生物多样性 ›› 2013, Vol. 21 ›› Issue (1): 71-79.doi: 10.3724/SP.J.1003.2013.09138

• • 上一篇    下一篇

南岭地区观光木自然和人工迁地保护种群的遗传多样性

吴雪琴, 徐刚标*(), 梁艳, 申响保   

  1. 中南林业科技大学林木遗传育种实验室, 长沙 410004
  • 收稿日期:2012-07-03 接受日期:2012-12-18 出版日期:2013-01-20
  • 通讯作者: 徐刚标 E-mail:gangbiaoxu@163.com
  • 基金项目:
    林业公益性行业科研专项经费项目(201104033)

Genetic diversity of natural and planted populations of Tsoongiodendron odorum from the Nanling Mountains

Xueqin Wu, Gangbiao Xu*(), Yan Liang, Xiangbao Shen   

  1. The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004
  • Received:2012-07-03 Accepted:2012-12-18 Online:2013-01-20
  • Contact: Xu Gangbiao E-mail:gangbiaoxu@163.com

迁地保护是珍稀濒危植物保护的重要措施。观光木(Tsoongiodendron odorum)是古老的孑遗树种, 被列为国家二级重点保护植物, 营建迁地保护林是对其进行保护的重要手段, 但已经营建的迁地保护林每个种群目前只保存下来几十株个体。为了评价这些迁地保护林的遗传多样性现状, 作者采用ISSR分子标记对南岭地区观光木3个人工迁地保护种群和4个自然种群的遗传多样性进行了比较。结果显示: 16条ISSR引物共扩增出362个条带, 其中301个为多态条带, 多态条带百分比(P)为83.2%, 各种群P值为37.9-62.2%, 平均为53.1%, 表明观光木在物种和种群水平都具有较高的遗传多样性。自然种群总体P值和Shannon信息指数(I)(80.9%, 0.3629)均高于人工迁地保护种群(66.6%, 0.2990), 说明人工迁地保护种群遗传多样性较低。种群结构分析表明3个人工迁地保护种群均有可能来源于源口自然种群。4个自然种群间遗传分化系数(GST)为0.2495, 表明自然种群间存在显著遗传隔离, 基因流受阻和生态环境差异是造成种群遗传分化的主要原因。在今后的迁地保护工作中, 我们建议从不同生态地理区收集种质材料, 并在不同生态类型区开展迁地保护工作, 同时开展观光木种群生态生殖生物学研究。

关键词: Tsoongiodendron odorum, ISSR, 遗传多样性, 自然种群, 迁地保护

Ex situ conservation, complementary to in situ conservation, plays an important role in preservation and recovery of endangered species. Tsoongiodendron odorum is a relic species that was listed in the Second Grade of the List of Wild Plants Under State Protection (First Batch) in China. For protection of its genetic diversity, ex situ conservation populations have been established and managed outside of natural habitats in several nature reserves since 1980. However, only dozens of individuals are currently saved from each planted population. To assess the actual protective effectiveness of these planted populations, we detected and compared the genetic diversity of three planted populations from Nanling Mountains with four natural populations using ISSR markers. Overall, we detected 362 total ISSR discernible bands with 16 ISSR primers, of which 301 were polymorphic. The percentage of polymorphic bands (P) was 83.2%. At the population level, the percent of polymorphic bands ranged from 37.9% to 62.2%, with an average value of 53.1%. This result showed that T. odorum had high genetic diversity both at population and species levels. However, the percentage of polymorphic bands and Shannon information index (I) of ex situ conservation populations (66.6% and 0.2990) were much lower than those of natural populations (80.9% and 0.3629). We deduced that there was a narrow genetic base for plantations of T. odorum. Population structure analysis revealed that three planted populations could be collected from the same wild population (i.e., YK population). The genetic variation of four natural populations (GST=0.2495) showed that there was significant isolation among populations, which would limit gene flow and population differentiation among populations. We present suggestions on regulating seed collection from different natural habitats to establish planted populations and strengthening research on the reproductive biology of T. odorum.

Key words: Tsoongiodendron odorum, ISSR, genetic diversity, natural population, ex situ conservation

表1

观光木种群采集信息及样本大小"

种群
Population codes
地点
Location
经度
Longitude
纬度
Latitude
海拔
Altitude (m)
样本大小
Sample size
自然种群 Natural populations
弄相山 NXS 贵州弄相山省级自然保护区
Nongxiangshan Provincial Nature Reserve, Guizhou
109°12′ E 25°46′ N 230 21
源口 YK 湖南源口省级自然保护区
Yuankou Provincial Nature Reserve, Hunan
110°59′ E 24°58′ N 610 26
连山 LS 广东连山省级自然保护区
Lianshan Provincial Nature Reserve, Guangdong
112°01′ E 24°25′ N 580 28
南昆山 NKS 广东南昆山省级自然保护区
Nankunshan Provincial Nature Reserve, Guangdong
113°52′ E 23°38′ N 457 32
人工种群 Planted populations
车八岭 CBL 广东车八岭国家级自然保护区
Chebaling National Nature Reserve, Guangdong
114°15′ E 24°43′ N 350 18
鼎湖山 DHS 广东鼎湖山国家级自然保护区
Dinghushan National Nature Reserve, Guangdong
112°32′ E 23°10′ N 245 10
大顶山 DDS 广东南岭国家级自然保护区大顶山管理处
Dadingshan Management Office, Nanling Nature Reserve, Guangdong
113°03′ E 24°43′ N 516 28

表2

ISSR引物序列及扩增结果"

引物
Primer
序列(5′ to 3′)
Sequence(5′ to 3′)
最适温度
Optimum temperature (℃)
总条带数
No. of bands
多态条带数
No. of polymorphic bands
多态条带百分比
% of polymorphic bands
UBC814 (CT)8A 51 28 25 89.3
UBC815 (CT)8G 53 21 20 95.2
UBC818 (CA)8G 54 22 19 86.4
UBC822 (TC)8A 53 25 19 76.0
UBC824 (TC)8G 51 25 20 80.0
UBC835 (AG)8YC 55 23 17 73.9
UBC840 (GA)8YT 57 25 20 80.0
UBC841 (GA)8YC 57 26 20 76.9
UBC844 (CT)8RC 57 21 16 76.2
UBC845 (CT)8RG 54 18 14 77.8
UBC853 (TC)8RT 54 18 16 88.9
UBC854 (TC)8RG 54 23 21 91.3
UBC866 (CTC)6 60 23 18 78.3
UBC874 (CCCT)4 55 23 21 91.3
UBC879 (CTTCA)3 41 22 20 90.9
UBC881 (GGGTG)3 54 19 15 79.0
平均 Mean 22.63 18.82 83.2

表3

7个观光木种群遗传多样性分析"

种群
Population
多态条带百分比
% of polymorphic bands
Shannon信息指数
Shannon information index
自然种群 Natural populations
弄相山 NXS 59.4 0.2848
源口 YK 55.0 0.2618
连山 LS 61.9 0.2995
南昆山 NKS 62.2 0.2926
总体 Total 80.9 0.3629
人工种群 Planted populations
车八岭 CBL 47.2 0.2388
鼎湖山 DHS 37.9 0.2137
大顶山 DDS 48.3 0.2473
总体 Total 66.6 0.2990
平均 Mean level 53.1 0.2626
物种 Species level 83.2 0.3621

图1

ΔΚ值随组群数的变化图"

图2

观光木163株个体的遗传结构。纵坐标显示个体所属各类群的比例。种群代号见表1。"

表4

观光木种群间遗传分化系数(ΦST)估算值"

种群 Population 弄相山 NXS 源口 YK 连山 LS 南昆山 NKS 车八岭 CBL 鼎湖山 DHS 大顶山 DDS
弄相山 NXS ****
源口 YK 0.2895* ****
连山 LS 0.2739* 0.1858* ****
南昆山 NKS 0.3332* 0.2699* 0.1581* ****
车八岭 CBL 0.2657* 0.2231* 0.2461* 0.2982* ****
鼎湖山 DHS 0.2951* 0.2041* 0.2338* 0.3067* 0.1544* ****
大顶山 DDS 0.3174* 0.1784* 0.2266* 0.2788* 0.1867* 0.2212* ****

图3

观光木种群间ΦST的UPGMA聚类图。种群代号见表1。*示人工种群。"

1 Chen T (陈涛), Chang HT (张宏达) (1994) The Floristic geography of Nanling Mountain Range, China. I. Floristic composition and characteristics.Journal of Tropical and Subtropical Botany(热带亚热带植物学报), 2(1), 10-23. (in Chinese with English abstract)
2 Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication.Cell, 127, 1309-1321.
3 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620.
4 Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.1, an Integrated Software for Population Genetics Data Analysis. Zoological Institute, University of Berne, Berne.
5 Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479-491.
6 Falush D, Stephensb M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies.Genetics, 164, 1567-1587.
7 Ferreira DK, Nazareno AG, Mantovani A, Bittencourt R, Sebbenn AM, dos Reis MS (2012) Genetic analysis of 50-year old Brazilian pine (Araucaria angustifolia) plantations: implications for conservation planning. Conservation Genetics, 13, 435-442.
8 Finkeldey R, Hattemer HH (2007) Tropical Forest Genetics. Springer, Berlin.
9 Frankham R, Ballou JD, Mcinnes KH (2002) Introduction to Conservation Genetics, pp. 266-276. Cambridge University Press, Cambridge, UK.
10 Fu LK (傅立国), Jin JM (金鉴明) (1992) China Plant Red Data Book——Rare and Endangered Plants, Vol. 1 (中国红皮书——稀有濒危植物, 第一册), pp. 454-455. Science Press, Beijing. (in Chinese)
11 Gauli A, Gailing O, Stefenon VM, Finkeldey R (2009) Genetic similarity of natural populations and plantations of Pinus roxburghii Sarg. in Nepal.Annals of Forest Science, 66, 703.
12 Hamrick JL, Godt MJ (1990) Allozyme diversity in plant species. In: Plant Population Genetics, Breeding and Genetic Resources (eds Brown AHD, Clegg MT, Kahler AL, Weir BS), pp. 43-63. Sinauer, Sunderland.
13 Huang HW (黄宏文), Zhang Z (张征) (2012) Current status and prospects of ex situ cultivation and conservation of plants in China.Biodiversity Science(生物多样性), 20, 559-571. (in Chinese with English abstract)
14 Huang JX (黄久香), Zhuang XY (庄雪影) (2002a) Comparison of genetic diversity of Tsoongiodendron odorum in southern China by RAPD markers. Journal of South China Agricultural University (Natural Science Edition) (华南农业大学学报(自然科学版)), 23(2), 54-57. (in Chinese with English abstract)
15 Huang JX (黄久香), Zhuang XY (庄雪影) (2002b) Genetic diversity of the populations of Tsoongiodendron odorum.Acta Phytoecologica Sinica(植物生态学报), 26, 413-419. (in Chinese with English abstract)
16 Jiang JH, Wang J, Kang M, Sun W, Huang HW (2011) Isolation and characterization of microsatellite loci in Tsoongiodendron odorum (Magnoliaceae).American Journal of Botany, 98, 284-286.
17 Li NW (李乃伟), He SA (贺善安), Shu XC (束晓春), Wang Q (汪庆), Xia B (夏冰), Peng F (彭峰) (2011) Genetic diversity and structure analyses of wild and ex-situ conservation populations of Taxus chinensis var. mairei based on ISSR marker.Journal of Plant Resources and Environment(植物资源与环境学报), 20(1), 25-30. (in Chinese with English abstract)
18 Li SH (李松海), Xie AD (谢安德), Bi LY (贲丽云), Wang LH (王凌晖) (2011) Research status of precious tree species Tsoongiodendron odorum and its prospect.Journal of Southern Agriculture(南方农业学报), 42, 968-971. (in Chinese with English abstract)
19 Liu YH (刘玉壶) (1984) A preliminary study on the taxonomy of the family Magnoliaceae.Acta Phytotaxonomica Sinica(植物分类学报), 22, 89-109. (in Chinese with English abstract)
20 Navascués M, Emerson BC (2007) Natural recovery of genetic diversity by gene flow in reforested areas of the endemic Canary Island pine, Pinus canariensis.Forest Ecology and Management, 244, 122-128.
21 Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants.Molecular Ecology, 13, 1143-1156.
22 Pandey M, Gailing O, Leinemann L, Finkeldey R (2004) Molecular markers provide evidence for long-distance planting material transfer during plantation establishment of Dalbergia sissoo Roxb. in Nepal. Annals of Forest Science, 61, 603-606.
23 Primack PB, Ma KP (马克平) (2009) A Primer of Conservation Biology (保护生物学简明教程), pp. 121-132. Higher Education Press, Beijing. (in Chinese)
24 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data.Genetics, 155, 945-959.
25 Rohlf FJ (2000) NTSYS-pc version 2.1, Numerical Taxonomy and Multivariate Analysis System. Exeter Software, Setauket, New York.
26 Salas-Leiva DE, Mayor-Durán VM, Toro-Perea N (2009) Genetic diversity of black mangrove (Avicennia germinans) in natural and reforested areas of Salamanca Island Parkway, Colombian Caribbean.Hydrobiologia, 620, 17-24.
27 Sharma K, Degen B, von Wuehlisch G, Singh NB (2002) Allozyme variation in eight natural populations of Pinus roxburghii Sarg. in India.Silvae Genetica, 51, 246-253.
28 Shi QF (史全芬), Yang J (杨佳), Li XD (李晓东), Li XW (李新伟), Li JQ (李建强) (2005) Genetic diversity of cultivated populations of Metasequoia glyptostroboides.Acta Botanica Yunnanica(云南植物研究), 27, 403-412. (in Chinese with English abstract)
29 Sozen E, Ozaydin B (2010) A study of genetic variation in endemic plant Centaurea wiedemanniana by using RAPD markers. Ekoloji, 19, 1-8.
30 Stefenon VM, Gailing O, Finkeldey R (2008) Genetic structure of plantations and the conservation of genetic resources of Brazilian pine (Araucaria angustifolia).Forest Ecology and Management, 255, 2718-2725.
31 The Office of Forestry Division of China Forestry Department, PRC (中华人民共和国林业部林业区划办公室) (1987) China Division of Forest (中国林业区划), pp. 220-225. China Forestry Publishing House, Beijing. (in Chinese)
32 Wang X (王霞), Wang J (王静), Jiang JH (蒋敬虎), Kang M (康明) (2012) Genetic diversity and the mating system in a fragmented population of Tsoongiodendron odorum. Biodiversity Science(生物多样性), 20, 676-684. (in Chinese with English abstract)
33 Wang ZS, Liu H, Xu WX, Wei N, An SQ ( 2010) Genetic diversity in young and mature cohorts of cultivated and wild populations of Picea asperata Mast (Pinaceae), a spruce endemic in western China.European Journal of Forest Research, 129, 719-728.
34 Willi Y, van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations.Annual Review of Ecology, Evolution, and Systematics, 37, 433-458.
35 Wu XQ (吴雪琴), Xu GB (徐刚标), Liang Y (梁艳), Wang JQ (王家庆) (2012) Establishment and optimization of Tsoongiodendron odorum ISSR-PCR reaction system. Journal of Central South University of Forestry &Technology(中南林业科技大学学报), 32(7), 76-79. (in Chinese with English abstract)
36 Wu ZY (吴则焰), Liu JF (刘金福), Hong W (洪伟), Pan DM (潘东明), Zheng SQ (郑世群) (2011) Genetic diversity of natural and planted Glyptostrobus pensilis populations: a comparative study.Chinese Journal of Applied Ecology(应用生态学报), 22, 873-879. (in Chinese with English abstract)
37 Xing FW (邢福武), Chen HF (陈红锋), Wang FG (王发国), Chen ZM (陈振明), Zeng QW (曾庆文) (2011) Inventory of Plant Species Diversity in Nanling Mountains (南岭植物物种多样性编目), pp. 1-2. Huazhong University of Science and Technology Press, Wuhan. (in Chinese)
38 Yang YS, Chen GS, Guo JF, Lin P (2004) Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics.Annals of Forest Science, 61, 65-72
39 Yeh FC, Yang RC, Boyle T (1999)POPGENE version 1.31, Software Microsoft Window-based Freeware for Population Genetic Analysis. University of Alberta and Centre for International Forestry Research, Alberta.
40 Zeng QW (曾庆文), Gao ZZ (高泽正), Xing FW (邢福武), Zhang DX (张奠湘), Gong X (龚洵) (2004) Pollination biology of an endangered species: Tsoongiodendron odorum (Magnoliaceae). In: Proceedings of the Fifth National Symposium on the Conservation and Sustainable Use of Biodiversity in China (第5届生物多样性保护和持续利用研讨会论文集) (ed. Biodiversity Committee of the Chinese Academy of Sciences (中国科学院生物多样性委员会)), pp. 199-204. China Meteorological Press, Beijing. (in Chinese with English abstract)
41 Zhu TB, Meng TZ, Zhang JB, Yin YF, Cai ZC, Yang WY, Zhong WH (2012) Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China.Biology and Fertility of Soil, doi: 10.1007/s00374-012-0725-y.
[1] 李媛媛,刘超男,王嵘,罗水兴,农寿千,王静雯,陈小勇. (2020) 分子标记在濒危物种保护中的应用. 生物多样性, 28(3): 367-375.
[2] 苏金源,燕语,李冲,李丹,杜芳. (2020) 通过遗传多样性探讨极小种群野生植物的致濒机理及保护策略: 以裸子植物为例. 生物多样性, 28(3): 376-384.
[3] 何杰丽,石甜甜,陈凌,王海岗,高志军,杨美红,王瑞云,乔治军. (2019) 糜子EST-SSR分子标记的开发及种质资源遗传多样性分析. 植物学报, 54(6): 723-732.
[4] 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. (2019) 植物边缘种群遗传多样性研究进展. 植物生态学报, 43(5): 383-395.
[5] 张亚红, 贾会霞, 王志彬, 孙佩, 曹德美, 胡建军. (2019) 滇杨种群遗传多样性与遗传结构. 生物多样性, 27(4): 355-365.
[6] 赵颖, 马荣, 尹永香, 张志东, 田呈明. (2019) 新疆不同来源金黄壳囊孢的多样性. 生物多样性, 27(10): 1122-1131.
[7] 谢立峰, 李宁, 李烨, 姚明华. (2019) 茄子种质遗传多样性及群体结构的SRAP分析. 植物学报, 54(1): 58-63.
[8] 于少帅, 林彩丽, 王圣洁, 张文鑫, 田国忠. (2018) 植原体tuf基因与其上游部分基因结构和相关基因启动子保守区域特征及活性分析. 生物多样性, 26(7): 738-748.
[9] 张文驹, 戎俊, 韦朝领, 高连明, 陈家宽. (2018) 栽培茶树的驯化起源与传播. 生物多样性, 26(4): 357-372.
[10] 秦声远, 戎俊, 张文驹, 陈家宽. (2018) 油茶栽培历史与长江流域油茶遗传资源. 生物多样性, 26(4): 384-395.
[11] 赵耀, 李耕耘, 杨继. (2018) 栽培植物野生近缘种的保护与利用. 生物多样性, 26(4): 414-426.
[12] 任梦云, 杜乐山, 陈彦君, 张盾, 沈奇, 关潇, 张银东. (2018) 锁阳ITS序列遗传多样性分析. 植物学报, 53(3): 313-321.
[13] 黄勋和, 余哲琪, 翁茁先, 何丹林, 易振华, 李威娜, 陈洁波, 张细权, 杜炳旺, 钟福生. (2018) 广东省地方鸡线粒体遗传多样性与母系起源. 生物多样性, 26(3): 238-247.
[14] 黄宏文. (2018) “艺术的外貌、科学的内涵、使命的担当”——植物园500年来的科研与社会功能变迁(二):科学的内涵. 生物多样性, 26(3): 304-314.
[15] 武星彤, 陈璐, 王敏求, 张原, 林雪莹, 李鑫玉, 周宏, 文亚峰. (2018) 丹霞梧桐群体遗传结构及其遗传分化. 生物多样性, 26(11): 1168-1179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed