生物多样性 ›› 2019, Vol. 27 ›› Issue (8): 842-853.doi: 10.17520/biods.2019034

• • 上一篇    下一篇

我国黄曲霉遗传多样性与产毒特性

余仲东1, 余知和2, 金世宇3, 王龙4, *()   

  1. 1. 西北农林科技大学林学院, 陕西杨凌 712100
    2. 长江大学生命科学学院, 湖北荆州 434025
    3. 北京市京西林场, 北京 102300
    4. 中国科学院微生物研究所真菌学国家重点实验室, 北京 100101
  • 收稿日期:2019-02-14 接受日期:2019-05-15 出版日期:2019-08-20
  • 通讯作者: 王龙 E-mail:wl_dgk@sina.com
  • 基金项目:
    科技部科技基础性工作专项(2014FY210400);科技部重点研发计划(2017YFD0600103-4-2);国家自然科学基金(31270539);)国家自然科学基金(31750001);中国科学院前沿科学重点研究项目(QYZDY-SSW-SMC029)

Genetic diversity and toxin-producing characters of Aspergillus flavus from China

Zhongdong Yu1, Zhihe Yu2, Shiyu Jin3, Long Wang4, *()   

  1. 1. College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100;
    2. College of Life Sciences, Yangtze University, Jingzhou, Hubei 434025
    3. Beijing Jingxi Forest Farm, Mentougou, Beijing 102300
    4. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101
  • Received:2019-02-14 Accepted:2019-05-15 Online:2019-08-20
  • Contact: Wang Long E-mail:wl_dgk@sina.com

黄曲霉(Aspergillus flavus)是一种广泛分布的腐生真菌, 是黄曲霉毒素B (aflatoxin B, AFB)和圆弧偶氮酸(cyclopiazonic acid, CPA)的主要产生菌, 也是动植物的条件致病菌。全球的玉米、花生和棉籽均不同程度地遭到黄曲霉及其毒素的污染。黄曲霉菌株间在形态学、遗传学和产毒特性上变异较大, 且其居群遗传结构也尚不明确。为了揭示黄曲霉居群遗传结构及其产毒素特性的规律, 本研究选取了从我国26省区(包括大小兴安岭)不同环境中分离的黄曲霉88株, 结合模式菌株和国际权威菌株9株, 基于钙调蛋白基因(CaM)和β-微管蛋白基因(benA)进行多基因序列分型(multi-locus sequence typing, MLST), 使用MEGA 6.0和Structure 2.3.4软件进行系统发育学分析和居群结构推导, 并结合菌株的产毒特性(AFB和CPA)进行比较分析。结果显示本研究的97株黄曲霉可分为3个居群, 即黄曲霉居群I、黄曲霉居群II和米曲霉居群, 该97株黄曲霉共有17个序列型(sequence type, ST), 其中我国的88株菌分布于15个序列型。米曲霉居群均不产AFB, 黄曲霉居群I和II的菌株绝大多数都产AFB和CPA, 其产毒特性只具有菌株特异性, 与居群和序列型无关。黄曲霉菌株产毒特性与地理分布或农作物类型间存在一定关系。我国东北玉米产区、西北干旱棉花产区和南方花生产区的黄曲霉居群I和II菌株均产AFB和CPA, 我国青海可可西里和四川阿坝地区的黄曲霉仅产CPA而不产AFB, 不产AFB的米曲霉居群大部分来自我国气候和地理环境多样的华北地区, 该地区也是我国农村传统酿造黄豆酱的地区。

关键词: 多样性, 遗传标记, 真菌毒素, 直源基因, 种系学

Aspergillus flavus is commonly regarded as a kind of saprophytic fungi with a wide distribution. It is the major aflatoxin B (AFB) and cyclopiazonic acid (CPA) producing species, as well as a pathogen to humans and animals. In the world, huge amounts of corns, peanuts and cotton seeds are vulnerable to be contaminated by A. flavus and aflatoxin each year. There is much variance in morphological, genetic and toxin-producing characters among isolates of A. flavus, resulting in its ambiguous population structure. In this paper, we analyzed 88 isolates of A. flavus from different environments of 26 provinces (including the Greater and Lesser Khinggan Mountains) in China, as well as nine ex-types and authentic strains based on CaM and benA sequences to infer their sequence types (STs) using multi-locus sequence typing (MLST), and their phylogenetic relationships and population structures employing MEGA 6.0 and Structure 2.3.4 softwares, together with their toxin-producing features (AFB and CPA). Our results showed that the 88 Chinese isolates and nine ex-type and authentic strains were distributed in three populations, i.e. A. flavus population I, A. flavus population II and population A. oryzae. There were 17 STs among the 97 isolates, among which the 88 strains from China were distributed in 15 STs. All isolates of population A. oryzae did not produce AFB, but most isolates of the A. flavus populations I and II produced AFB and CPA. The toxin-producing features were strain-specific, but not correlated to sequence types or populations. Some correlations between toxin-producing characters and geographical environments or crop types were recognized. The isolates of A. flavus populations I and II from the northeast areas planting corns, the arid northwest planting cottons and the south areas growing peanuts all produced AFB and CPA. The isolates from Hoh Xil of Qinghai and Aba of Sichuan did not produce AFB, though with the production of CPA. The isolates of A. oryzae population without AFB production were almost from North China with diverse climates and geographical environments, where the traditional Chinese soybean paste is made in the rural areas.

Key words: diversity, genetic markers, mycotoxins, orthologous genes, phylogenetics

表1

黄曲霉菌株、分离地和基物及产毒特性"

菌株顺序号*
Number
物种
Species
菌株
Strains
分离地和基物
Isolation places and substrates
产毒素
Toxin production
AFB CPA
1 A. flavus CBS 100927T 南太平洋群岛; 赛璐玢 Cellophane; South Pacific Islands - +
2 A. oryzae CBS 100925T 日本大阪; 分离基物未知
Ex-type of A. oryzae, unknown source; Osaka, Japan
- +
3 A. thomii CBS 120.51T 英国伦敦; 污染物 Ex-type of A. thomii, culture contaminant; London, UK - +
4 A. flavus CYH2-2-1 河北石家庄; 空气 Air; Shijiazhuang, Hebei, China + +
5 A. flavus 3.4408 日本东京; 土壤 Soil; Tokyo, Japan + +
6 A. flavus 14527 西藏米林; 土壤 Soil; Milin, Tibet, China + +
7 A. flavus 13483 山西五台山; 土壤 Soil; Mt. Wutaishan, Shanxi, China + +
8 A. flavus 13868 内蒙古呼伦贝尔; 土壤 Soil; Hulun Buir, Inner Mongolia, China + +
9 A. flavus 13894 湖南益阳; 土壤 Soil; Yiyang, Hunan, China + +
10 A. flavus 13895 江西三清山; 土壤 Soil; Sanqingshan, Jiangxi, China + +
11 A. flavus 13918 江苏苏州; 土壤 Soil, Suzhou, Jiangsu, China + +
12 A. flavus 13952 甘肃兰州; 土壤 Soil; Lanzhou, Gansu, China - +
13 A. flavus 13961 宁夏罗山; 土壤 Soil; Luoshan, Ningxia, China - -
14 A. flavus 13962 宁夏灵武; 土壤 Soil; Lingwu, Ningxia, China - -
15 A. flavus 14099 山西吕梁; 土壤 Soil; lvliang, Shanxi, China + +
16 A. flavus 14131 山西大同; 土壤 Soil; Datong, Shanxi, China + +
17 A. flavus 14151 河南洛阳; 土壤 Soil; Luoyang, Henan, China - -
18 A. flavus 14152 河南南阳; 土壤 Soil; Nanyang, Henan, China - -
19 A. flavus 14153 山东泰安 土壤 Soil; Tai’an, Shandong, China - -
20 A. flavus 14154 山东临沂; 土壤 Soil; Linyi, Shandong, China - -
21 A. flavus 14155 河北兴隆; 土壤 Soil; Xinglong, Hebei, China - -
22 A. flavus 14156 河北张家口; 土壤 Soil; Zhangjiakou, Hebei, China - -
23 A. flavus 14157 河北保定; 土壤 Soil; Baoding, Hebei, China - -
24 A. flavus 14159 河北衡水; 土壤 Soil; Hengshui, Hebei, China - -
25 A. flavus 14175 浙江乌镇; 土壤 Soil; Wuzhen, Zhejiang, China + +
26 A. flavus 14334 安徽巢湖; 荸荠 Water chestnut; Chaohu, Anhui, China + +
27 A. flavus 14353 新疆吐鲁番; 土壤 Soil; Turpan, Xinjiang, China + +
28 A. flavus 14355 新疆石河子; 土壤 Soil; Shihezi, Xinjiang, China + +
29 A. flavus 14356 新疆乌鲁木齐; 土壤 Soil; Urumqi, Xinjiang, China + +
30 A. flavus 14357 新疆伊犁; 土壤 Soil; Yili, Xinjiang, China + +
31 A. flavus 14358 陕西榆林; 土壤 Soil; Yulin, Shaanxi, China + +
32 A. flavus 14359 陕西汉中; 土壤 Soil; Hanzhong, Shaanxi, China + +
33 A. flavus 14373 陕西渭南; 土壤 Soil; Weinan, Shaanxi, China + +
34 A. flavus 14374 新疆吐鲁番; 土壤 Soil, Turpan, Xinjiang, China + +
35 A. flavus 23124 海南五指山; 土壤 Soil; Mt. Wuzhishan, Hainan, China + +

表1

(续)"

菌株顺序号*
Number
物种
Species
菌株
Strains
分离地和基物
Isolation places and substrates
产毒素
Toxin production
AFB CPA
36 A. flavus AB34 四川若尔盖; 土壤 Soil; Ruoergai Prairie, Sichuan, China - +
37 A. flavus FJ17-2 福建宁德; 茶叶 Tea; Ningde, Fujian, China + +
38 A. flavus HB4 湖北神农架; 土壤 Soil; Shennongjia, Hubei, China + +
39 A. flavus HL53 黑龙江凉水; 土壤 Soil; Liangshui Nature Reserve, Heilongjiang, China + +
40 A. flavus HL70 黑龙江乌伊岭; 土壤 Soil; Wuyiling, Heilongjiang, China + +
41 A. flavus KK39 青海互助县; 土壤 Soil; Huzhu County, Qinghai, China - +
42 A. flavus KK41 青海互助县; 土壤 Soil; Huzhu County, Qinghai, China - +
43 A. flavus KK49 青海互助县; 土壤 Soil; Huzhu County, Qinghai, China - +
44 A. flavus KK50 青海可可西里; 土壤 Soil; Hoh Xil, Qinghai, China - +
45 A. flavus KK65 青海楚玛尔河; 土壤 Soil; Chumaer River, Qinghai, China - +
46 A. flavus KK66 青海可可西里; 土壤 Soil; Hoh Xil, Qinghai, China - +
47 A. flavus KK67 青海楚玛尔河; 土壤 Soil; Chumaer River, Qinghai, China - +
48 A. flavus KK68 青海沱沱河; 土壤 Soil; Tuotuo River, Qinghai, China - +
49 A. flavus KK69 青海沱沱河; 土壤 Soil; Tuotuo River, Qinghai, China - +
50 A. flavus KK70 青海楚玛尔河; 土壤 Soil; Chumaer River, Qinghai, China - +
51 A. flavus KK72 青海青海湖; 土壤 Soil; Qinghai Lake, Qinghai, China + +
52 A. flavus KK73 青海青海湖; 土壤 Soil; Qinghai Lake, Qinghai, China + +
53 A. flavus KK94 青海坎布拉; 土壤 Soil; Kanbula, Qinghai, China + +
54 A. flavus KK102 青海坎布拉; 土壤 Soil; Kanbula, Qinghai, China - +
55 A. flavus KK103 青海坎布拉; 土壤 Soil; Kanbula, Qinghai, China - +
56 A. flavus KK104 青海坎布拉; 土壤 Soil; Kanbula, Qinghai, China - +
57 A. flavus KK114 青海坎布拉; 土壤 Soil; Kanbula, Qinghai, China - +
58 A. flavus XZ107 陕西南宫山; 植物叶 Plant leaves; Mt. Nangongshan, Shaanxi, China + +
59 A. flavus XZ108 陕西通天河; 植物叶 Plant leaves; Tongtian River, Shaanxi, China + +
60 A. flavus XZ109 陕西南宫山; 植物叶 Plant leaves; Mt. Nangongshan, Shaanxi, China + +
61 A. flavus XZ112 陕西通天河; 植物叶 Plant leaves; Tongtian River, Shaanxi, China + +
62 A. flavus YN23 云南玉溪; 烟叶 Tobacco leaves; Yuxi, Yunnan, China - +
63 A. flavus YN35 云南玉溪; 烟叶 Tobacco leaves; Yuxi, Yunnan, China + +
64 A. flavus YN48 云南玉溪; 烟叶 Tobacco leaves; Yuxi, Yunnan, China + +
65 A. flavus YN49 云南玉溪; 烟叶 Tobacco leaves; Yuxi, Yunnan, China + +
66 A. flavus YN51 云南玉溪; 烟叶 Tobacco leaves; Yuxi, Yunnan, China + +
67 A. flavus NRRL 3357 美国; 霉花生 Moldy peanuts; USA + +
68 A. oryzae RIB40 日本; 谷粒 Cereal grains; Japan - -
69 A. flavus 3.262 辽宁大连; 空气 Air; Dalian, Liaoning, China - -
70 A. flavus 3.267 辽宁大连; 土壤 Soil; Dalian, Liaoning, China - +
71 A. flavus 3.337 天津; 蚊香 Mosquito-repellent incense; Tianjin, China - +
72 A. flavus 3.417 天津; 酱曲 Soy sauce starter; Tianjin, China - +
73 A. flavus 3.870 天津; 酱曲 Soy sauce starter; Tianjin, China + +
74 A. flavus 3.881 上海; 小麦 Wheat; Shanghai, China - +
75 A. flavus 3.2146 北京; 大米 Rice; Beijing, China + +
76 A. flavus 3.2758 广东广州; 空气 Air; Guangzhou, Guangdong, China - +
77 A. flavus 3.2789 越南河内; 土壤 Soil; Hanoi, Vietnam - +
78 A. flavus 3.2823 安徽芜湖; 植物 Plants; Wuhu, Anhui, China - +

表1

(续)"

菌株顺序号*
Number
物种
Species
菌株
Strains
分离地和基物
Isolation places and substrates
产毒素
Toxin production
AFB CPA
79 A. flavus 3.3554 北京; 空气 Air; Beijing, China - +
80 A. flavus var. columnaris CBS 485.65T 日本; 黄油 Ex-type of A. flavus var. columnaris, butter; Japan - +
81 A. flavus 3.4408-2 北京; 空气 Air; Beijing, China + +
82 A. flavus 3.4410 美国 ATCC 28539; USA + +
83 A. flavus 3.5211 北京 CICC 2348; Beijing, China - +
84 A. flavus 3.5278 四川德阳; 烂水果 Rotten fruit; Deyang, Sichuan, China + +
85 A. flavus 3.5283 四川成都; 土壤 Soil; Chengdu, Sichuan, China + +
86 A. flavus 3.5309 四川都江堰; 土壤 Soil; Dujiangyan, Sichuan, China + +
87 A. flavus 3.5329 贵州梵净山; 皮革 Leather; Mt. Fanjingshan, Guizhou, China + +
88 A. flavus 3.6153 山东泰安; 小麦 Wheat; Tai’an, Shandong, China - +
89 A. flavus 3.6304 广西宜山; 玉米 Corn; Yishan, Guangxi, China - +
90 A. flavus 3.6307 吉林珲春; 亚麻 Linen; Hunchun, Jilin, China + +
91 A. flavus 3.6311 广东广州; 空气 Air; Guangzhou, Guangdong, China + +
92 A. flavus 3.6422 河北小五台山; 松果 Pinecore; Mt. Small Wutaishan, Hebei, China + +
93 A. flavus 3.6428 云南大理; 霉纸 Mouldy paper; Dali, Yunnan, China + +
94 A. flavus 3.6431 云南大理; 玉米叶 Corn leaves; Dali, Yunnan, China + +
95 A. flavus 3.6434 云南思茅; 土壤 Soil; Simao, Yunnan, China - +
96 A. flavus 14160 河南信阳; 土壤 Soil,; Xinyang, Henan, China - -
97 A. flavus FJ17 福建宁德; 茶叶 Tea; Ningde, Fujian, China + +
A. arachidicola CBS 117610T 阿根廷; 花生叶 Arachis glabrata leaves; Argentina
A. minisclerotigenes CBS 115635T 阿根廷; 花生 Arachis hypogaea seeds; Argentina
A. parasiticus CBS 100926T 美国夏威夷; 嗜桔粉蚧 Pseudococcus calceolariae; Hawaii, USA
3.306 天津; 酱曲 Soy sauce starter; Tianjin, China
A. aflatoxiformans CBS 143679T 尼日利亚; 土壤 Soil; Nigeria
A. tamarii CBS 104.13T 分离地未知; 活性碳 Activated carbon; unknown country

图1

97株黄曲霉及其4个近缘种的ML系统发育树。黄曲霉模式菌株CBS 100927T、黄曲霉柱头变种模式菌株CBS 485.65T、米曲霉模式菌株CBS 100925T和托姆曲霉模式菌株CBS 120.51T同在一个分支, 支持率为92%, 溜曲霉模式菌株CBS 104.13T作为外群。红、绿、蓝颜色与图3对应。"

表2

由Structure 2.3.4根据Delta K推导出的最佳居群数目K"

K Replicates Mean LnP(K) Stdev LnP(K) Ln°(K) |Ln?(K)| Delta K
2 20 -252.900000 11.116323 - - -
3 20 -153.585000 0.665918 99.315000 115.770000 173.850119
4 20 -170.040000 4.371607 -16.455000 14.975000 3.425514
5 20 -171.520000 3.293790 -1.480000 16.860000 5.118723
6 20 -189.860000 14.895474 -18.340000 402.695000 27.034721
7 20 -610.895000 1,768.728466 -421.035000 779.785000 0.440873
8 20 -252.145000 53.166892 358.750000

图2

Structure Harvester计算得到的最佳居群数目(delta K = 3为最佳)"

图3

97株黄曲霉由Structure Harvester计算得到3个居群。红色, 绿色和蓝色分别代表3个居群, 每一个颜色柱代表一个菌株, 菌株顺序号为颜色柱下面的数字, 与表1对应。"

1 Anderson B, Thrane U ( 2006) Food-borne fungi in fruit and cereals and their production of mycotoxins. In: Advances in Food Mycology (eds Hocking AD, Pitt JI, Samson RA, Thrane U), pp. 137-152. Springer, Boston.
2 Barros G, Torres A, Chulze S ( 2005) Aspergillus flavus population isolated from soil of Argentina’s peanut-growing region. Sclerotia production and toxigenic profile. Journal of the Science of Food and Agriculture, 85, 2349-2353.
3 Batista PP, Santos JF, Oliveira NT, Pires APD, Motta CMS, Luna-Alves Lima EA ( 2008) Genetic characterization of Brazilian strains of Aspergillus flavus using DNA markers. Genetics and Molecular Research, 7, 706-717.
4 CAST ( Council for Agricultural Science and Technology) ( 2003) Mycotoxins: Risks in plant, animal and human systems. Task Force Report No. 139, 13-85. CAST, Ames, IA.
5 Chang PK, Ehrlich KC ( 2010) What does genetic diversity of Aspergillus flavus tell us about Aspergillus flavus? International Journal of Food Microbiology, 138, 189-199.
6 Chang PK, Ehrlich KC, Hua SS ( 2006) Cladal relatedness among Aspergillus flavus isolates and Aspergillus flavus S and L morphotype isolates. International Journal of Food Microbiology, 108, 172-177.
7 Cotty PJ ( 1997) Aflatoxin-producing potential of communities of Aspergillus section Flavi from cotton producing areas in the United States. Mycological Research, 101, 698-704.
8 Cotty PJ ( 1989) Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology, 79, 808-814.
9 Cotty PJ, Jaime-Garcia R ( 2007) Influence of climate on aflatoxin producing fungi and aflatoxin contamination. International Journal of Food Microbiology, 119, 109-115.
10 Ehrlich KC, Chang P-K, Yu J, Cotty PJ ( 2004) Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Applied and Environmental Microbiology, 70, 6518-6524.
11 Frisvad JC, Skouboe P, Samson RA ( 2005) Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylstergmatocystin, Aspergillus rambellii sp. nov. Systematic and Applied Microbiology, 28, 442-453.
12 Frisvad JC, Hubka V, Ezekiel CN, Hong SB, Novakova A, Chen AJ, Arzanlou M, Larsen TO, Sklenar F, Mahakarnchanakul W, Samson RA, Houbraken J ( 2019) Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in Mycology, 93, 1-63.
13 Gao XF, Yin SA, Ji R ( 2011) Contamination of aflatoxins in peanuts from some regions in China. Chinese Journal of Public Health, 27, 541-542.
(in Chinese with English abstract) [ 高秀芬, 荫士安, 计融 ( 2011) 中国部分地区花生中4种黄曲霉毒素污染调查. 中国公共卫生, 27, 541-542.]
14 Geiser DM, Dorner JW, Horn BW, Taylor JW ( 2000) The phylogenetics of mycotoxin and sclertium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genetics and Biology, 31, 169-179.
15 Glass NL, Donaldson GC ( 1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323-1330.
16 Hall TA ( 1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
17 Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW ( 2007) Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology, 153, 1677-1692.
18 Horn BW, Greene RL, Dorner JW ( 1995) Effect of corn and peanut cultivation on soil populations of Aspergillus flavus and A. parasiticus in southwestern Georgia. Applied and Environmental Microbiology, 61, 2472-2475.
19 Horn BW, Dorner JW ( 1999) Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of Aspergillus flavus along a transect within the United States. Applied and Environmental Microbiology, 65, 1444-1449.
20 Horn BW ( 2003) Ecology and population biology of aflatoxingenic fungi in soil. Journal of Toxicology-Toxin Reviews, 22, 351-379.
21 Krishnan S, Manavathu EK, Chandrasekar PH , ( 2009) Aspergillus flavus: An emerging non-fumigatus Aspergillus species of significance. Mycoses, 52, 206-222.
22 Kurtzman CP, Smiley MJ, Robnett CJ, Wicklow DT ( 1986) DNA relatedness among wild and domesticated species in the Aspergillus flavus Group. Mycologi, 78, 955-959.
23 Malloch D ( 1981) Moulds Their Isolation, Cultivation and Identification. University of Toronto Press, Toronto.
24 Medina A, Gilbert MK, Mack BM, Brian GR, Rodríguez A, Bhatnagar D, Payne G, Magan N ( 2017) Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production. International Journal of Food Microbiology, 256, 36-44.
25 Orum TV, Bigelow DM, Nelson MR, Howell DR, Cotty PJ ( 1997) Spatial and temporal patterns of Aspergillus flavus strain composition and propagule density in Yuma County, Arizona, soils. Plant Diseases, 81, 911-916.
26 Paterson RRM, Lima N ( 2010) How will climate change affect mycotoxins in food? Food Research International, 43, 1902-1914.
27 Pildain MB, Frisvad JC, Vaamonde G, Cabral D, Varga J, Samson RA ( 2008) Two novel aflatoxin-producing Aspergillus species from Argentinean peanuts. International Journal of Systematic and Evolutionary Microbiology, 58, 725-735.
28 Pitt JI, Hocking AD ( 2009) Fungi and Food spoilage, 3rd edn. Springer-Science Media, London.
29 Qi ZT, Kong HZ, Sun ZM ( 1997) Flora Fungorum Sinicorum Vol. 5. Aspergillus et teleomorphi cognate. Science Press, Beijing.
( In Chinese) [ 齐祖同, 孔华忠, 孙曾美( 1997) 中国真菌志第五卷: 曲霉属及其相关有性型. 科学出版社, 北京.]
30 Raper KB, Fennell DI ( 1965) The Genus Aspergillus. Williams & Wilkins, Baltimore.
31 Saito M, Tsuruta O ( 1993) A new variety of Aspergillus flavus from tropical soil in Thailand and its aflatoxin productivity. Proceedings of the Japanese Association of Mycotoxicology, 37, 31-36.
32 Sepahvand A, Shams-Ghahfarokhi M, Allameh A, Jahanshiri Z, Jamali M, Razzaghi-Abyaneh M ( 2011) A survey on distribution and toxigenicity of Aspergillus flavus from indoor and outdoor hospital environments. Folia Microbiologica, 56, 527-534.
33 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S ( 2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 8, 2731-2739.
34 Varga J, Frisvad JC, Samson RA ( 2011) Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology, 69, 57-80.
35 Wang L, Zhuang WY ( 2004) Designing primer sets for amplification of partial calmodulin genes from penicillia. Mycosystema, 23, 466-473.
36 Wang L ( 2012) Four new records of Aspergillus section Usti from Shandong Province, China. Mycotaxon, 120, 373-384.
37 Wang ZG, Zhe T, Cheng SY, Cong LM ( 1993) Study of pectinase and sclerotium producing abilities of two kinds of Aspergillus flavus isolated from Zhejiang. Mycopathologia, 121, 163-168.
38 Wang HC, Huang YC, Wang J, Wang MS, Shang SH, Ye DY, Long MJ ( 2014) Fungi isolation and identification of tobacco seeds. Chinese Tobacco Science, 35(5), 84-88.
(in Chinese with English abstract) [ 汪汉成, 黄艳飞, 王进, 王茂胜, 商胜华, 叶定勇, 龙明锦 ( 2014) 烟草种子携带病原真菌的分离与鉴定. 中国烟草科学, 35(5), 84-88.]
[1] 陈自宏,王元兵,代永东,陈凯,徐玲,何謦成. 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态[J]. 生物多样性, 2019, 27(9): 993-1001.
[2] 杨锐,彭钦一,曹越,钟乐,侯姝彧,赵智聪,黄澄. 中国生物多样性保护的变革性转变及路径[J]. 生物多样性, 2019, 27(9): 1032-1040.
[3] 李顺,邹亮,宫一男,杨海涛,王天明,冯利民,葛剑平. 激光雷达技术在动物生态学领域的研究进展[J]. 生物多样性, 2019, 27(9): 1021-1031.
[4] 谭一波,申文辉,付孜,郑威,欧芷阳,谭长强,彭玉华,庞世龙,何琴飞,黄小荣,何峰. 环境因子对桂西南蚬木林下植被物种多样性变异的解释[J]. 生物多样性, 2019, 27(9): 970-983.
[5] 李永民,吴孝兵. 安徽省两栖爬行动物名录修订[J]. 生物多样性, 2019, 27(9): 1002-1011.
[6] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构[J]. 生物多样性, 2019, 27(8): 911-918.
[7] 吕美林, 刘泽, 宋震, 王亚宁, 刘小勇. 大兴安岭地区可培养毛霉门真菌多样性与分布[J]. 生物多样性, 2019, 27(8): 821-832.
[8] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 大小兴安岭可培养细菌的资源多样性[J]. 生物多样性, 2019, 27(8): 903-910.
[9] 曹槟, 李国杰, 赵瑞琳. 大小兴安岭地区红菇属物种多样性及其地理成分[J]. 生物多样性, 2019, 27(8): 854-866.
[10] 图力古尔, 王雪珊, 张鹏. 大小兴安岭地区伞菌和牛肝菌类区系[J]. 生物多样性, 2019, 27(8): 867-873.
[11] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. 大小兴安岭针叶树倒木上木腐真菌的物种多样性[J]. 生物多样性, 2019, 27(8): 887-895.
[12] 李俊凝, 李通, 魏玉莲. 丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系[J]. 生物多样性, 2019, 27(8): 880-886.
[13] 曹宁, 薛达元. 论壮族传统文化对生物多样性的保护: 以广西靖西市为例[J]. 生物多样性, 2019, 27(7): 728-734.
[14] 杨云卉, 白可喻, Devra Jarvis, 龙春林. 西双版纳黄瓜农家品种及其传统知识[J]. 生物多样性, 2019, 27(7): 743-748.
[15] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. 南麂列岛东侧海域春秋季虾蟹类生物多样性[J]. 生物多样性, 2019, 27(7): 787-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed