生物多样性 ›› 2019, Vol. 27 ›› Issue (10): 1132-1137.doi: 10.17520/biods.2019208

• 研究报告 • 上一篇    下一篇

食物网关键种的判定及其对稳健性的影响

王凤珍1, 唐毅1, 2, *()   

  1. 1 辽宁大学生命科学院, 沈阳 110036
    2 辽宁大学统计学与数据科学研究院, 沈阳 110036
  • 收稿日期:2019-07-01 接受日期:2019-09-29 出版日期:2019-10-20
  • 通讯作者: 唐毅 E-mail:tangyi@lnu.edu.cn
  • 基金项目:
    国家自然科学基金(31870709)

Determination of key species in the food web and their impact on the robustness

Wang Fengzhen1, Tang Yi1, 2, *()   

  1. 1 School of Life Sciences, Liaoning University, Shenyang 110036
    2 Institute of Statistics and Data Science, Liaoning University, Shenyang 110036
  • Received:2019-07-01 Accepted:2019-09-29 Online:2019-10-20
  • Contact: Tang Yi E-mail:tangyi@lnu.edu.cn

食物网关键种的定量判定方法不仅有助于揭示食物网中的物种关系, 而且有利于对关键物种进行优先保护。本研究以包含49个物种的河流生态系统食物网为对象, 计算网络中表征度性质的指标(点度中心度、中介中心度、紧密中心度), 并根据指标对物种进行聚类, 分析不同类物种影响食物网连接稳健性程度的差异, 探讨不同节点去除方式下节点数量对食物网连接稳健性的影响。结果发现, 聚类将食物网中物种分成三类。I类物种具有相对较高的点度中心度、中介中心度、紧密中心度; II类物种具有相对更低的点度中心度、中介中心度、紧密中心度; III类物种的点度中心度、中介中心度、紧密中心度介于前两者之间。I类物种处于更为重要的地位, 可认为是关键种。本研究为如何判定关键种贡献了新的思路。另外, 升序去除方式下, 连接稳健性呈降低趋势; 降序去除与随机去除方式下, 连接稳健性在持续降低后又有小幅度增加, 这表明去除方式对食物网连接稳健性有影响。三种去除方式下, 食物网连接稳健性发生显著变化对应着几乎相同的去除节点数量, 表明关键种在维持食物网稳健性方面发挥着重要作用。

关键词: 聚类分析, 复杂网络, 生态网络, 节点度, 连接稳健性

Understanding key species and their roles and impacts within communities plays a vital role in protecting key species within communities. Species relationship indicators, i.e., betweenness centrality (BC), closeness centrality (CC), and degree centrality (DC) measured food web connectivity among a community of 49 species. Once indicators were calculated, a clustering analysis analyzed species influences on connectivity robustness among different species classes. In addition to clustering analysis, node removal was tested to measure connectivity robustness under removal modes. Based off of clustering results, species were divided into three food web classes: (1) Class I species have relatively higher BC, CC, and DC values. (2) Class II species have relatively lower BC, CC, and DC values while (3) Class III species are intermediate between Class I and Class II species. In our analyses, it appeared that Class I species are more important for food web processes and are therefore considered key species, contributing to our understanding of how to quantify key food web species. Besides, the connectivity robustness decreased along with the increase in removed nodes under the ascending order removal mode. In the descending order and random removal modes, the connectivity robustness slightly increased after a continuous decrease along with the increase in removed nodes. It indicates that removal modes significantly affect the connectivity robustness. Moreover, under the three removal methods, the significant change in the connectivity robustness corresponds to almost the same number of removed nodes. It suggests key species play an essential role in maintaining the connectivity robustness of the food web.

Key words: cluster analysis, complex network, ecological network, node degree, connectivity robustness

图1

节点聚类可视化图"

表1

节点的点度中心度、中介中心度、紧密中心度的汇总统计量"

类别 Cluster 指标 Indices 均值 Mean 方差 Variance 中位数 Median 最大值 Maximum 最小值 Minimum
Ⅰ类 点度中心度 DC 0.394 0.027 0.383 0.575 0.234
中介中心度 BC 0.216 0.028 0.180 0.428 0.078
紧密中心度 CC 0.538 0.012 0.528 0.662 0.435
Ⅱ类 点度中心度 DC 0.047 0.001 0.043 0.106 0.021
中介中心度 BC 0.003 0.000 0.001 0.011 0.000
紧密中心度 CC 0.386 0.002 0.398 0.465 0.305
Ⅲ类 点度中心度 DC 0.116 0.001 0.106 0.170 0.064
中介中心度 BC 0.036 0.001 0.031 0.083 0.003
紧密中心度 CC 0.469 0.000 0.470 0.500 0.431

图2

分类去除节点数目与连接稳健性的关系"

图3

不同去除方式下的节点数量与连接稳健性的关系"

[1] Aguilar R, Ashworth L, Galetto L, Aizen MA ( 2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecology Letters, 9, 968-980.
[2] Du W, Cai M, Du HF ( 2010) Study on indices of network structure robustness and their application. Journal of Xi’an Jiaotong University, 44(4), 93-97. (in Chinese with English abstract)
[ 杜巍, 蔡萌, 杜海峰 ( 2010) 网络结构鲁棒性指标及应用研究. 西安交通大学学报, 44(4), 93-97.]
[3] Dunne JA, Williams RJ, Martinez ND ( 2002) Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5, 558-567.
[4] Elton CS ( 1958) The Ecology of Invasions by Animals and Plants. Chapman and Hall, London.
[5] Han XG, Huang JH, Lou ZP ( 1995) The significance and problems of key concepts in biodiversity conservation. Chinese Bulletin of Botany, 12(S2), 168-184. (in Chinese)
[ 韩兴国, 黄建辉, 娄治平 ( 1995) 关键种概念在生物多样性保护中的意义与存在的问题. 植物学通报, 12(S2), 168-184.]
[6] Hastings A, Mccann KS, De Ruiter PC ( 2016) Introduction to the special issue: Theory of food webs. Theoretical Ecology, 9, 1-2.
[7] Kadoya T, Gellner G, McCann KS ( 2018) Potential oscillators and keystone modules in food webs. Ecology Letters, 21, 1330-1340.
[8] Kitano H ( 2007) Towards a theory of biological robustness. Molecular Systems Biology, 3, 137.
[9] Li YM, Li X, Hua J ( 2014) Ecosystem stability and ecological diversity based on complex networks. Chinese Journal of Ecology, 33, 1700-1706. (in Chinese with English abstract)
[ 李医民, 李鑫, 华静 ( 2014) 基于复杂网络的生态系统稳定性与生态多样性. 生态学杂志, 33, 1700-1706.]
[10] Liao J, Bearup D, Wang Y, Nijs I, Bonte D, Li Y, Brose U, Wang S, Blasius B ( 2017) Robustness of metacommunities with omnivory to habitat destruction: Disentangling patch fragmentation from patch loss. Ecology, 98, 1631-1639.
[11] MacArthur R ( 1955) Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533-536.
[12] Memmott J, Waser NM, Price MV ( 2004) Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society B: Biological Sciences, 271, 2605-2611.
[13] Paine RT ( 1966) Food web complexity and species diversity. The American Naturalist, 100, 65-75.
[14] Paine RT ( 1969) A note on trophic complexity and community stability. The American Naturalist, 103, 91-93.
[15] Saint-Béat B, Baird D, Asmus H, Asmus R, Bacher C, Pacella SR, Johnson GA, David V, Vézina AF, Niquil N ( 2015) Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecological Indicators, 52, 458-471.
[16] Scrucca L, Fop M, Murphy TB, Raftery AE ( 2016) mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8, 289-317.
[17] Solé RV, Montoya JM ( 2001) Complexity and fragility in ecological networks. Proceedings of the Royal Society B: Biological Sciences, 268, 2039-2045.
[18] Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J ( 2004) Robustness of cellular functions. Cell, 118, 675-685.
[19] Stone R ( 2010) Home, home outside the range? Science, 329, 1592-1594.
[20] Sun G, Sheng LX ( 2000) Key species theory of ecosystem: New ideas, new mechanisms, new ways. Journal of Northeast Normal University (Natural Science Edition), 32(3), 73-77. (in Chinese with English abstract)
[ 孙刚, 盛连喜 ( 2000) 生态系统关键种理论: 新思想、新机制、新途径. 东北师大学报(自然科学版), 32(3), 73-77.]
[21] Sun LQ, Lin YS, Chen LX, Cao WQ, Zheng LM ( 2016) Study on the structure and function of ecosystem in Northern Beibu Gulf VII: Nutrition structure construction and key screening based on ecopath model. Journal of Tropical Oceanography, 35(4), 51-62. (in Chinese with English abstract)
[ 孙龙启, 林元烧, 陈俐骁, 曹文清, 郑连明 ( 2016) 北部湾北部生态系统结构与功能研究VII: 基于Ecopath模型的营养结构构建和关键种筛选. 热带海洋学报, 35(4), 51-62.]
[22] Taffi M, Paoletti N, Liò P, Pucciarelli S, Marini M ( 2015) Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea. Ecological Modelling, 306, 205-215.
[23] Tang Y ( 2017) Research on traffic node setting in Northeast China under the background of “Belt and Road”. Economy Forum, ( 7), 4-9. (in Chinese)
[ 唐毅 ( 2017) “一带一路”背景下东北地区交通节点设置研究. 经济论坛, ( 7), 4-9.]
[24] Thompson RM, Townsend CR ( 2005) Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos, 108, 137-148.
[25] Wang S, Loreau M ( 2016) Biodiversity and ecosystem stability across scales in metacommunities. Ecology Letters, 19, 510-518.
[26] Yu Q, Yang L, Yue DP, Wang YH, Su K, Zhang QB ( 2018) Research on spatial ecological network structure based on complex network analysis. Transactions of the Chinese Society for Agricultural Machinery, 49(3), 214-224. (in Chinese with English abstract)
[ 于强, 杨斓, 岳德鹏, 王宇航, 苏凯, 张启斌 ( 2018) 基于复杂网络分析法的空间生态网络结构研究. 农业机械学报, 49(3), 214-224.]
[27] Zhang HY, Zhao L, Tian W, Huang H ( 2016) Stability of food webs to biodiversity loss: Comparing the roles of biomass and node degree. Ecological Indicators, 67, 723-729.
[28] Zhang Y, Bao Y, Zhao S, Chen J, Tang J ( 2015) Identifying node importance by combining betweenness centrality and Katz centrality. In: 2015 International Conference on Cloud Computing & Big Data, IEEE, pp. 354-357.
[29] Zhao L, Zhang H, O’Gorman EJ, Tian W, Ma A, Moore JC, Borrett SR, Woodward G ( 2016) Weighting and indirect effects identify keystone species in food webs. Ecology Letters, 19, 1032-1040.
[1] 刘丹,郭忠玲,崔晓阳,范春楠. (2020) 5种东北红豆杉植物群丛及其物种多样性的比较. 生物多样性, 28(3): 340-349.
[2] 李巧丽, 延娜, 宋琼, 郭军战. (2018) 鲁桑叶绿体基因组序列及特征分析. 植物学报, 53(1): 94-103.
[3] 周亚峰, 许彦宾, 王艳玲, 李琼, 胡建斌. (2017) 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系. 植物学报, 52(4): 520-529.
[4] 郜二虎, 何杰坤, 王志臣, 徐扬, 唐小平, 江海声. (2017) 全国陆生野生动物调查单元区划方案. 生物多样性, 25(12): 1321-1330.
[5] 林小植, 李冬梅, 刘焕章, 林鸿生, 杨少荣, 范汉金, 温茹淑. (2016) 广东韩江潮州江段鱼类多样性及季节变化. 生物多样性, 24(2): 185-194.
[6] 刘娟, 邓徐, 吕利新. (2015) 西藏八宿川西云杉树线过渡区树木生长与气候关系的一致性. 植物生态学报, 39(5): 442-452.
[7] 陈旭波, 孟世勇, 张小飞, 韩远彬, 刘全儒. (2014) 石竹科繁缕属与孩儿参属的数量分类. 植物学报, 49(4): 432-439.
[8] 郁万文, 刘新亮, 曹福亮, 汪贵斌, 张往祥. (2014) 不同银杏无性系叶药用成分差异及聚类分析. 植物学报, 49(3): 292-305.
[9] 王江民, 陈发棣, 房伟民, 陈素梅, 管志勇, 唐海艳. (2013) 基于叶形特征的切花菊品种鉴别. 植物学报, 48(6): 608-615.
[10] 慈敦伟, 戴良香, 宋文武, 张智猛. (2013) 花生萌发至苗期耐盐胁迫的基因型差异. 植物生态学报, 37(11): 1018-1027.
[11] 胡建斌, 马双武, 李建吾, 王吉明, 李琼, 王林忠. (2013) 国外甜瓜种质资源形态性状遗传多样性分析. 植物学报, 48(1): 42-51.
[12] 陈旭波, 孟世勇, 刘全儒. (2012) 石竹科繁缕属与鹅肠菜属的数量分类. 植物学报, 47(3): 271-277.
[13] 孙立夫, 裴克全, 张艳华, 赵俊, 杨国亭, 秦国夫, 宋玉双, 宋瑞清. (2012) 中国与欧洲高卢蜜环菌的遗传多样性. 生物多样性, 20(2): 224-230.
[14] 赖昆祺, 郑又华, 陈岳智, 李佑升, 邵广昭. (2012) 运用聚类分析与Google Maps于大量物种出现记录之研究. 生物多样性, 20(1): 76-85.
[15] 周波, 江海东, 张秀新, 薛璟祺, 石颜通. (2011) 部分引进牡丹品种的形态多样性. 生物多样性, 19(5): 543-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed