生物多样性 ›› 2009, Vol. 17 ›› Issue (4): 362-377.doi: 10.3724/SP.J.1003.2009.09132

所属专题: 保护生物学: 现状和挑战

• 论文 • 上一篇    下一篇

杂交-渐渗进化理论在转基因逃逸及其环境风险评价和研究中的意义

卢宝荣, 夏辉, 杨箫, 金鑫, 刘苹, 汪魏   

  1. 复旦大学生命科学学院生态与进化生物学系, 教育部生物多样性与生态工程重点实验室, 上海 200433
  • 收稿日期:2009-05-31 修回日期:2009-07-07 出版日期:2009-07-20

Evolutionary theory of hybridization-introgression: its implication in en-vironmental risk assessment and research of transgene escape

Bao-Rong Lu*, Hui Xia, Xiao Yang, Xin Jin, Ping Liu, Wei Wang   

  1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Science, Fudan University, Shanghai 200433
  • Received:2009-05-31 Revised:2009-07-07 Online:2009-07-20

转基因作物的商品化生产和大规模环境释放, 引起了全球对生物安全问题的广泛关注和争议, 其中转基因通过花粉介导的基因漂移逃逸到非转基因作物及其野生近缘种, 进而带来不同类型的环境风险就是备受争议的生物安全问题之一。有效的生物安全评价和研究能够为转基因作物的安全持久利用保驾护航。按照风险评价的原则, 对于转基因逃逸及其潜在环境风险的评价应包括两个重要步骤: (1)检测转基因向野生近缘种(包括杂草类型)群体逃逸的频率; (2)确定逃逸后的转基因能否通过遗传渐渗在野生近缘种群体中存留和扩散。杂交-渐渗是进化生物学中非常重要的科学命题和普遍的自然现象, 杂交-渐渗的进化理论与转基因逃逸及其潜在环境风险的研究和评价有密切的关系。杂交-渐渗过程往往导致物种形成、适应性进化和自然群体的濒危与灭绝, 这是因为在杂交-渐渗过程中, 不同的机制如遗传同化作用、群体湮没效应以及群体的选择性剔除效应等都会在很大程度上影响群体的进化过程。转基因通过杂交-渐渗进入野生群体, 使这一过程更加复杂化。如果转基因能提高群体的适合度, 则更有利于其渐渗速率, 从而在群体中迅速扩散并带来一定的生态后果。杂交-渐渗的进化理论和思想将有益于指导转基因逃逸及其潜在环境风险的研究和评价。

The commercial production and extensive environmental release of genetically modified (GM) crops have aroused worldwide concerns and debates over the biosafety of these crops. Transgene escape and its potential environmental risks are among the most debated biosafety issues. Transgene(s) can move from a GM crop to its non-GM counterparts and wild relatives via pollen-mediated gene flow, potentially causing various types of environmental problems. Effective biosafety assessment and research can facilitate the safe and sustainable application of GM crops. Following the framework of risk assessment, there are two critical steps for assessing environmental risks caused by transgene escape: (1) to measure frequencies of transgene escape from a GM crop to its non-GM counterpart or wild relative species (including weedy forms) via pol-len-mediated gene flow; and (2) to determine the persist and spread of escaped transgene(s) in wild or weedy populations through introgression. The study of hybridization-introgression represents one of the most im-portant and common phenomena in plant evolutionary, the study of which also includes the two important steps: to estimate frequencies of hybridization and to know the introgression of gene(s) in question within or among populations. The evolutionary theory of hybridization-introgression has a very close relationship with research and assessment of transgene escape and its potential environmental risks. The process of hybridiza-tion-introgression usually results in speciation, endangered status, extinction, or adaptive evolution of plant species. This is because important effects such as genetic assimilation, demographic swamping, and selective sweeps during the hybridization-introgression process, can considerably affect the evolutionary process of plant populations, into which the incorporation of transgenes may complicate the evolutionary process. If transgenes in question can significantly increase the fitness of individuals, they will quickly spread in the populations through fast introgression and significantly influence population dynamics bring certain evolu-tionary consequences. Therefore, we recommend applying the evolutionary theory of hybridiza-tion-introgression to guide the research and assessment of potential environmental risks caused by transgene escape.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed