生物多样性 ›› 2013, Vol. 21 ›› Issue (6): 715-722.doi: 10.3724/SP.J.1003.2013.08152

• • 上一篇    下一篇

报春苣苔属植物钙形态多样性

齐清文1, 2, 郝转1, 2, 陶俊杰1, 2, 康明1, *()   

  1. 1 中国科学院华南植物园, 中国科学院植物资源保护与可持续利用重点实验室, 广州 510650
    2 中国科学院大学, 北京 100049
  • 收稿日期:2013-07-03 接受日期:2013-10-28 出版日期:2013-11-20
  • 通讯作者: 康明 E-mail:mingkang@scbg.ac.cn
  • 基金项目:
    国家自然科学基金(31270427)

Diversity of calcium speciation in leaves of Primulina species (Gesneriaceae)

Qingwen Qi1, 2, Zhuan Hao1, 2, Junjie Tao1, 2, Ming Kang1, *()   

  1. 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
    2 University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2013-07-03 Accepted:2013-10-28 Online:2013-11-20
  • Contact: Kang Ming E-mail:mingkang@scbg.ac.cn

报春苣苔属(Primulina)是我国喀斯特植物的一个重要类群, 该属植物的地理分布具有高度的土壤专一性, 绝大多数物种仅分布在石灰岩基岩土壤, 还有一些仅分布在丹霞地貌土壤或砂页岩基岩土壤。 喀斯特石灰岩地区是报春苣苔属植物的分布中心, 该区域土壤中性偏碱, 钙含量很高。为探讨报春苣苔属植物钙形态组成及其多样性, 我们以来自我国华南喀斯特地区5个石灰岩钙质土壤、4个丹霞地貌土壤、6个砂页岩酸性土壤共15个居群的11种报春苣苔属植物为对象, 通过同质园实验(common garden experiment)检测了来源于不同基岩土壤的报春苣苔属植物叶片钙形态的组成和含量, 分析了该属植物叶片中钙的主要存在方式, 并对物种之间以及不同基岩土壤同一物种叶片钙形态差异做了比较。研究结果显示: 报春苣苔属植物叶片普遍具有较高的钙富集能力, 来源于石灰岩钙质土壤的植物叶片总钙平均含量高达2,285.6 mg/kg, 砂页岩酸性土壤植物为1,379.3 mg/kg, 丹霞地貌土壤植物为1,329.1 mg/kg, 石灰岩钙质土壤植物显著高于丹霞地貌和砂页岩酸性土壤植物(P<0.05)。多数物种植物叶片钙形态主要以果胶酸钙(514.8-1,148.7 mg/kg)的形式存在, 占叶片总钙含量的31.6-64.2%; 然而线叶报春苣苔(Primulina linearifolia)和药用报春苣苔(P. medica)叶片中水溶性钙含量最多, 约占叶片总钙含量的40%, 表明报春苣苔属植物叶片钙形态组成在物种之间具有多样性。同一物种植物叶片中不同形态钙含量以及物种间钙形态含量差异都达到显著水平(P<0.05)。另外, 不同基岩土壤分布的蚂蝗七(P. fimbrisepala)和烟叶报春苣苔(P. heterotricha)叶片总钙含量差异不大, 但各种钙形态的含量存在差异, 说明报春苣苔属植物叶片钙形态在种内也具有多样性, 这些结果为深入研究报春苣苔属植物对喀斯特土壤生境的适应性机制奠定了基础。

关键词: Primulina, 喀斯特植物, 钙质土壤, 酸性土壤, 钙形态, 多样性

Primulina is a genus containing typical “stone plants” or “cave plants” that show a high degree of edaphic specialization in the karst limestone regions of southwest China. Most species of the genus occur only on calcareous soils developed from carbonate bedrock, while a few species are found only on the red soil developed from the Danxia landform or acidic soil developed from sandshale bedrock. The aim of this study is to investigate the diversity and characteristics of calcium absorption and storage in Primulina from different soil substrates. Calcium in leaves was determined for plants sampled from 15 populations representing 11 Primulina species occurring on calcareous soil, red soil or acid soil. We analyzed the main types of calcium found in leaves, and compared the calcium content within and among species from different soil types. The results revealed a general high level of leaf calcium content in Primulina species compared with other plants from the karst regions of southwest China. However, we found a significant difference in calcium content among Primulina species from different soil types, with high average calcium content (2,285.6 mg/kg) in Primulina from calcareous soil relative to low levels present in Primulina from both acid soil (1,379.3 mg/kg) and Danxia red soil (1,329.1 mg/kg). The main form of calcium stored in most Primulina species (9 out of 11) was pectate calcium, which accounted for 31.6-64.2% of the total calcium in the leaves. In contrast, for two species, P. linearifolia and P. medica, which grow on soil with a pH > 8, the main calcium form was soluble calcium, which accounted for about 40% of the total calcium in plant leaves. In addition, differences in calcium amount and type were recorded within species from either the same or different soil types. These results suggest that there is variation in calcium speciation found in Primulina at both interspecific and intraspecific levels. Our findings provide a valuable basis for further studies on adaptive mechanisms of edaphic specialization in Primulina.

Key words: Primulina, karst plant, calcareous soil, acidic soil, calcium speciation, diversity

表1

不同基岩土壤报春苣苔属植物居群采集信息"

土壤基岩及编号
Bedrocks and code
种名
Species
采集地点
Sampling locations
土壤 pH
Soil pH
石灰岩 Limestone
ZJHZ01 西子报春苣苔 Primulina xiziae 浙江杭州 Hangzhou, Zhejiang -
DX03 牛耳朵 P. eburnean 湖南道县 Daoxian, Hunan 7.5
HNBT03 烟叶报春苣苔 P. heterotricha 海南保亭县 Baoting, Hainan 7.2
YLY01 线叶报春苣苔 P. linearifolia 广西武鸣县 Wuming, Guangxi 8.1
GXQT01 药用报春苣苔 P. medica 广西平乐县 Pingle, Guangxi 8.0
丹霞地貌 Danxia
GXRX01 钟冠报春苣苔 P. swinglei 广西容县 Rongxian, Guangxi 7.8
GDLC07 报春苣苔属一新种 Primulina sp. 广东乐昌 Lechang, Guangdong 7.7
DXS05 蚂蝗七 P. fimbrisepala 广东丹霞山 Danxia, Guangdong 7.6
GXZY01 蚂蝗七 P. fimbrisepala 广西资源县 Ziyuan, Guangxi 5.0
砂页岩 Sandshale
GDSZ01 中华报春苣苔 P. sinensis 广东深圳 Shenzhen, Guangdong 4.3
HNBT01 烟叶报春苣苔 P. heterotricha 海南保亭县 Baoting, Hainan 5.5
WG02 蚂蝗七 P. fimbrisepala 湖南武冈市 Wugang, Hunan 3.6
CBL01 蚂蝗七 P. fimbrisepala 广东始兴县 Shixing, Guangdong 3.8
LBJX01 齿萼报春苣苔 P. verecunda 广西金秀县 Jinxiu, Guangxi 3.3
GZJK01 钝齿报春苣苔 P. obtusidentata 贵州江口县 Jiangkou, Guizhou 4.2

表2

植物体内钙的各种化学形态提取步骤及存在形态"

提取顺序
Extraction order
提取剂
Extraction solution
主要钙形态
Calcium speciation
简写
Abbreviation
1 80% C2H5OH 硝酸钙与氯化钙 Calcium nitrate and calcium chloride AIC-Ca
2 Distilled water 水溶性有机酸钙 Water soluble calcium H2O-Ca
3 1 M NaCl 果胶酸钙 Calcium pectate NaCl-Ca
4 2% CH3COOH 磷酸钙与碳酸钙 Calcium phosphate and calcium carbonate HAC-Ca
5 0.6% HCl 草酸钙 Calcium oxalate HCl-Ca
残渣 Residual - 残渣钙(硅酸钙) Silicate calcium Res-Ca

表3

不同基岩土壤来源报春苣苔属植物叶片钙形态含量均值比较(单位: mg/kg, 括号内为标准误)"

土壤基岩
Bedrock
果胶酸钙 NaCl-Ca 水溶性钙
H2O-Ca
硝酸钙和氯化钙 AIC-Ca 磷酸钙和碳酸钙
HAC-Ca
草酸钙
HCl-Ca
硅酸钙
Res-Ca
总钙
Total calcium
石灰岩 Limestone 959.4(90.1)A 710.6(197.9)A 437.8(80.9)A 82.7(12.1) 23.5(4.3)A 71.5(13.8)A 2,285.6(292.8)A
丹霞地貌 Danxia 733.0(95.3)B 296.5(58.0)B 137.1(28.1)C 83.2(22.7) 20.0(3.2)AB 59.2(10.4)B 1,329.1(133.2)B
砂页岩 Sandshale 691.5(54.5)B 287.0(53.4)B 241.3(32.4)B 83.0(10.2) 17.8(2.5)B 58.7(6.0)B 1,379.3(112.1)B

表4

报春苣苔属15个居群叶片钙形态含量均值比较(单位: mg/kg, 括号内为标准误)"

编号
Code
果胶酸钙
NaCl-Ca
水溶性钙
H2O-Ca
硝酸钙和氯化钙
AIC-Ca
磷酸钙和碳酸钙
HAC-Ca
草酸钙
HCl-Ca
硅酸钙
Res-Ca
ZJHZ01 1,148.7(78.0)A 617.5(6.5)C 564.6(44.9)B 62.7(3.7)EF 19.8(0.7)EF 128.3(1.4)A
DX03 1,132.5(31.0)A 354.4(9.1)F 128.3(2.7)F 72.7(3.1)ED 40.5(1.6)A 35.1(1.3)G
HNBT03 656.1(25.1)D 243.7(6.6)H 530.8(5.4)B 69.0(0.5)ED 13.6(1.0)HJ 57.5(3.4)E
YLY01 782.8(10.7)C 847.9(16.0)B 342.8(9.3)C 73.0(1.2)ED 26.9(1.6)CB 65.0(1.6)ED
GXQT01 1,076.9 (16.0)A 1,489.6(53.9)A 622.7(41.7)A 136.3(5.4)B 16.7(0.9)HFG 71.6(1.3)D
GXRX01 427.0(14.1)F 160.8(9.3)I 224.4(6.4)D 39.0(2.5)G 10.1(0.3)J 72.8(0.7)CD
GDLC07 748.5(8.8)C 366.6(12.6)EF 68.3(2.8)G 158.2(8.9)A 27.2(1.4)CB 45.2(7.8)F
DXS05 811.0(6.3)C 210.4(5.2)IH 136.1(4.9)F 78.7(2.3)D 24.0(1.5)CD 33.4(1.0)G
GXZY01 945.7(15.2)B 448.3(11.8)D 119.6(1.9)G 57.0(1.7)F 18.8(1.1)EFG 85.4(0.8)B
GDSZ01 746.2(8.4)C 369.1(6.3)EF 351.7(3.7)C 126.7(2.7)B 9.1(0.3)J 48.6(2.1)F
HNBT01 514.8(10.7)E 298.1(5.8)G 206.7(5.0)ED 40.8(0.5)G 15.4(0.5)HG 68.1(2.0)D
WG02 902.9(7.0)B 416.2(9.5)ED 144.2(1.5)F 99.4(1.4)C 21.9(0.5)ED 71.2(1.7)D
CBL01 644.2(4.4)D 181.9(1.4)I 162.1(1.8)EF 69.1(0.4)ED 10.7(0.3)JI 35.6(0.5)G
LBJX01 816.5(2.2)C 425.8(2.1)D 249.1(0.7)D 90.5(1.3)C 22.3(0.8)ED 47.7(0.5)F
GZJK01 524.5(3.7)E 30.6(0.3)J 334.0(4.1)C 71.2(0.5)ED 27.8(0.5)B 81.0(1.3)CB

图1

15个报春苣苔属植物居群叶片钙形态占总钙含量百分比(居群编号和钙化学形态编号分别同表1和表2)"

表5

不同基岩土壤同一物种植物叶片钙含量均值比较(单位:mg/kg, 括号内为标准误)"

物种
Species
土壤基岩
Bedrock
编号
Code
果胶酸钙
NaCl-Ca
水溶性钙H2O-Ca 硝酸钙
和氯化钙
AIC-Ca
磷酸钙
和碳酸钙
HAC-Ca
草酸钙
HCl-Ca
硅酸钙
Res-Ca
总钙
Total calcium
蚂蝗七
Primulina
fimbrisepala
丹霞地貌
Danxia
DXS05/
GXZY01
878.3(25.2) 329.4(42.6) 127.9(3.9)B 67.9(4.1)B 21.4(1.3) 59.4(26.0) 1,484.2(67.9)
砂页岩
Sandshale
WG02/
CBL01
773.5(45.9) 299.0(41.7) 153.2(3.4)A 84.3(5.4)A 16.3(2.0) 53.4(6.4) 1,379.7(97.8)
烟叶报春苣苔
Primulina
heterotricha
石灰岩
Limestone
HNBT03 656.1(25.1)A 243.7(6.6)B 530.8(5.4)A 69.0(0.5)A 13.6(1.0) 57.5(3.4) 1,570.6(21.0)
砂页岩
Sandshale
HNBT01 514.8(10.7)B 298.1(5.8)A 206.7(5.0)B 40.8(0.5)B 15.4(0.5) 68.1(2.0) 1,144.0(6.7)
1 Cao JH (曹建华), Yuan DX (袁道先), Pan GX (潘根兴) (2003) Some soil features in karst ecosystem.Advance in Earth Sciences(地球科学进展), 18, 37-44. (in Chinese with English abstract)
2 Cao JH (曹建华), Zhu MJ (朱敏洁), Huang F (黄芬), Lu Q (卢茜) (2011) Comparison study on calcium forms in plant leaves under different geological backgrounds: a case study in Maolan, Guizhou Province. Bulletin of Mineralogy,Petrology and Geochemistry(矿物岩石地球化学通报), 30, 251-260. (in Chinese with English abstract)
3 Clark JL, Funke MM, Duffy AM, Smith JF (2012) Phylogeny of a neotropical clade in the Gesneriaceae: more tales of convergent evolution.International Journal of Plant Sciences, 173, 894-916.
4 Dunjo G, Pardini G, Gispert M (2003) Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain.Catena, 52, 23-37.
5 Edwards PJ, Grubb PJ (1982) Studies of mineral cycling in a montane rain-forest in New-Guinea. 4. Soil characteristics and the division of mineral elements between the vegetation and soil.Journal of Ecology, 70, 649-666.
6 Fahn A (1986) Structural and functional properties of trichomes of xeromorphic leaves.Annals of Botany, 57, 631-637.
7 Feng XY (冯晓英), Hu ZP (胡章平), Yi Y (乙引) (2010) Variation of proline and soluble protein content in leaves of Eurycorymbus cavalerieian and Pinus armandii under Ca2+ stress.Guizhou Agricultural Science(贵州农业科学), 38, 169-170. (in Chinese with English abstract)
8 Francesch VR, Nakata PA (2005) Calcium oxalate in plants: formation and function.Annual Review of Plant Biology, 56, 41-71.
9 Hepler PK, Wayne RO (1985) Calcium and plant development.Annual Review of Plant Physiology, 36, 397-439.
10 Hu LN (胡乐宁), Su YR (苏以荣), He XY (何寻阳), Li Y (李扬), Li L (黎蕾), Wang YH (王嫒华), Wu JS (吴金水) (2012) The speciation and content of calcium in karst soil, and its effects on soil organic carbon in Karst region of southwest China.Scientia Agricultura Sinica(中国农业科学), 45, 1946-1953. (in Chinese with English abstract)
11 Jefferies RL, Willis AJ (1964) Studies on the calcicole- calcifuge habit: II. The influence of calcium on the growth and establishment of four species in soil and sand cultures.Journal of Ecology, 52, 691-707.
12 Ji FT (姬飞腾), Li N (李楠), Deng X (邓馨) (2009) Calcium contents and high calcium adaptation of plants in karst areas of China.Journal of Plant Ecology(植物生态学报), 33, 926-935. (in Chinese with English abstract)
13 Kinzel H (1989) Calcium in the vacuoles and cell-walls of plant-tissue-forms of deposition and their physiological and ecological significance.Flora, 182, 99-125.
14 Li FL (李芳兰), Bao WK (包维楷) (2005) Responses of the morphological and anatomical structure of the plant leaf to environmental change.Chinese Bulletin of Botany(植物学通报), 22, 118-127. (in Chinese with English abstract)
15 Li QY (李青云), Ge HB (葛会波), Hu SM (胡淑明), Wang HY (王惠英) (2006) Effects of sodium and calcium salt stresses on strawberry photosynthesis.Acta Botanica Boreali-Occidentalia Sinica(西北植物学报), 26, 1713-1717. (in Chinese with English abstract)
16 Lu SN (陆仕念), Fu LF (符龙飞), Liang GY (梁桂友), Wen F (温放) (2013) Primulina bullata, a new species of Primulina (Gesneriaceae) from Guangxi.Guihaia(广西植物), 33, 42-45. (in Chinese with English abstract)
17 Mazen AMA (2004) Calcium oxalate deposits in leaves of Corchorus olitorius as related to accumulation of toxic metals.Russian Journal of Plant Physiology, 51, 281-285.
18 Ohat Y, Yamamoto K, Deguchi M (1970) Chemical fractionation of calcium in the fresh rice leaf blade and influences of deficiency or oversupply of calcium and age of leaf on the content of each calcium fraction: chemical fractionation of calcium in some plant species (Part 1). Journal of the Science of Soil and Manure, Japan, 41, 19-26. (in Japanese)
19 Paul A, Hauck M, Leuschner C (2009) Iron and phosphate uptake explains the calcifuge-calcicole behavior of the terricolous lichens Cladonia furcata subsp. furcata and C. rangiformis. Plant and Soil, 319, 49-56.
20 Pennisi SV, McConnell DB (2001) Inducible calcium sinks and preferential calcium allocation in leaf primordia of Dracaena sanderiana Hort. Sander ex M. T. Mast. (Dracaenaceae).Hortscience, 36, 1187-1191.
21 Ren H, Zhang Q, Wang Z, Guo Q, Wang J, Liu N, Liang K (2010) Conservation and possible reintroduction of an endangered plant based on an analysis of community ecology: a case study of Primulina tabacum Hance in China.Plant Species Biology, 25(1), 43-50.
22 Said A, Damiani A, Ma G, Kalthoff D, Beer M, Osterrieder N (2011) An equine herpesvirus 1 (EHV-1) vectored H1 vaccine protects against challenge with swine-origin influenza virus H1N1.Veterinary Microbiology, 154, 113-123.
23 Tyler G (2003) Some ecophysiological and historical appro- aches to species richness and calcicole/calcifuge behav- iour—contribution to a debate.Folia Geobotanica, 38, 419-428.
24 Tyler G, Strom L (1995) Differing organic acid exudation pattern explains calcifuge and acidifuge behaviour of plants.Annals of Botany, 75, 75-78.
25 White PJ, Broadley MR (2003) Calcium in plants.Annals of Botany, 92, 487-511.
26 Yang C (杨成), Liu CQ (刘丛强), Song ZL (宋照亮), Liu ZM (刘占民) (2007) Characteristics of the nutrient element contents in plants from Guizhou karst mountainous area of China.Ecology and Environment(生态环境), 16, 503-508. (in Chinese with English abstract)
27 Yang S (杨珊), He XY (何寻阳), Su YR (苏以荣), Zhang W (张伟), Wang KL (王克林) (2010) Effects of parent rock and land use pattern on soil fertility in Karst region of Northwest.Chinese Journal of Applied Ecology(应用生态学报), 21, 1596-1602. (in Chinese with English abstract)
28 Zhou W (周卫), Wang H (汪洪) (2007) The physiological and molecular mechanisms of calcium uptake, transport, and metabolism in plants.Chinese Bulletin of Botany(植物学通报), 24, 762-778. (in Chinese with English abstract)
29 Zhou ZB (周智彬), Li PJ (李培军) (2002) A review on the phytotomy research of xerophytes in China.Arid Zone Research(干旱区研究), 19, 35-40. (in Chinese with English abstract)
30 Zindler-Frank E, Hönow R, Hesse A (2001) Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation.Journal of Plant Physiology, 158, 139-144.
[1] 庄文颖 李熠 郑焕娣 曾昭清 王新存. (2020) 中国大型子囊菌受威胁现状及致危因素分析(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[2] 李熠 唐志尧 闫昱晶 王科 蔡磊 贺金生 古松 姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[3] 李永民, 吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[4] 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. (2019) 华北区域环境梯度上阔叶林构建模式及分布成因. 植物生态学报, 43(9): 732-741.
[5] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[6] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[7] 李顺, 邹亮, 宫一男, 杨海涛, 王天明, 冯利民, 葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[8] 杨锐, 彭钦一, 曹越, 钟乐, 侯姝彧, 赵智聪, 黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[9] 陈自宏, 王元兵, 代永东, 陈凯, 徐玲, 何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[10] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[11] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[12] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[13] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[14] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. (2019) 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构. 生物多样性, 27(8): 911-918.
[15] 吕美林, 刘泽, 宋震, 王亚宁, 刘小勇. (2019) 大兴安岭地区可培养毛霉门真菌多样性与分布. 生物多样性, 27(8): 821-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed