生物多样性 ›› 2018, Vol. 26 ›› Issue (11): 1204-1211.doi: 10.17520/biods.2018044

• 研究报告 • 上一篇    下一篇

基于线粒体COI基因分析钩手水母的群体遗传结构

刘青青1, 2, 董志军1, 3, *()   

  1. 1 中国科学院烟台海岸带研究所, 牟平海岸带环境综合试验站, 山东烟台 264003
    2 中国科学院大学, 北京 101408
    3 中国科学院海洋大科学研究中心, 山东青岛 266071
  • 收稿日期:2018-03-08 接受日期:2018-07-04 出版日期:2018-11-20
  • 通讯作者: 董志军 E-mail:zjdong@yic.ac.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(41576152)

Population genetic structure of Gonionemus vertens based on the mitochondrial COI sequence

Qingqing Liu1, 2, Zhijun Dong1, 3, *()   

  1. 1 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Muping Coastal Environment Research Station, Yantai, Shandong 264003
    2 University of Chinese Academy of Sciences, Beijing 101408
    3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071
  • Received:2018-03-08 Accepted:2018-07-04 Online:2018-11-20
  • Contact: Dong Zhijun E-mail:zjdong@yic.ac.cn
  • About author:

    # Co-first authors

钩手水母(Gonionemus vertens)为大西洋和太平洋广布种, 是我国习见的有毒水母种类之一。本文对采自黄渤海海域4个地理群体的104个钩手水母线粒体COI基因序列进行扩增, 并结合GenBank上其他182个钩手水母同源序列进行序列变异分析。在286个基因序列中共检测出52个多态位点, 定义了14种单倍型。总群体的单倍型多样性和核苷酸多样性分别为0.743 ± 0.012和1.046% ± 0.097%, 与其他几种大型水母相比, 钩手水母总群体的遗传多样性处于较高水平。AMOVA结果显示, 60.17%的分子变异源于群组间, 13.37%的分子变异源于群体内, 26.46%的分子变异源于组内群体间, 群组间、群体内和组内群体间的遗传分化均极显著。Fst值统计检验表明, 中国厦门群体与乐亭、东营、烟台、大连群体间存在显著的遗传分化, 大连与东营、烟台群体间也存在显著的遗传分化。系统分析结果显示, 钩手水母群体间存在2个明显的单倍型谱系分支。不同的钩手水母地理群体间具有复杂的遗传模式, 钩手水母复杂的生活史、扩散能力、地理隔离和海流分布可能是影响钩手水母遗传结构的重要因素。

关键词: 钩手水母, 线粒体COI, DNA条形码, 群体遗传结构, 遗传分化

Gonionemus vertens is widely distributed throughout the Atlantic and Pacific Oceans and is one of venomous jellyfish species in China. To investigate the population genetic structure of G. vertens, we sequenced the mtDNA COI gene in 104 individuals collected from four geographic locations along the coast of the Yellow Sea and the Bohai Sea, and the homologous sequences of other 182 individuals which were obtained from GenBank were also analyzed. A total of 52 polymorphic nucleotide sites were detected among the 286 individuals, which defined 14 haplotypes. The overall haplotype diversity and nucleotide diversity were 0.743 ± 0.012 and 1.046% ± 0.097%, respectively. Compared with several other giant jellyfish species, the genetic diversity of G. vertens was at the higher level. AMOVA analysis indicated that extremely significant difference existed among the groups, within populations and among the populations within groups, with 60.17% molecular variation among the groups, 13.37% molecular variation within populations, and 26.46% molecular variation among the populations within groups. Pairwise fixation index (Fst) values showed that significant population structure existed between the G. vertens population collected in Xiamen waters with other populations collected from Laoting, Dongying, Yantai, and Dalian waters, and the population structure throughout Dalian with Dongying, or with Yantai were also significant. Phylogeographic analysis of the COI region revealed two lineages. The results indicated that the complex life cycle characteristics, dispersal ability, geographic isolation, together with the prevailing ocean currents in this region, may be important factors influencing the genetic structure of G. vertens.

Key words: Gonionemus vertens, mtDNA, DNA barcode, population genetic structure, genetic differentiation

图1

钩手水母采样地点分布图"

表1

钩手水母样本信息及遗传多样性指数"

采样点
Site
样本量
N
单倍型
H
单倍型组成(样本数)
Haplotype composition (No. of inds.)
单倍型多样性
Hd
核苷酸多样性
π (%)
GenBank序列号
GenBank accession
no.
西北大西洋 Northwest Atlantic (NWA)
美国新罕布什尔州大海湾
Great Bay, New Hampshire, America (GB)
7 2 Hap1(3); Hap14(4) 0.571 ± 0.119 0.912 ± 0.191 KY437905-911
美国雅茅斯巴斯河
Bass River, Yarmouth, America (BR)
17 3 Hap1(2); Hap12(12); Hap14(3) 0.485 ± 0.126 1.004 ± 0.270 KY437888-904
美国马什皮汉布林池塘
Hamblin Pond, Mashpee, America (HP)
18 1 Hap12(18) 0 0 KY437834-851
美国奥克布拉夫斯农场池塘
Farm Pond, Oak Bluffs, America (FP)
17 2 Hap1(1); Hap12(16) 0.118 ± 0.101 0.164 ± 0.141 KY437814-830
美国埃德加敦森格肯塔克池塘
Sengekontacket Pond, Edgartown, America (SG)
3 2 Hap1(2); Hap12(1) 0.667 ± 0.314 0.931 ± 0.439 KY437831-833
美国北金斯敦波特池塘
Potter Pond, North Kingston, America (PP)
22 2 Hap1(2); Hap12(20) 0.173 ± 0.101 0.242 ± 0.141 KY437912-933
美国格罗顿芒福德湾
Mumford Cove, Groton, America (MC)
14 2 Hap1(13); Hap12(1) 0.143 ± 0.119 0.200 ± 0.166 KY437934-947
美国格罗顿松岛
Pine Island, Groton, America (PI)
24 2 Hap1(23); Hap12(1) 0.083 ± 0.075 0.116 ± 0.105 KY437864-887
西北太平洋 Northwest Pacific (NWP)
俄罗斯阿穆尔湾
Amur Bay, Peter the Great Gulf, Russia (AB)
3 1 Hap1(3) 0 0 KY437948-950
俄罗斯沃斯托克湾
Vostok Bay, Peter the Great Gulf, Russia (VB)
30 2 Hap1(26); Hap11(4) 0.239 ± 0.092 0.048 ± 0.018 KY437951-980
日本越喜来湾 Okirai Bay, Japan (JP) 12 2 Hap1(1); Hap2(11) 0.167 ± 0.134 0.100 ± 0.080 KY437852-863
中国厦门 Xiamen, China (XM) 10 1 Hap10(10) 0 0 KF962130-139
中国烟台 Yantai, China (YT) 27 5 Hap2(23); Hap3(1); Hap4(1); Hap8(1); Hap9(1) 0.279 ± 0.112 0.148 ± 0.095 MH020717-743
中国大连 Dalian, China (DL) 30 4 Hap1(6); Hap2(19); Hap5(4); Hap6(1) 0.559 ± 0.086 0.307 ± 0.058 MH020640-669
中国东营 Dongying, China (DY) 18 1 Hap2(18) 0 0 MH020670-687
中国乐亭 Laoting, China (LT) 29 3 Hap1(2); Hap2(25); Hap7(2) 0.256 ± 0.102 0.106 ± 0.050 MH020688-716
东北太平洋 Northeast Pacific (NEP)
美国圣胡安岛 San Juan Island, America (FH) 4 1 Hap13(4) 0 0 KY437982-985
东北大西洋 Northeast Atlantic (NEA)
冰岛阿夫塔内斯 Álftanes, Iceland (IC) 1 1 Hap13(1) 0 0 KY437981
总群体 Total - 286 14 - 0.743 ± 0.012 1.046 ± 0.097

表2

钩手水母群体分子变异的空间方差分析"

变异来源 Source of variation 自由度 d.f. 平方和 Sum of squares 方差比例 % of variation F P
群组间 Among groups 3 362.274 60.17 Fsc = 0.66436 0.0000
组内群体间 Among populations within groups 14 247.509 26.46 Fst = 0.86631 0.0000
群体内 Within populations 268 136.735 13.37 Fct = 0.60168 0.0002
总计 Total 285 746.517 100

图2

基于贝叶斯理论构建的钩手水母的系统发育树"

图3

基于COI基因的钩手水母单倍型的中介网络图。彩色扇形面积表示各样品群体在同一单倍型中所占的比例; 圆面积表示单倍型出现频率; 红色圆点代表中间突变节点。图中采样点简称与表1一致。"

[5] Dawson MN, Gupta AS, England MH (2005) Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences, USA, 102, 11968-11973.
[6] Dong ZJ, Liu ZY, Liu DY (2015) Genetic characterization of the scyphozoan jellyfish Aurelia spp. in Chinese coastal waters using mitochondrial markers. Biochemical Systematics and Ecology, 60, 15-23.
[7] Dong ZJ, Liu ZY, Liu DY, Liu QQ, Sun TT (2016) Low genetic diversity and lack of genetic structure in the giant jellyfish Nemopilema nomurai in Chinese coastal waters. Marine Biology Research, 12, 769-775.
[8] Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
[9] Govindarajan AF, Boero F, Halanych KM (2006) Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Molecular Phylogenetics and Evolution, 38, 820-834.
[10] Govindarajan AF, Carman MR, Khaidarov MR, Semenchenko A, Wares JP (2017) Mitochondrial diversity in Gonionemus (Trachylina: Hydrozoa) and its implications for understanding the origins of clinging jellyfish in the Northwest Atlantic Ocean. PeerJ, 5, e3205.
[11] Hall BG (2004) Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Molecular Biology and Evolution, 22, 792-802.
[12] Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
[13] Harrison JS (2004) Evolution, biogeography, and the utility of mitochondrial 16S and COI genes in phylogenetic analysis of the crab genus Austinixa (Decapoda: Pinnotheridae). Molecular Phylogenetics and Evolution, 30, 743-754.
[14] Hebert PDN, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313-321.
[15] Jiang HC, Liu N, Gao JQ, Su B, Li JH, He JL, Liu AY (2017) Zooplankton community structure in Sishili Bay and its relationship with environmental factors. Acta Ecologica Sinica, 37, 1318-1327. (in Chinese with English abstract)
[姜会超, 刘宁, 高继庆, 苏博, 李佳蕙, 何健龙, 刘爱英 (2017) 烟台四十里湾浮游动物群落特征及与环境因子的关系. 生态学报, 37, 1318-1327.]
[16] Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
[17] Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.
[18] Li YL, Dong J, Wang B, Li YP, Yu XG, Fu J, Wang WB (2016) Genetic characterization of different populations of Rhopilema esculentum based on the mitochondrial COI sequence. Chinese Journal of Applied Ecology, 27, 2340-2347. (in Chinese with English abstract)
[李玉龙, 董婧, 王彬, 李轶平, 于旭光, 付杰, 王文波 (2016) 基于线粒体COI基因的海蜇不同地理群体遗传特征. 应用生态学报, 27, 2340-2347.]
[19] Li YL, Kong XY, Yu ZN, Kong J, Ma S, Chen LM (2009) Genetic diversity and historical demography of Chinese shrimp Feneropenaeus chinensis in Yellow Sea and Bohai Sea based on mitochondrial DNA analysis. African Journal of Biotechnology, 8, 1193-1202.
[20] Neigel JE, Avise JC (1993) Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics, 135, 1209-1220.
[21] Nylander JAA, Olsson U, Alström P, Sanmartín I (2008) Accounting for phylogenetic uncertainty in biogeography: A Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Systematic Biology, 57, 257-268.
[22] Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25, 547-572.
[23] Pigulevsky SV, Michaleff PV (1969) Poisoning by the medusa Gonionemus vertens in the sea of Japan. Toxicon, 7, 145-149.
[24] Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542.
[25] Stabile J, Waldman JR, Parauka F, Wirgin I (1996) Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA. Genetics, 144, 767-775.
[26] Stopar K, Ramšak A, Trontelj P, Malej A (2010) Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Molecular Phylogenetics and Evolution, 57, 417-428.
[27] Tian JL (1987) Preliminary exploration of Gonionemus vertens in the sea of Jiaozhou Bay. Journal of Biology, 15, 17-18. (in Chinese)
[田金良 (1987) 胶州湾钩手水母初探. 生物学杂志, 15, 17-18.]
[28] Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
[29] Ward RD, Woodwark M, Skibinskid OF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. Journal of Fish Biology, 44, 213-232.
[30] Wright S (1943) Isolation by distance. Genetics, 28, 114.
[31] Wright S (1949) The genetical structure of populations. Annals of Human Genetics, 15, 323-354.
[32] Yakovlev YM, Vaskovsky VE (1993) The toxic krestovik medusa Gonionemus vertens. Russian Journal of Marine Biology, 19, 287-294.
[33] Zhang DN, Zheng LM, He JR, Zhang WJ, Lin YS, Li Y (2015) DNA barcoding of hydromedusae in northern Beibu Gulf for species identification. Biodiversity Science, 23, 50-60. (in Chinese with English abstract)
[张珰妮, 郑连明, 何劲儒, 张文静, 林元烧, 李阳 (2015) 基于线粒体COI和16S片段序列的北部湾北部水螅水母 DNA 条形码分析. 生物多样性, 23, 50-60.]
[34] Zhao M, Song W, Ma CY, Zhang FY, Jiang KJ, Song ZM, Ma LB (2015) Population genetic structure of Collichthys lucidus based on the mitochondrial cytochrome oxidase subunit I sequence. Journal of Fishery Sciences of China, 22, 233-242. (in Chinese with English abstract)
[1] Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. Journal of Molecular Evolution, 20, 99-105.
[2] Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
[3] Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences, USA, 76, 1967-1971.
[4] Cheng FP, Wang MX, Wang YT, Zhang F, Li CL, Sun S (2012) DNA barcoding of common medusozoa in northern China based on mtCOI sequence. Oceanologia et Limnologia Sinica, 43, 451-459. (in Chinese with English abstract)
[34] [赵明, 宋炜, 马春艳, 张凤英, 蒋科技, 宋志明, 马凌波 (2015) 基于线粒体COI基因序列的棘头梅童鱼7个野生群体遗传结构分析. 中国水产科学, 22, 233-242.]
[4] [程方平, 王敏晓, 王彦涛, 张芳, 李超伦, 孙松 (2012) 中国北方习见水母类的DNA条形码分析. 海洋与湖沼, 43, 451-459.]
[1] 翁茁先, 黄佳琼, 张仕豪, 余锴纯, 钟福生, 黄勋和, 张彬. 利用线粒体COI基因揭示中国乌骨鸡遗传多样性和群体遗传结构[J]. 生物多样性, 2019, 27(6): 667-676.
[2] 何杰丽 石甜甜 陈凌 王海岗 乔治军 王瑞云. 糜子EST-SSR的开发及种质资源遗传多样性分析[J]. 植物学报, 2019, 54(5): 0-0.
[3] 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533.
[4] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析[J]. 生物多样性, 2019, 27(5): 543-556.
[5] 胡建霖,刘志芳,慈秀芹,李捷. DNA条形码在热带龙脑香科树种鉴定中的应用[J]. 植物学报, 2019, 54(3): 350-359.
[6] 舒江平, 罗俊杰, 韦宏金, 严岳鸿. 基于模式产地的分子证据澄清南平鳞毛蕨的分类学地位[J]. 植物学报, 2018, 53(6): 793-800.
[7] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护[J]. 生物多样性, 2018, 26(3): 217-228.
[8] 武星彤, 陈璐, 王敏求, 张原, 林雪莹, 李鑫玉, 周宏, 文亚峰. 丹霞梧桐群体遗传结构及其遗传分化[J]. 生物多样性, 2018, 26(11): 1168-1179.
[9] 宋慧芳, 刘海双, 杨义明, 范书田, 李昌禹, 艾军. 山葡萄种质资源DNA条形码通用序列的筛选[J]. 植物学报, 2017, 52(6): 723-732.
[10] 郝金凤, 张晓红, 王昱淞, 刘金林, 智永超, 李新江. 白洋淀湿地蝗虫多样性调查及DNA条形码应用研究[J]. 生物多样性, 2017, 25(4): 409-417.
[11] 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368.
[12] 慈秀芹, 李捷. 系统发育多样性在植物区系研究与 生物多样性保护中的应用[J]. 生物多样性, 2017, 25(2): 175-181.
[13] 魏亚男, 王晓梅, 姚鹏程, 陈小勇, 李宏庆. 比较不同DNA条形码对中国海岸带耐盐植物的识别率[J]. 生物多样性, 2017, 25(10): 1095-1104.
[14] 张静, 李渊, 宋娜, 林龙山, 高天翔. 我国沿海棱鳀属鱼类的物种鉴定与系统发育[J]. 生物多样性, 2016, 24(8): 888-895.
[15] 曹云, 沈文静, 陈炼, 胡飞龙, 周蕾, 徐海根. Metabarcoding技术在真菌多样性研究中的应用[J]. 生物多样性, 2016, 24(8): 932-939.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed