生物多样性 ›› 2018, Vol. 26 ›› Issue (4): 414-426.doi: 10.17520/biods.2018029

• 综述 • 上一篇    

栽培植物野生近缘种的保护与利用

赵耀1, 李耕耘2, 杨继2, *()   

  1. 1 南昌大学生命科学研究院流域生态学研究所, 南昌 330031
    2 复旦大学生物多样性科学研究所, 上海 200438
  • 收稿日期:2018-01-30 接受日期:2018-04-16 出版日期:2018-04-20
  • 通讯作者: 杨继 E-mail:jiyang@fudan.edu.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    上海市科学技术委员会课题(14DZ2260400)和国家自然科学青年基金(31600293)

Conservation and utilization of wild relatives of cultivated plants

Yao Zhao1, Gengyun Li2, Ji Yang2, *()   

  1. 1 Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang 330031
    2 Institute of Biodiversity Science, Fudan University, Shanghai 200438
  • Received:2018-01-30 Accepted:2018-04-16 Online:2018-04-20
  • Contact: Yang Ji E-mail:jiyang@fudan.edu.cn
  • About author:

    # Co-first authors

栽培植物是人类赖以生存和发展的重要物质基础。全球人口与人均需求量的持续增长导致对植物资源的需求与日俱增。栽培植物较低的遗传多样性是限制其产量增长和质量提高的主要因素。栽培植物野生近缘种在自然环境中积累了丰富的遗传变异, 并在应对环境变化的过程中产生了很多新的适应性状, 是栽培植物种质创新和品种改良的重要遗传资源。然而, 栽培植物野生近缘种的存续和自然进化因生境破坏以及全球气候变化等正面临严重威胁, 需要采取有效的措施进行保护。本文总结了国内外对栽培植物野生近缘种进行原生境保护与迁地保护所取得的进展, 并基于我国实际情况提出了栽培植物野生近缘种的保护建议。此外, 本文还对栽培植物野生近缘种利用技术进行了梳理, 探讨了栽培植物野生近缘种遗传资源可持续利用的新思路。最后, 我们以长江流域几种代表性栽培植物为例, 对主要作物类型的保护与利用情况进行了讨论。

关键词: 栽培植物, 野生近缘种, 原生境保护, 迁地保护, 利用

Cultivated plants are the most important material basis for human survival and development. Growing global human population and personal demands result in increasing consumption of plant resources. The low genetic diversity of cultivated plants is a key factor that restricts production and quality improvements. Wild relatives of cultivated plants have accumulated rich genetic variations and adaptive traits during the process of long-term adaptive evolution, thus can be used as genetic donors in germplasm innovation and improvement of cultivated plants. However, the persistence and evolution of wild relative populations are threatened by habitat destruction and anthropogenic climate change. This review summarizes the progress of in situ and ex situ conservation of wild relatives of cultivated plants and offers conservation suggestions for wild relatives of cultivated plants based on the current situation in China. Moreover, technologies for the utilization of wild relatives of cultivated plants are reviewed and new insights on the sustainable use of genetic resources of wild crop relatives are also discussed. Finally, the status of conservation and utilization of the main cultivated plants that originated from the Yangtze River Basin are investigated, with four plants of different uses used as representatives.

Key words: cultivated plants, wild relatives, in situ conservation, ex situ conservation, utilization

[1] Barnosky AD, Hadly EA, Gonzalez P, Head J, Polly PD, Lawing AM, Eronen JT, Ackerly DD, Alex K, Biber E, Blois J, Brashares J, Ceballos G, Davis E, Dietl GP, Dirzo R, Doremus R, Fortelius M, Greene HW, Hellmann J, Hickler T, Jackson ST, Kemp M, Koch PL, Kremen C, Lindsey EL, Looy C, Marshall CR, Mendenhall C, Mulch A, Mychajliw AM, Nowak C, Ramakrishnan U, Schnitzler J, Shrestha KD, Solari K, Stegner L, Stegner MA, Stenseth NC, Wake MH, Zhang Z (2017) Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science, 355, 594.
[2] Barton L, Newsome SD, Che FH, Wang H, Guilderson TP, Bettinger RL (2009) Agricultural origins and the isotopic identity of domestication in northern China. Agricultural origins and the isotopic identity of domestication in northern China, Proceedings of National Academy of Sciences, 106, 5523-5528.
[3] Brozynska M, Furtado A, Henry RJ (2015) Genomics of crop wild relatives: Expanding the gene pool for crop improvement. Plant Biotechnology Journal, 14, 1070-1085.
[4] Carroll SP, Jørgensen PS, Kinnison MT, Bergstrom CT, Denison RF, Gluckman P, Smith TB, Strauss SY, Tabashnik BE (2014) Applying evolutionary biology to address global challenges. Science, 346, 1245993.
[5] Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV, Ramirez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nature Plants, 2, 16022.
[6] Chao S (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Science, 47, 1018-1030.
[7] Chen YP, Chen YF, Zhao JT, Huang X, Huang XL (2007) Cloning and expression of resistance gene analogs (RGAs) from wild banana resistant to banana fusarium wilt. Journal of Plant Physiology and Molecular Biology, 33, 567-573. (in Chinese with English abstract)
[陈雅平, 陈云凤, 赵杰堂, 黄霞, 黄学林 (2007) 抗香蕉枯萎病的野生蕉抗病基因类似序列的克隆与表达. 植物生理与分子生物学学报, 33, 567-573.]
[8] Cohen JE (2003) Human population: The next half century. Science Magazine, 302, 1172-1175.
[9] Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to marker, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169-196.
[10] Compilation Group of China’s Biodiversity: A Country Study(2016) China’s Biodiversity: A Country Study. China Environmental Science Press, Beijing. (in Chinese)
[中国生物多样性国情研究报告编写组(2016) 中国生物多样性国情研究报告. 中国环境科学出版社, 北京.]
[11] Dehaan LR, van Tassel DL, Anderson JA, Asselin SR, Barnes R, Baute GJ, Cattani DJ, Culman SW, Dorn KM, Hulke BS, Kantar M, Larson S, Marks MD, Miller AJ, Poland J, Ravetta DA, Rude E, Ryan MR, Wyse D, Zhang XF (2016) A pipeline strategy for grain crop domestication. Crop Science, 56, 1-14.
[12] Denison RF, Kiers ET, West SA (2003) Darwinian agriculture: When can humans find solutions beyond the reach of natural selection? Quarterly Review of Biology, 78, 145-168.
[13] Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature, 418, 700-707.
[14] Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell, 127, 1309-1329.
[15] Donald CM (1981) Competitive plants, communal plants, and yields in wheat crops. In: Wheat Science-Today and Tomorrow (eds Evans LT, Peacock WJ). Cambridge University Press, Cambridge, UK.
[16] Dong YC (1999) The current situation and prospect of crop germplasm resource researches in China. Review of China Agricultural Science & Technology, (2), 36-40. (in Chinese)
[董玉琛 (1999) 我国作物种质资源研究的现状与展望. 中国农业科技导报, (2), 36-40.]
[17] Dong YC, Liu X (2008) Crops and Their Wild Relatives in China. China Agriculture Press, Beijing. (in Chinese)
[董玉琛, 刘旭 (2008) 中国作物及其野生近缘植物. 中国农业出版社, 北京.]
[18] Dulloo ME, Hunter D, Borelli T, Hamon S, Pamfil D, Sestras R (2010) Ex situ and in situ conservation of agricultural biodiversity: Major advances and research needs. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38, 114-122.
[19] Fang JX, He F (1998) Chinese Tung Oil Tree. Chinese Forestry Publishing House, Beijing. (in Chinese)
[方嘉兴, 何方 (1998) 中国油桐. 中国林业出版社, 北京.]
[20] FAO (2014) Genebank Standards for Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy.
[21] Fowler C (2008) The svalbard seed vault and crop security. Bioscience, 58, 190-191.
[22] Frankham R, Briscoe DA, Ballou JD (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge.
[23] Fu DQ, Huang HW (2006) Brief introduction of exploitation and utilization of fuel plants resources. Journal of Wuhan Botanical Research, 24, 183-190. (in Chinese with English abstract)
[傅登祺, 黄宏文 (2006) 能源植物资源及其开发利用简况. 武汉植物学研究, 24, 183-190.]
[24] Fu LK (1991) China Plant Red Data Book, Vol.1: Rare and Endangered Plants. Science Press, Beijing. (in Chinese)
[傅立国 (1991) 中国植物红皮书: 稀有濒危植物(第一册). 科学出版社, 北京.]
[25] Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Annals of Botany, 100, 903-924.
[26] Gómez-Campo C (1985) Seed banks as an emergency conservation strategy. In: Plant Conservation in the Mediterranean Area (ed. Gomez-Campo C), pp. 237-247. Dr. W. Junk, Dordrecht.
[27] Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends in Plant Science, 15, 529-537.
[28] Guo HB, Ke WD, Li SM, Peng J (2004) Cluster analysis of Nelumbo accessions based on RAPD markers. Journal of Plant Genetic Resources, 5, 328-332. (in Chinese with English abstract)
[郭宏波, 柯卫东, 李双梅, 彭静 (2005) 不同类型莲资源的RAPD聚类分析. 植物遗传资源学报, 5, 328-332.]
[29] Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 156, 1-13.
[30] Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell ME, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics, 171, 1247-1256.
[31] Hanson JO, Rhodes JR, Rigino C, Fuller RA (2017) Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning, Proceedings of National Academy of Sciences, 114, 12755-12760.
[32] Heffner EL, Sorrells ME, Jannink J (2009) Genomic selection for crop improvement. Crop Science, 49, 1-12.
[33] Hendry AP (2013) Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity, 111, 456-466.
[34] Huang HW (2009) History of 100 years of domestication and improvement of kiwifruit and gene discovery from genetic introgressed populations in the wild. Chinese Bulletin of Botany, 44, 127-142. (in Chinese with English abstract)
[黄宏文 (2009) 猕猴桃驯化改良百年启示及天然居群遗传渐渗的基因发掘. 植物学报, 44, 127-142.]
[35] Ingvarsson PK (2002) A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution, 56, 2368-2373.
[36] Jacob P, Avni A, Bendahmane A (2017) Translational research: Exploring and creating genetic diversity. Trends in Plant Science, 23, 42-52.
[37] Jarvis DI, Myer L, Klemick H, Guarino L, Smale M, Brown AHD, Sadiki M, Sthapit B, Hodgkin T (2000) A Training Guide for In Situ Conservation On-Farm. Version 1. International Plant Genetic Resource Institute, Rome, Italy.
[38] Jena KK (2010) The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. Breeding Science, 60, 518-523.
[39] Jia JZ, Gao LF, Zhao GY, Zhou WB, Zhang WJ (2015) Crop genomics and crop science revolutions. Scientia Agricultura Sinica, 48, 3316-3332. (in Chinese with English abstract)
[贾继增, 高丽锋, 赵光耀, 周文斌, 张卫健 (2015) 作物基因组学与作物科学革命. 中国农业科学, 48, 3316-3332.]
[40] Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B (2017) CRISPR/Cas9 mediated genome engineering for improvement of horicultural crops. Frontiers in Plant Science, 8, 1635.
[41] Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends in Genetics, 23, 578-587.
[42] Li DZ, Yang XY, Wang YH, Cai J (2010) The germplasm bank of wild species, Southwest China. Bulletin of Chinese Academy of Sciences, 25, 565-569. (in Chinese)
[李德铢, 杨湘云, 王雨华, 蔡杰 (2010) 中国西南野生生物种质资源库. 中国科学院院刊, 25, 565-569.]
[43] Li L, Chen JK (2014) Influence of climate change on wild plants and the conservation strategies. Biodiversity Science, 22, 549-563. (in Chinese with English abstract)
[黎磊, 陈家宽 (2014) 气候变化对野生植物的影响及保护对策. 生物多样性, 22, 549-563.]
[44] Li Y, Li YH, Yang QW, Zhang JP, Zhang JM, Qiu LJ, Wang TY (2015) Genomics-based crop germplasm research: Advances and perspectives. Scientia Agricultura Sinica, 48, 3333-3353. (in Chinese with English abstract)
[黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇 (2015) 基于基因组学的作物种质资源研究: 现状与展望. 中国农业科学, 48, 3333-3353.]
[45] Liu ZS (2014) Progress in crop genetic breeding. V. Phenotypic selection and genotypic selection. Crop Research, 28, 780-784. (in Chinese with English abstract)
[刘忠松 (2014) 作物遗传育种研究进展. V. 表型选择与基因型选择. 作物研究, 28, 780-784.]
[46] Lu BR (2014) Genetic and evolutionary effects of hybridization-introgression and their implications for conservation of crop wild relative species. Chinese Science Bulletin, 59, 479-492. (in Chinese with English abstract)
[卢宝荣 (2014) 杂交-渐渗的遗传进化效应与栽培作物野生近缘种多样性保护. 科学通报, 59, 479-492.]
[47] Ma KP (2012) Studies and conservation of crop wild relatives should be promoted. Biodiversity Science, 20, 641-642. (in Chinese)
[马克平 (2012) 作物野生近缘种的研究与保护需要重视. 生物多样性, 20, 641-642.]
[48] Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodiversity and Conservation, 15, 2673-2685.
[49] Maxted N, Kell S, Toledo Á, Dulloo E, Heywood V, Hodgkin T, Hunter D, Guarino L, Jarvis A, Ford-Lloyd B (2010) A global approach to crop wild relative conservation: Securing the gene pool for food and agriculture. Kew Bulletin, 65, 561-576.
[50] Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: Status and trends. Biodiversity and Conservation, 13, 663-684.
[51] Meyer RS, Duval AE, Jensen HR (2012) Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops. New Phytologist, 196, 29-48.
[52] Michael TP, Vanburen R (2015) Progress, challenges and the future of crop genomes. Current Opinion in Plant Biology, 24, 71-81.
[53] Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147, 969-977.
[54] Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30, 360-364.
[55] Nielson R (2005) Molecular signatures of natural selection. Annual Reviews of Genetics, 39, 197-218.
[56] Ning X, Zhang WL, Huang JN, Yan YF, Yan CQ, Yang L (2014) Identification of new rice germplasms for resistance to bacterial blight from Oryza meyeriana Baili. Journal of Plant Genetic Resources, 15, 620-624. (in Chinese with English abstract)
[宁茜, 张维林, 黄佳男, 阎轶峰, 严成其, 杨玲 (2014) 来源于疣粒野生稻的白叶枯病新抗源的鉴定. 植物遗传资源学报, 15, 620-624.]
[57] Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep, Proceedings of the National Academy of Sciences, 101, 9885-9890.
[58] Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. BioScience, 47, 747-757.
[59] Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends in Plant Science, 13, 288-294.
[60] Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature, 457, 843-848.
[61] Qian J, He T, Song ZP, Lu BR (2005) Genetic evaluation of in situ conserved and reintroduced populations of wild rice (Oryza rufipogon: Poaceae) in China. Biochemical Genetics, 43, 561-575.
[62] Qin DD, Dong J, Xu FC, Xu Q, Ge ST, Du J, Li MF (2016) Innovation and utilization of crop germplasm resources during the era of molecular breeding. Barley and Cereal Sciences, 33, 1-4. (in Chinese with English abstract)
[秦丹丹, 董静, 许甫超, 徐晴, 葛双桃, 杜静, 李梅芳 (2016) 分子育种时代的作物种质资源创新与利用. 大麦与谷类科学, 33, 1-4.]
[63] Ramesh K, Matloob A, Aslam F, Florentine SK, Chauhan BS (2017) Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Frontiers in Plant Science, 8, 95.
[64] Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171, 470-480.
[65] Ronald PC (2014) Lab to farm: Applying research on plant genetics and genomics to crop improvement. PLoS Biology, 12, e1001878.
[66] Song ZP, Li B, Chen JK, Lu BR (2005) Genetic diversity and conservation of common wid rice (Oryza rufipogon) in China. Plant Species Biology, 20, 83-92.
[67] Soulé MD (1985) What is conservation biology? Bioscience, 35, 727-734.
[68] Subbaiyan GK, Waters DLE, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ (2012) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnology Journal, 10, 623-634.
[69] Tan XF (2006) Status and suggestion on development of Vernicia fordii. Nonwood Forest Research, 24(3), 62-64.
[谭晓风 (2006) 油桐的生产现状及其发展建议. 经济林研究, 24(3), 62-64.]
[70] van Slageren W (2003) The millennium seed bank: Building partnerships in arid regions for the conservation of wild species. Journal of Arid Environments, 54, 195-201.
[71] Vaughan DA (1994) The Wild Relatives of Rice: A Genetic Resources Handbook. International Rice Research Institute, Manila.
[72] Vavilov NI (translated by Dong YC) (1982) Origin and Geography of Cultivated Plants. China Agriculture Press, Beijing. (in Chinese)
[瓦维洛夫(著) 董玉琛(译) (1982) 主要栽培植物的世界起源中心. 中国农业出版社, 北京.]
[73] Wang BN, Huang Z, Shu LH, Ren X, Li XH, He GC (2001) Mapping of two new brown planthopper resistance genes from wild rice. Chinese Science Bulletin, 46, 1092-1095. (in Chinese with English abstract)
[王布哪, 黄臻, 舒理慧, 任翔, 李香花, 何光存 (2001) 两个来源于野生稻的抗褐飞虱新基因的分子标记定位. 科学通报, 46, 1092-1095.]
[74] Wang S, Xie Y (2004) China Species Red List, Vol.1: Red List. Higher Education Press, Beijing. (in Chinese)
[汪松, 谢焱 (2004) 中国物种红色名录, 第一卷: 红色名录. 高等教育出版社, 北京.]
[75] Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJB (2014) Back to the wilds: Tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. American Journal of Botany, 101, 1791-1800.
[76] Weiner J (2003) Ecology—The science of agriculture in the 21st century. Journal of Agricultural Science, 141, 371-377.
[77] Weiner J, Du YL, Zhang C, Qin XL, Li FM (2017) Evolutionary agroecology: Individual fitness and population yield in wheat (Triticum aestivum). Ecology, 98, 2261-2266.
[78] Willcox G (2005) The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: Multiple events, multiple centres. Vegetation History and Archaeobotany, 14, 534-541.
[79] Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene response-factor-like gene that confers submergence tolerance to rice. Nature, 442, 705-708.
[80] Yang M, Liu F, Han YN, Xu LM, Juntawong N, Liu YN (2013) Genetic diversity and structure in populations of Nelumbo from America, Thailand and China: Implications for conservation and breeding. Aquatic Botany, 107, 1-7.
[81] Yang QW, Qin WB, Zhang WX, Qiao WH, Yu SN, Guo Q (2013) In-situ conservation practices and future development of wild relatives of crops in China. Journal of Plant Genetic Resources, 14, 1-7. (in Chinese with English abstract)
[杨庆文, 秦文斌, 张万霞, 乔卫华, 于寿娜, 郭青 (2013) 中国农业野生植物原生境保护实践与未来研究方向. 植物遗传资源学报, 14, 1-7.]
[82] You XL (2009) Neolithic culture in the Yangtze River Basin. In: Chinese Agricultural History-Primitive Society (eds Du YL, Sun ZC), pp. 113-122. China Agriculture Press, Beijing. (in Chinese)
[游修龄 (2009) 长江流域新石器时代文化. 见: 中国农业通史——原始社会卷(杜言林, 孙政才主编), 113-122页. 中国农业出版社, 北京.]
[83] Yu YB, Wang QL, Kell S, Maxted N, Ford-Lloyd BV, Wei W, Kang DM, Ma KP (2013) Crop wild relatives and their conservation strategies in China. Biodiversity Science, 21, 750-757. (in Chinese with English abstract)
[于燕波, 王群亮, Kell S, Maxted N, Ford-Lloyd BV, 魏伟, 康定明, 马克平 (2013) 中国栽培植物野生近缘种及其保护对策. 生物多样性, 21, 750-757.]
[84] Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2017) Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 10, 5-24.
[85] Zhang DY, Sun GJ, Jiang XH (1999) Donald’s ideotype and growth redundancy: A game theoretical analysis. Field Crops Research, 61, 179-187.
[86] Zhang LL, Peng JH (2011) Values, development and utilization prospect of Vernicia fordii resources. Nonwood Forest Resaerch, 29, 130-136. (in Chinese with English abstract)
[张玲玲, 彭俊华 (2011) 油桐资源价值及其开发利用前景. 经济林研究, 29, 130-136.]
[87] Zhao Y (2014) The Mechanism Shaping Distribution Pattern of Population Variations in Oryza rufipogon Griff. PhD dissertation, Fudan University, Shanghai. (in Chinese with English abstract)
[赵耀 (2014) 普通野生稻种群变异的分布格局及其形成机制. 博士学位论文, 复旦大学, 上海.]
[88] Zhou XC, Xing YZ (2016) The application of genome editing in identification of plant gene function and crop breeding. Hereditas (Beijing), 38, 227-242. (in Chinese with English abstract)
[周想春, 邢永忠 (2016) 基因组编辑技术在植物基因功能鉴定及作物育种中的应用. 遗传, 38, 227-242.]
[1] 冯兆忠 李品 张国友 李征珍 平琴 彭金龙 刘硕. (2020) 二氧化碳浓度升高对陆地生态系统的影响:问题与展望. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[2] 白娥 薛冰. (2020) 土地利用与土地覆盖变化对生态系统的影响综述. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[3] 李媛媛,刘超男,王嵘,罗水兴,农寿千,王静雯,陈小勇. (2020) 分子标记在濒危物种保护中的应用. 生物多样性, 28(3): 367-375.
[4] 张璐,何新华. (2020) C3和C4植物的氮素利用机制. 植物学报, 55(2): 228-239.
[5] 韩美玲, 谭茹姣, 晁代印. (2020) “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种. 植物学报, 55(1): 5-8.
[6] 曾岩,周桔,董麒,平晓鸽,蒋志刚. (2019) 控制野生物国际贸易, 保护地球生物多样性——CITES公约第十八次缔约方大会评述. 生物多样性, 27(9): 1041-1045.
[7] 杨锐,彭钦一,曹越,钟乐,侯姝彧,赵智聪,黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[8] 陈婵,张仕吉,李雷达,刘兆丹,陈金磊,辜翔,王留芳,方晰. (2019) 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征. 植物生态学报, 43(8): 658-671.
[9] 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. (2019) 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素. 植物生态学报, 43(7): 566-575.
[10] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[11] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. (2019) 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析. 植物生态学报, 43(6): 490-500.
[12] 吕中诚, 康文星, 黄志宏, 赵仲辉, 邓湘雯. (2019) 不同林龄杉木组织迁移养分的再利用. 植物生态学报, 43(5): 458-470.
[13] 王孝林,王二涛. (2019) 根际微生物促进水稻氮利用的机制. 植物学报, 54(3): 285-287.
[14] 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. (2019) 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性. 植物生态学报, 43(2): 139-151.
[15] 王兆国, 王传宽. (2019) 碳供给与碳利用对树木生长的限制机制. 植物生态学报, 43(12): 1036-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed