, 主导和参与地下生态系统中一系列重要生态过程, 对土壤能否正常有序地执行各项生态功能至关重要。对土壤微生物多样性的研究, 能使我们明确土壤中微生物对各种环境条件(包括自然和人为因素)变化的响应机制, 更好地维持土壤生态系统的稳定性及其生态服务功能。本文在介绍土壤微生物多样性概念、研究方法、地下生态系统稳定性的基础上, 重点讨论了土壤微生物多样性对土壤生态系统稳定性的影响, 对多样性-稳定性关系在土壤微生物生态学中的应用进行了较为深入和全面的思考。作者提出, 土壤微生物系统是一个动态变化的自组织系统, 通过遗传来维持其组成和结构的相对稳定性, 通过变异而适应外界干扰, 共同构成土壤微生物系统的抵抗力(resistance)和恢复力(resilience), 维护土壤生态系统的稳定性。今后土壤微生物多样性-稳定性关系的研究, 需要注重地上与地下生态系统的结合与统一, 借鉴宏观生态学理论来构建微生物生态学的理论框架, 建立微生物多样性-稳定性关系的机理模型, 从定性描述向定量表征方向发展。
贺纪正, 李晶, 郑袁明 (2013) 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 21, 411-420. DOI: 10.3724/SP.J.1003.2013.10033.
Jizheng He,Jing Li,Yuanming Zheng (2013) Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 21, 411-420. DOI: 10.3724/SP.J.1003.2013.10033.
图2 土壤微生物系统适应环境干扰的概念模型。经历外界干扰后, 初始稳定的微生物群落(initial community)为适应变化的环境而做出相应改变, 其中高抵抗力高恢复力类群(以▲表示)经历外界干扰的刺激数量增多, 以维持该微生物群落正常执行各项功能; 高抵抗力低恢复力类群(以△表示)抗干扰的能力强因此数量保持不变, 属于相对稳定的类群; 低抵抗力高恢复力类群(以○表示)抗干扰的能力较弱而数量下降; 低抵抗力低恢复力类群(以●表示)更加不适应变化的环境而数量骤减。经历一段时间后, 胁迫下的微生物群落(stressed community)逐渐适应(adaption)了外界干扰而形成了一个新的稳定的微生物群落(new community), 在该群落中▲数量最多成为了优势种, 它替代了部分因不适应外界干扰而数量下降或者消失的类群执行正常的功能而维持整个微生物群落的稳定(functional redundancy); △维持原有的稳定状态; ○虽然经历了短暂的数量下降过程但是因其恢复力较强因此又恢复至初始群落的状态; ●则由于极度不适应外界干扰而被淘汰被新的突变型类群所替代。当外界干扰消除后, 新的稳定的微生物群落有可能再次回到初始群落的状态。
Fig. 2 Conceptual model of soil microbial system adapted to the environmental disturbance. Initial microbial community shifted to adapt to the changing environment. The number of high resistance and high resilience cluster (▲) increased to sustain the functional stability of community after the disturbance. The number of high resistance and low resilience cluster (△) maintained constant due to the high resistance. The number of low resistance and high resilience cluster (○) decreased due to the low resistance. Since the low resistance and low resilience cluster (●) did not adapt to the stress, its number sharply decreased. Stressed microbial community gradually adapted to the disturbance to form a new stable community. In this new community, the number of high resistance and high resilience cluster (▲) are the predominant species which substituted the extinctive species to sustain the functional stability of community (functional redundancy). The high resistance and low resilience cluster (△) maintained constant. The number of low resistance and high resilience cluster (○) returned to the initial status due to its high resilience in a short term. The low resistance and resilience cluster (●) disappeared and replaced by the new mutant species. After the disturbance finished, a new stable microbial community might return to the initial community.
52 | van Ruijven J, Berendse F (2010) Diversity enhances community recovery, but not resistance, after drought. Journal of Ecology, 98, 81-86. |
53 | Ventura M, Perozzi G (2011) Introduction to the special issue “Probiotic bacteria and human gut microbiota”.Genes and Nutrition, 6, 203-204. |
54 | Wang GH (王国宏) (2002) Further thoughts on diversity and stability in ecosystems.Biodiversity Science(生物多样性), 10, 126-134. (in Chinese with English abstract) |
55 | Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Roux XL (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance.Environmental Microbiology, 9, 2211-2219. |
56 | Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress.Nature, 458, 623-626. |
57 | Wohl DL, Arora S, Gladstone JR (2004) Functional redundancy supports biodiversity and ecosystem function in a closed and sonstant environment.Ecology, 85, 1534-1540. |
58 | Worm B, Barbier EB, Beaumont N, Duffy JE, Floke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services.Science, 314, 787-790. |
59 | Wu JF (吴建峰), Lin XG (林先贵) (2003) Effects of soil microbes on plant growth.Soils(土壤), 1, 18-21. (in Chinese with English abstract) |
60 | Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis.Proceedings of the National Academy of Sciences,USA, 96, 1463-1468. |
1 | Allison G (2004) The influence of species diversity and stress intensity on community resistance and resilience.Ecological Monographs, 74, 117-134. |
2 | Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences,USA, 105, 11512-11519. |
3 | Berga M, Székely AJ, Langenheder S (2012) Effects of disturbance intensity and frequency on bacterial community composition and function.PLoS ONE, 7, e36959. |
4 | Caporaso JG, Paszkiewicz K, Field D, Knight R, Gilbert JA (2011) The Western English Channel contains a persistent microbial seedbank.International Society for Microbial Ecology, 6, 1089-1093. |
5 | Chaer G, Fernandes M, Myrold D, Bottomley P (2009) Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils.Microbial Ecology, 58, 414-424. |
6 | Chen RR (陈瑞蕊), Lin XG (林先贵), Shi YQ (施亚琴) (2003) Research advances of orchid mycorrhizae.Chinese Journal of Applied Environmental Biology(应用与环境生物学报), 9, 97-101. (in Chinese with English abstract) |
7 | Chen SB (陈圣宾), Ouyang ZY (欧阳志云), Xu WH (徐卫华), Xiao Y (肖燚) (2010) A review of beta diversity studies.Biodiversity Science(生物多样性), 18, 323-335. (in Chinese with English abstract) |
8 | Copley J (2000) Ecology goes underground.Nature, 406, 452-454. |
9 | Creamer RE, Brennan F, Fenton O, Healy MG, Lalor STJ, Lanigan GJ, Regan JT, Griffiths BS (2010) Implications of the proposed Soil Framework Directive on agricultural systems in Atlantic Europe—a review.Soil Use and Management, 26, 198-211. |
10 | Cohan FM (2002) What are bacterial species? Annual Review of Microbiology, 56, 457-487. |
11 | Comte J, del Giorgio PA (2010) Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients.Ecology, 91, 1466-1476. |
12 | Didier LB, Hannes P, Lars JT (2012) Resistance and resilience of microbial communities temporal and spatial insurance against perturbations.Environmental Microbiology, 14, 2283-2292. |
13 | Downing AL, Leibold MA (2010) Species richness facilitates ecosystem resilience in aquatic food webs.Freshwater Biology, 55, 2123-2137. |
14 | Elton CS (1958) The Ecology of Invasions by Animals and Plants, pp. 143-153. Chapman Hall, London. |
15 | Flöder S, Jaschinski S, Wells G, Burns CW (2010) Dominance and compensatory growth in phyto-plankton communities under salinity stress.Journal of Experimental Marine Biology and Ecology, 395, 223-231. |
16 | Gardiner GE, Casey PG, Casey G, Lynch PB, Lawlor PG, Hill C, Fitzgerald GF, Stanton C, Ross RP (2004) Relative ability of orally administered Lactobacillus murinus to predominate and persist in the porcine gastrointestinal tract.Applied and Environmental Microbiology, 70, 1895-1906. |
17 | Gamfeldt L, Hillebrand H, Jonsson PR (2008) Multiple functions increase the importance of biodiversity for overall ecosystem functioning.Ecology, 89, 1223-1231. |
18 | Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B, Weynberg K, Huse S, Hughes M, Joint I, Somerfield PJ, Mühling M (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’ study of seasonal and diel temporal variation.PLoS ONE, 5, e15545. |
19 | Griffiths BS, Bonkowski M, Roy J, Ritz K (2001) Functional stability, substrate utilisation and biological indicators of soils following environmental impacts.Applied Soil Ecology, 16, 49-61. |
20 | Griffiths BS, Philippot L (2012) Insights into the resistance and resilience of the soil microbial community.FEMS Microbiology Review, doi:10.1111/j.1574-6976.2012. 00343. X |
21 | Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Baath E, Bloem J, De Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation induced microbial diversity reductions: an examination of the biodiversity- ecosystem function relationship.Oikos, 90, 279-294. |
22 | He JZ (贺纪正), Cao P (曹鹏), Zheng YM (郑袁明) (2013) Metabolic scaling theory and its application in microbial ecology.Acta Ecologica Sinica(生态学报), 33, 2645-2655. (in Chinese with English abstract) |
23 | He JZ (贺纪正), Ge Y (葛源) (2008) Recent advances in soil microbial biogeography.Acta Ecologica Sinica(生态学报), 28, 5571-5582. (in Chinese with English abstract) |
24 | He JZ, Ge Y, Xu ZH, Chen CR (2009) Linking soil bacterial diversity to ecosystem multifunctionality using backward- elimination boosted trees analysis.Journal of Soils and Sediments, 9, 547-554. |
25 | He JZ (贺纪正), Yuan CL (袁超磊), Shen JP (沈菊培), Zhang LM (张丽梅) (2012) Methods for and progress in research on soil metagenomics.Acta Pedologica Sinica(土壤学报), 49, 155-164. (in Chinese with English abstract) |
26 | He JZ (贺纪正), Zhang LM (张丽梅) (2011) Progress in research approaches of soil microbial ecology. In: Progress in Agricultural Microbiology Research and Industrialization (农业微生物研究与产业化进展) (eds Li J (李俊), Shen DL (沈德龙), Lin XG (林先贵)), pp. 94-108. Science Press, Beijing. (in Chinese) |
27 | Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality.Nature, 448, 188-190. |
28 | Huang JH (黄建辉), Han XG (韩兴国) (1995) Biodiversity and ecosystem stability.Chinese Biodiversity(生物多样性), 3, 31-37. (in Chinese with English abstract) |
29 | Kaufman LH (1982) Stream aufwuchs accumulation disturbance frequency and stress resistance and resilience.Oecologia, 52, 57-63. |
30 | Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie D, Meyer F, Stevens R, Bailey MJ, Gordon JI, Kowalchuk GA, Gilbert JA (2012) Unlocking the potential of metagenomics through replicated experimental design.Nature Biotechnology, 30, 513-520. |
31 | Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data.Ecological Monographs, 75, 435-450. |
32 | Lennon JT, Martiny JBH (2008) Rapid evolution buffers ecosystem impacts of viruses in a microbial food web.Ecology Letters, 11, 1178-1188. |
33 | Li B (李博) (2000) Ecology (生态学), pp. 340-347. Higher Education Press, Beijing. (in Chinese) |
34 | Lin XG (林先贵), Hu JL (胡君利) (2008) Scientific connotation and ecological service function of soil microbial diversity.Acta Pedologica Sinica(土壤学报), 45, 892-900. (in Chinese with English abstract) |
35 | Litchman E (2010) Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems.Ecology Letters, 13, 1560-1572. |
36 | MacArthur R (1955) Fluctuations of animal populations, and a measure of community stability.Ecology, 36, 533-536. |
37 | Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreås L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map.Nature Review Microbiology, 4, 102-112. |
38 | McCann KS (2000) The diversity-stability debate.Nature, 405, 228-233. |
39 | Metchnikoff II (1908) The Nature of Man: Studies in Optimistic Philosophy. GP Putman’s Sons, New York. |
40 | Mercé B, Anna JS, Silke L (2012) Effects of disturbance intensity and frequency on bacterial comminuty composition and function.PLoS ONE, 7, e36959. |
41 | Oneill RV (1976) Ecosystem persistence and heterotrophic regulation.Ecology, 57, 1244-1253. |
42 | Orwin KH, Wardle DA (2004) New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances.Soil Biology and Biochemistry, 36, 1907-1912. |
43 | Pimm SL (1984) The complexity and stability of ecosystems.Nature, 307, 321-326. |
44 | Prosser JI (1989) Autotrophic nitrification in bacteria.Advances in Microbial Physiology, 30, 125-181. |
45 | Shade A, Peter H, Allison SD, Baho D, Berga M, Buergmann H, Huber DH, Langenheder S, Lennon JT, Martiny JB, Matulich K, Schmidt TM, Handelsman J (2012) Fundamentals of microbial community resistance and resilience.Frontiers in Microbiology, 3, 417. |
46 | Shea K, Chesson P (2002) Community ecology theory as a frame-work for biological invasions.Trends in Ecology and Evolution, 17, 170-176. |
47 | Sousa WP (1980) The responses of a community to disturbance: the importance of successional age and species life history strategies.Oecologia, 45, 72-81. |
48 | Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J, Weber M, Klindworth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann FD, Callies U, Gerdts G, Wichels A, Wiltshire KH, Glöckner FO, Schweder T, Amann R (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom.Science, 336, 608-611. |
49 | Tilman D (1996) Biodiversity: population versus ecosystem stability.Ecology, 77, 350-363. |
50 | Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment.Nature, 441, 629-632. |
51 | van Elsas JD, Chiurazzi M, Mallon CA, Krištufek EV, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen.Proceedings of the National Academy of Sciences, USA, 109, 1159-1164. |
61 | Zhang B, Deng H, Wang HL, Yin R, Hallett PD, Griffiths BS, Daniell TJ (2010) Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil? Soil Biology and Biochemistry, 42, 850-859. |
[1] | 董云伟, 鲍梦幻, 程娇, 陈义永, 杜建国, 高养春, 胡利莎, 李心诚, 刘春龙, 秦耿, 孙进, 王信, 杨光, 张崇良, 张雄, 张宇洋, 张志新, 战爱斌, 贺强, 孙军, 陈彬, 沙忠利, 林强. 中国海洋生物地理学研究进展和热点: 物种分布模型及其应用[J]. 生物多样性, 2024, 32(5): 23453-. |
[2] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[3] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[4] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[5] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[6] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[7] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
[8] | 李婷婷, 张西美. 全球变化背景下内蒙古草原土壤微生物多样性维持机制研究进展[J]. 生物多样性, 2020, 28(6): 749-758. |
[9] | 雷学明, 沈芳芳, 雷学臣, 刘文飞, 段洪浪, 樊后保, 吴建平. 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响[J]. 生物多样性, 2018, 26(9): 962-971. |
[10] | 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987. |
[11] | 毕艳孟, 孙振钧. 蚯蚓调控土壤微生态缓解连作障碍的作用机制[J]. 生物多样性, 2018, 26(10): 1103-1115. |
[12] | 付伟, 王宁, 庞芳, 黄玉龙, 吴俊, 祁珊珊, 戴志聪, 杜道林. 土壤微生物与植物入侵: 研究现状与展望[J]. 生物多样性, 2017, 25(12): 1295-1302. |
[13] | 闫静, 张晓亚, 陈雪, 王月, 张风娟, 万方浩. 三叶鬼针草与不同本地植物竞争对土壤 微生物和土壤养分的影响[J]. 生物多样性, 2016, 24(12): 1381-1389. |
[14] | 李香真, 郭良栋, 李家宝, 姚敏杰. 中国土壤微生物多样性监测的现状和思考[J]. 生物多样性, 2016, 24(11): 1240-1248. |
[15] | 赵爱花, 杜晓军, 臧婧, 张守仁, 焦志华. 宝天曼落叶阔叶林土壤细菌多样性[J]. 生物多样性, 2015, 23(5): 649-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn