生物多样性 ›› 2019, Vol. 27 ›› Issue (10): 1101-1111.doi: 10.17520/biods.2019213

• 研究报告 • 上一篇    下一篇

千岛湖陆桥岛屿地表蚂蚁群落物种多样性空间格局及其影响因素

周浩楠, 赵郁豪, 曾頔, 刘娟, 金挺浩, 丁平()   

  1. 浙江大学生命科学学院, 杭州 310058
  • 收稿日期:2019-07-03 接受日期:2019-09-10 出版日期:2019-10-20
  • 通讯作者: 丁平 E-mail:dingping@zju.edu.cn
  • 基金项目:
    国家自然科学基金(31210103908);国家自然科学基金(31572250)

Spatial patterns and influencing factors of ground ant species diversity on the land-bridge islands in the Thousand Island Lake, China

Zhou Haonan, Zhao Yuhao, Zeng Di, Liu Juan, Jin Tinghao, Ding Ping()   

  1. College of Life Sciences, Zhejiang University, Hangzhou 310058
  • Received:2019-07-03 Accepted:2019-09-10 Online:2019-10-20
  • Contact: Ding Ping E-mail:dingping@zju.edu.cn

为了探讨千岛湖岛屿景观参数对地表蚂蚁群落物种α和β多样性空间格局的影响, 作者分别于2017和2018年的5-8月, 采用陷阱法、凋落物分拣法和手捡法调查了千岛湖33个岛屿上的地表蚂蚁群落, 并依据食性将其划分为捕食性蚂蚁和杂食性蚂蚁。利用回归模型分析了全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁群落α和β多样性与岛屿景观参数的关系。结果表明, 岛屿面积对全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁的物种丰富度均有显著的正向影响, 而隔离度则无显著作用。蚂蚁群落的β多样性由空间周转组分主导。岛屿面积差对全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁群落β多样性的嵌套组分有正向影响, 隔离度差只对杂食性蚂蚁的总体β多样性有正向影响。因此, 岛屿面积是影响千岛湖地表蚂蚁群落物种丰富度的主要因素, 并且岛屿面积通过嵌套组分来影响蚂蚁群落的β多样性, 表现出选择性灭绝过程。此外, 不同食性蚂蚁可能因为扩散能力的差异对岛屿景观参数产生不同的响应。

关键词: 千岛湖, 生境片断化, 蚂蚁食性, 物种丰富度, β多样性

To explore spatial patterns and environmental factors affecting ground ant species diversity in the Thousand Island Lake, China, we surveyed ground ants using pitfall traps, leaf litter extraction and hand collecting on 33 islands from May to August in 2017 and 2018. We divided all ground ants into predator or omnivore ants and then used the regression models to analyze relationships between ant species diversity and island attributes. Island area had positive effects on species richness of total ants, predator ants and omnivore ants; but isolation had no significant effects. The β diversity of ants was dominated by spatial turnover component. Difference in island area had positive effects on the nestedness-resultant component of total ants, predator ants and omnivore ants communities. Difference in isolation had significant positive effects on the total β diversity of omnivore ants. Island area was the main factor affecting spatial patterns of ant species richness. In addition, island area affected the β diversity of ants via changing nestedness-resultant component, which indicates a selective extinction process in ant community assembly. Different responses of predator ants and omnivore ants to island attributes may be due to variation of dispersal ability.

Key words: Thousand Island Lake, habitat fragmentation, ant diet, species richness, β diversity

图1

千岛湖33个研究岛屿分布图"

图2

全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁的物种丰富度与岛屿面积和隔离度的关系。有显著作用(P < 0.05)以实线表示, 无显著作用以虚线表示。Slope: 斜率。"

图3

千岛湖调查岛屿上全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁的总体β多样性指数及其组分分解。βsor表示Sørensen多岛屿相异性指数, βsne表示嵌套组分, βsim表示空间周转组分, βratio表示嵌套组分占总体β多样性指数的比例。"

图4

岛屿参数对全部蚂蚁的β多样性(βsor)、空间周转组分(βsim)和嵌套组分(βsne)的影响。显著性结果(P < 0.05)以实线表示, 无显著结果以虚线表示。a: 回归模型的斜率; b: 回归模型的截距; r: Pearson相关系数; p: mantel替代检验的p值。"

图5

岛屿参数对捕食性蚂蚁的β多样性(βsor)、空间周转组分(βsim)和嵌套组分(βsne)的影响。显著性结果(P < 0.05)以实线表示, 无显著结果以虚线表示。a: 回归模型的斜率; b: 回归模型的截距; r: Pearson相关系数; p: mantel替代检验的p值。"

图6

岛屿参数对杂食性蚂蚁的β多样性(βsor)、空间周转组分(βsim)和嵌套组分(βsne)的影响。显著性结果(P < 0.05)以实线表示, 无显著结果以虚线表示。a: 回归模型的斜率; b: 回归模型的截距; r: Pearson相关系数; p: mantel替代检验的p值。"

[1] Andersen AN ( 2018) Responses of ant communities to disturbance: Five principles for understanding the disturbance dynamics of a globally dominant faunal group. Journal of Animal Ecology, 88, 350-362.
[2] Angeler DG ( 2013) Revealing a conservation challenge through partitioned long-term beta diversity: Increasing turnover and decreasing nestedness of boreal lake metacommunities. Diversity and Distributions, 19, 772-781.
[3] Arcoverde GB, Andersen AN, Setterfield SA ( 2016) Is livestock grazing compatible with biodiversity conservation? Impacts on savanna ant communities in the Australian seasonal tropics. Biodiversity and Conservation, 26, 1-15.
[4] Atmar W, Patterson BD ( 1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia, 96, 373-382.
[5] Badano EI, Regidor HA, Nunez HA, Acosta R, Gianoli E ( 2005) Species richness and structure of ant communities in a dynamic archipelago: Effects of island area and age. Journal of Biogeography, 32, 221-227.
[6] Baselga A ( 2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.
[7] Baselga A ( 2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21, 1223-1232.
[8] Bluethgen N, Feldhaar H ( 2010) Food and shelter: How resources influence ant ecology. In: Ant Ecology (eds Lori L, Catherine LP, Kirsti LA), pp. 115-136. Oxford University Press, New York.
[9] Bluthgen N, Gebauer G, Fiedler K ( 2003) Disentangling a rainforest food web using stable isotopes: Dietary diversity in a species-rich ant community. Oecologia, 137, 426-435.
[10] Brown WL ( 2000) Diversity of ants. In: Ants: Standard Methods for Measuring and Monitoring Biodiversity (eds Agosti D, Majer JD, Alonso LE, Schultz TR), pp. 45-79, 231-269. Smithsonian Institution Press, Washington DC and London.
[11] Burgman MA, Akcakaya HR, Loew SS ( 1988) The use of extinction models for species conservation. Biological Conservation, 43, 9-25.
[12] Calderon PJM, Moreno CE, Pineda LR, Sanchez RG, Zuria I ( 2013) Vertebrate dissimilarity due to turnover and richness differences in a highly beta-diverse region: The role of spatial grain size, dispersal ability and distance. PLoS ONE, 8, e82905.
[13] Carvalho JC, Cardoso P ( 2014) Drivers of beta diversity in Macaronesian spiders in relation to dispersal ability. Journal of Biogeography, 41, 1859-1870.
[14] Carvalho JC, Cardoso P, Borges PAV, Schmera D, Podani J ( 2013) Measuring fractions of beta diversity and their relationships to nestedness: A theoretical and empirical comparison of novel approaches. Oikos, 122, 825-834.
[15] Carvalho JC, Cardoso P, Gomes P ( 2012) Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography, 21, 760-771.
[16] Cutler A ( 1991) Nested faunas and extinction in fragmented habitats. Conservation Biology, 5, 496-505.
[17] Devries HH, Denboer PJ, Vandijk TS ( 1996) Ground beetle species in heathland fragments in relation to survival, dispersal, and habitat preference. Oecologia, 107, 332-342.
[18] Dobrovolski R, Melo AS, Cassemiro FAS, Diniz JAF ( 2012) Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191-197.
[19] Dorchin A, Dafni A, Izhaki I, Sapir Y, Vereecken NJ ( 2018) Patterns and drivers of wild bee community assembly in a Mediterranean IUCN important plant area. Biodiversity and Conservation, 27, 695-717.
[20] Ewers RM, Didham RK ( 2006) Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117-142.
[21] Fahrig L ( 2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515.
[22] Fattorini S, Mantoni C, De Simoni L, Galassi DMP ( 2018) Island biogeography of insect conservation in urban green spaces. Environmental Conservation, 45, 1-10.
[23] Filgueiras BKC, Melo DHA, Andersen AN, Tabarelli M, Leal IR ( 2019) Cross-taxon congruence in insect responses to fragmentation of Brazilian Atlantic forest. Ecological Indicators, 98, 523-530.
[24] Forare J, Solbreck C ( 1997) Population structure of a monophagous moth in a patchy landscape. Ecological Entomology, 22, 256-263.
[25] Gaston KJ ( 2000) Global patterns in biodiversity. Nature, 405, 220-227.
[26] Gavish Y, Giladi I, Ziv Y ( 2019) Partitioning species and environmental diversity in fragmented landscapes: Do the alpha, beta and gamma components match? Biodiversity and Conservation, 28, 769-786.
[27] Gibb H, Cunningham SA ( 2011) Habitat contrasts reveal a shift in the trophic position of ant assemblages. Journal of Animal Ecology, 80, 119-127.
[28] Gibb H, Sanders NJ, Dunn RR, Arnan X, Vasconcelos HL, Donoso DA, Andersen AN, Silva RR, Bishop TR, Gomez C, Grossman BF, Yusah KM, Luke SH, Pacheco R, Pearce DJ, Retana J, Tista M, Parr CL ( 2018) Habitat disturbance selects against both small and large species across varying climates. Ecography, 41, 1184-1193.
[29] González E, Buffa L, Defagó MT, Molina SI, Salvo A, Valladares G ( 2018) Something is lost and something is gained: Loss and replacement of species and functional groups in ant communities at fragmented forests. Landscape Ecology, 33, 2089-2102.
[30] Gray MA, Baldauf SL, Mayhew PJ, Hill JK ( 2007) The response of avian feeding guilds to tropical forest disturbance. Conservation Biology, 21, 133-141.
[31] Hardin G ( 1960) Competitive exclusion principle. Science, 131, 1292-1297.
[32] Helms JA ( 2018) The flight ecology of ants (Hymenoptera: Formicidae). Myrmecological News, 26, 19-30.
[33] Holldobler B, Wilson EO ( 1990) The Ants. Belknap Press, Cambridge.
[34] Horvath Z, Ptacnik R, Vad CF, Chase JM ( 2019) Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecology Letters, 22, 1019-1027.
[35] Hsieh TC, Ma KH, Chao A ( 2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.
[36] Hu G, Wilson MC, Wu JG, Yu JJ, Yu MJ ( 2019) Decoupling species richness variation and spatial turnover in beta diversity across a fragmented landscape. PeerJ, 7, e6714.
[37] Laurance WF ( 2008) Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biological Conservation, 141, 1731-1744.
[38] Lawrence A, O’Connor K, Haroutounian V, Swei A ( 2018) Patterns of diversity along a habitat size gradient in a biodiversity hotspot. Ecosphere, 9, e02183.
[39] Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ ( 2001) The geographical structure of British bird distributions: Diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979.
[40] Liu JJ, Coomes DA, Gibson L, Hu G, Liu JL, Luo YQ, Wu CP, Yu MJ ( 2019) Forest fragmentation in China and its effect on biodiversity. Biological Reviews, 94, 1636-1657.
[41] Loke LHL, Chisholm RA, Todd PA ( 2019) Effects of habitat area and spatial configuration on biodiversity in an experimental intertidal community. Ecology, 100, e02757.
[42] Luque GM, Lopez JR ( 2007) Effect of experimental small- scale spatial heterogeneity on resource use of a Mediterranean ground-ant community. Acta Oecologica-International Journal of Ecology, 32, 42-49.
[43] MacArthur RH, Wilson EO ( 1967) The Theory of Island Biogeography. Princeton University Press, Princeton.
[44] MacDonald ZG, Anderson ID, Acorn JH, Nielsen SE ( 2018) The theory of island biogeography, the sample-area effect, and the habitat diversity hypothesis: Complementarity in a naturally fragmented landscape of lake islands. Journal of Biogeography, 45, 2730-2743.
[45] Macedo RLE, Quesada M, Neves FS ( 2019) Forest cover drives insect guild diversity at different landscape scales in tropical dry forests. Forest Ecology and Management, 443, 36-42.
[46] Menendez R, Thomas CD ( 2000) Metapopulation structure depends on spatial scale in the host-specific moth Wheeleria spilodactylus (Lepidoptera: Pterophoridae). Journal of Animal Ecology, 69, 935-951.
[47] Meyer CFJ, Kalko EKV ( 2008) Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: Land-bridge islands as a model system. Journal of Biogeography, 35, 1711-1726.
[48] Novotny V, Weiblen GD ( 2005) From communities to continents: Beta diversity of herbivorous insects. Annales Zoologici Fennici, 42, 463-475.
[49] Patterson BD, Atmar W ( 1986) Nested subsets and the structure of insular mammalian faunas and archipelagoes. Biological Journal of the Linnean Society, 28, 65-82.
[50] Pfeiffer M, Mezger D, Dyckmans J ( 2014) Trophic ecology of tropical leaf litter ants (Hymenoptera: Formicidae): A stable isotope study in four types of Bornean rain forest. Myrmecological News, 19, 31-41.
[51] Qian H, Ricklefs RE, White PS ( 2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 8, 15-22.
[52] R Core Team ( 2016) R: A Language and Environment for Statistical Computing.
[53] Schultz TR, McGlynn TP (2000) The interactions of ants with other organisms. In: Ants: Standard Methods for Measuring and Monitoring Biodiversity (eds Agosti D, Majer JD, Alonso LE, Schultz TR), pp. 35-44, 231-269. Smithsonian Institution Press,Washington DC and London.
[54] Si XF, Baselga A, Ding P ( 2015) Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE, 10, e0127692.
[55] Silva DC, Vieira TB, Silva JM, Faria KC ( 2018) Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado. Biodiversity and Conservation, 27, 815-828.
[56] Smith DAE, Si XF, Smith YCE, Kalle R, Ramesh T, Downs CT ( 2018) Patterns of avian diversity across a decreasing patch-size gradient in a critically endangered subtropical forest system. Journal of Biogeography, 45, 2118-2132.
[57] Souza DG, Sfair JC, Arroyo RV, Santos JC, Tabarelli M ( 2019) Depauperation and divergence of plant-specialist herbivore assemblages in a fragmented tropical landscape. Ecological Entomology, 44, 172-181.
[58] Svenning JC, Flojgaard C, Baselga A ( 2011) Climate, history and neutrality as drivers of mammal beta diversity in Europe: Insights from multiscale deconstruction. Journal of Animal Ecology, 80, 393-402.
[59] Takkis K, Kull T, Hallikma T, Jaksi P, Kaljund K, Kauer K, Kull T, Kurina O, Kulvik M, Lanno K, Leht M, Liira J, Melts I, Pehlak H, Raet J, Sammet K, Sepp K, Vali U, Laanisto L ( 2018) Drivers of species richness and community integrity of small forest patches in an agricultural landscape. Journal of Vegetation Science, 29, 978-988.
[60] Tamburello N, Cote IM, Dulvy NK ( 2015) Energy and the scaling of animal space use. The American Naturalist, 186, 196-211.
[61] Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D ( 2001) Forecasting agriculturally driven global environmental change. Science, 292, 281-284.
[62] Ulrich W, Almeida NM, Gotelli NJ ( 2009) A consumer’s guide to nestedness analysis. Oikos, 118, 3-17.
[63] Urban MC, Skelly DK, Burchsted D, Price W, Lowry S ( 2006) Stream communities across a rural-urban landscape gradient. Diversity and Distributions, 12, 337-350.
[64] Uroy L, Ernoult A, Mony C ( 2019) Effect of landscape connectivity on plant communities: A review of response patterns. Landscape Ecology, 34, 203-225.
[65] Veech JA, Crist TO ( 2007) Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography, 16, 650-656.
[66] Wang X, Wang YP, Ding P ( 2012) Nested species subsets of amphibians and reptiles in Thousand Island Lake. Zoological Research, 33, 439-446. (in Chinese with English abstract)
[ 王熙, 王彦平, 丁平 ( 2012) 千岛湖两栖爬行类动物群落结构嵌套分析. 动物学研究, 33, 439-446.]
[67] Wang YP, Bao YX, Yu MJ, Xu GF, Ding P ( 2010) Nestedness for different reasons: The distributions of birds, lizards and small mammals on islands of an inundated lake. Diversity and Distributions, 16, 862-873.
[68] Wang YP, Chen SH, Ding P ( 2011) Testing multiple assembly rule models in avian communities on islands of an inundated lake, Zhejiang Province, China. Journal of Biogeography, 38, 1330-1344.
[69] Warren BH, Simberloff D, Ricklefs RE, Aguilee R, Condamine FL, Gravel D, Morlon H, Mouquet N, Rosindell J, Casquet J, Conti E, Cornuault J, Fernandez-Palacios JM, Hengl T, Norder SJ, Rijsdijk KF, Sanmartin I, Strasberg D, Triantis KA, Valente LM, Whittaker RJ, Gillespie RG, Emerson BC, Thebaud C ( 2015) Islands as model systems in ecology and evolution: Prospects fifty years after MacArthur-Wilson. Ecology Letters, 18, 200-217.
[70] Wen ZX, Yang QS, Quan Q, Xia L, Ge DY, Lü X ( 2016) Multiscale partitioning of small mammal diversity provides novel insights into the Quaternary faunal history of Qinghai- Tibetan Plateau and Hengduan Mountains. Journal of Biogeography, 43, 1412-1424.
[71] Whittaker RH ( 1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 280-338.
[72] Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu JJ, Pimm SL, Robinson SK, Russo SE, Si XF, Wilcove DS, Wu JG, Yu MJ ( 2016) Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landscape Ecology, 31, 219-227.
[73] Wright DH, Reeves JH ( 1992) On the meaning and measurement of nestedness of species assemblages. Oecologia, 92, 416-428.
[74] Wu LB, Si XF, Didham RK, Ge DP, Ding P ( 2017) Dispersal modality determines the relative partitioning of beta diversity in spider assemblages on subtropical land-bridge islands. Journal of Biogeography, 44, 2121-2131.
[75] Wu YR, Si XF, Chen CW, Zeng D, Zhao YH, Li JQ, Ding P ( 2016) Effects of dispersal abilities on community dynamics of breeding birds on the land-bridge islands in the Thousand Island Lake, China. Biodiversity Science, 24, 1135-1145. (in Chinese with English abstract)
[ 吴奕如, 斯幸峰, 陈传武, 曾頔, 赵郁豪, 李家琦, 丁平 ( 2016) 千岛湖陆桥岛屿繁殖鸟类的扩散能力差异对群落动态的影响. 生物多样性, 24, 1135-1145.]
[76] Xu AC, Si XF, Wang YP, Ding P ( 2014) Camera traps and the minimum trapping effort for ground-dwelling mammals in fragmented habitats in the Thousand Island Lake, Zhejiang Province. Biodiversity Science, 22, 764-772. (in Chinese with English abstract)
[ 徐爱春, 斯幸峰, 王彦平, 丁平 ( 2014) 千岛湖片段化栖息地地栖哺乳动物的红外相机监测及最小监测时长. 生物多样性, 22, 764-772.]
[77] Yaacobi G, Ziv Y, Rosenzweig ML ( 2007) Habitat fragmentation may not matter to species diversity. Proceedings of the Royal Society B: Biological Sciences, 274, 2409-2412.
[78] Yong DL, Lohman DJ, Gan CW, Qie L, Lim SLH ( 2012) Tropical butterfly communities on land-bridge islands in Peninsular Malaysia. Raffles Bulletin of Zoology, 25, 161-172.
[79] Yu MJ, Hu G, Feeley KJ, Wu JG, Ding P ( 2012) Richness and composition of plants and birds on land-bridge islands: Effects of island attributes and differential responses of species groups. Journal of Biogeography, 39, 1124-1133.
[80] Zhang JC, Wang YP, Jiang PP, Li P, Yu MJ, Ding P ( 2008) Nested analysis of Passeriform bird assemblages in the Thousand Island Lake region. Biodiversity Science, 16, 321-331. (in Chinese with English abstract)
[ 张竞成, 王彦平, 蒋萍萍, 李鹏, 于明坚, 丁平 ( 2008) 千岛湖雀形目鸟类群落嵌套结构分析. 生物多样性, 16, 321-331.]
[81] Zhou SY ( 2001) Ants of Guangxi. Guangxi Normal University Press, Guilin. (in Chinese)
[ 周善义 ( 2001) 广西蚂蚁. 广西师范大学出版社, 桂林.]
[1] 李娜 丁晨晨 曹丹丹 初红军 戚英杰 李春旺 平晓鸽 孙悦华 蒋志刚. (2020) 中国阿勒泰地区鸟类物种编目、丰富度格局和区系组成. 生物多样性, 28(4): 401-411.
[2] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[3] 刘艳, 杨钰爽. (2019) 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性. 生物多样性, 27(6): 677-682.
[4] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[5] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. (2019) 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响. 生物多样性, 27(6): 607-618.
[6] 杨贵军,王敏,杨益春,李欣芸,王新谱. (2019) 贺兰山甲虫物种丰富度分布格局及其环境解释. 生物多样性, 27(12): 1309-1319.
[7] 张田田, 王璇, 任海保, 余建平, 金毅, 钱海源, 宋小友, 马克平, 于明坚. (2019) 浙江古田山次生与老龄常绿阔叶林群落特征的比较. 生物多样性, 27(10): 1069-1080.
[8] 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. (2019) 古田山10种主要森林群落类型的α和β多样性格局及影响因素. 生物多样性, 27(1): 33-41.
[9] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. (2018) 青藏高原高寒草地地下生物多样性: 进展、问题与展望. 生物多样性, 26(9): 972-987.
[10] 徐翔, 张化永, 谢婷, 孙青青, 田永兰. (2018) 西双版纳种子植物物种多样性的垂直格局及机制. 生物多样性, 26(7): 678-689.
[11] 张则瑾, 郭焱培, 贺金生, 唐志尧. (2018) 中国极小种群野生植物的保护现状评估. 生物多样性, 26(6): 572-577.
[12] 杨倩, 王娓, 曾辉. (2018) 氮添加对内蒙古退化草地植物群落多样性和生物量的影响. 植物生态学报, 42(4): 430-441.
[13] 李斌强, 李鹏映, 杨家伟, 字红军, 李兴权, 段锡焕, 罗旭. (2018) 运用红外相机调查云南巍山青华绿孔雀自然保护区的鸟兽多样性. 生物多样性, 26(12): 1343-1347.
[14] 宋云峰, 陈声文, 王薇, 余建平, 钱海源, 王云泉, 陈磊, 米湘成, 任海保, 叶铎, 陈建华, 马克平. (2017) 负密度制约和生境过滤对古田山幼苗功能多样性年际变化的影响. 生物多样性, 25(9): 959-965.
[15] 斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平. (2017) Beta多样性分解: 方法、应用与展望. 生物多样性, 25(5): 464-480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed