生物多样性 ›› 2018, Vol. 26 ›› Issue (2): 138-148.doi: 10.17520/biods.2017188

• 研究报告 • 上一篇    下一篇

基于MaxEnt模型的三江源区草地濒危保护植物热点区识别

武晓宇1, 2, 董世魁1, *(), 刘世梁1, 刘全儒3, 韩雨晖1, 张晓蕾1, 苏旭坤1, 赵海迪1, 冯憬1   

  1. 1 .北京师范大学环境学院, 北京 100875
    2 .北京巧女公益基金会, 北京 100015
    3 .北京师范大学生命科学学院, 北京 100875
  • 收稿日期:2017-06-26 接受日期:2017-12-01 出版日期:2018-04-02
  • 通讯作者: 董世魁 E-mail:dsk03037@bnu.edu.cn
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家重点研发计划专项课题(2016YFC0501906)和水环境模拟国家重点实验室重点项目

Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model

Xiaoyu Wu1, 2, Shikui Dong1, *(), Shiliang Liu1, Quanru Liu3, Yuhui Han1, Xiaolei Zhang1, Xukun Su1, Haidi Zhao1, Jing Feng1   

  1. 1 School of Environment, Beijing Normal University, Beijing 100875
    2 Beijing Qiaonyu Foundation, Beijing 100015
    3 College of Life Sciences, Beijing Normal University, Beijing 100875
  • Received:2017-06-26 Accepted:2017-12-01 Online:2018-04-02
  • Contact: Dong Shikui E-mail:dsk03037@bnu.edu.cn
  • About author:

    # Co-first authors

三江源地处全球生物多样性热点之一的青藏高原腹地, 是高寒草地生物多样性的集中分布区。但过去几十年中, 人为干扰和气候变化等因素导致高寒草地严重退化, 草地生物多样性受到极大威胁。本研究利用最大熵(MaxEnt)模型模拟了三江源区40种濒危保护植物当前及未来气候变化情景下的热点分布区。根据最大熵模型估计结果统计, 目前三江源濒危保护植物的热点区面积89,438 km2, 主要分布于三江源东部和南部, 其中濒危物种大于30种的最热点地区面积485 km2, 主要分布于囊谦县、玉树市、班玛县、久治县和河南县。未来在增温增湿的气候变化情景下, 最大熵模型模拟的三江源区草地濒危保护植物的热点区将向西北部扩大, 有利于植物多样性的维持和提升。然而, 模型模拟还发现, 在囊谦县、玉树市、班玛县、久治县和河南县等县市, 均有濒危保护植物大于25种以上的热点区域未被重点保护区覆盖, 总面积为4,423 km2。这一区域被划分为可开展畜牧生产活动的一般保护区, 受到人为干扰的可能性较大, 应予以更多关注与保护。

关键词: 生物多样性, 气候变化, 保护优先区, 最大熵模型

Located in southern Qinghai Province in China, Sanjiangyuan is the source area for the Yangtze River, Yellow River, and Lancang River, and a worldwide biodiversity hotspot. Sanjiangyuan was degraded through human disturbance and climate change, which has led to a dramatic loss of the biodiversity of rangeland resources. We conducted field surveys based on species coordinates during 2014 and 2015. We used the MaxEnt model to predict distribution of 40 endangered plant species in Sanjiangyuan using the species coordinate data and bioclimatic data collected from the WorldClim database. From this, we obtained hotspots of endangered plant species in Sanjiangyuan under current and future climatic conditions. Results showed that hotspot areas of endangered plant species in Sanjiangyuan estimated using the MaxEnt model were approximately 89,438 km2, and mainly located in the east and south of the reserve. Among these hotspots, those that included more than 30 endangered plant species totalled 485 km2, and were mainly found in Nangqian County, Yushu City, Banma County, Jiuzhi County, and Henan County. The climate will become warmer and wetter in Sanjiangyuan in the future, which would benefit biodiversity and expand hotspot areas to the northwest. However, problems associated with planning the reserve remain. Nearly 4,423 km2 of hotspot areas have not been protected in the key reserve, including in Nangqian County, Yushu City, Banma County, Jiuzhi County, and Henan County. In these areas grazing is permitted, which might lead to human disturbances. We suggest policy makers focus more attention on these areas and increase conservation efforts.

Key words: biodiversity, climate change, prior conservation area, MaxEnt model

图1

三江源自然保护区濒危保护植物样点分布"

表1

19个生物气候环境因子及其描述"

变量 Variable 描述 Description
Bio1 年均温 Annual mean temperature
Bio2 平均温度日较差 Mean diurnal temperature range
Bio3 等温性 Isothermality
Bio4 温度季度变化 Temperature seasonality
Bio5 最热月最高温 Max temperature of warmest month
Bio6 最冷月最低温 Min temperature of coldest month
Bio7 年温度变化范围 Temperature annual range
Bio8 最湿季度均温 Mean temperature of wettest quarter
Bio9 最干季度均温 Mean temperature of driest quarter
Bio10 最暖季度均温 Mean temperature of warmest quarter
Bio11 最冷季度均温 Mean temperature of coldest quarter
Bio12 年平均降水量 Annual precipitation
Bio13 最湿月降水量 Precipitation of wettest month
Bio14 最干月降水量 Precipitation of driest month
Bio15 降水量变异系数 Precipitation seasonality
(coefficient of variation)
Bio16 最湿季度降水量 Precipitation of wettest quarter
Bio17 最干季度降水量 Precipitation of driest quarter
Bio18 最暖季度降水量 Precipitation of warmest quarter
Bio19 最冷季度降水量 Precipitation of coldest quarter

表2

MaxEnt模型模拟三江源自然保护区濒危植物当前分布的模型预测准确性(AUC值)"

物种 Species AUC值 AUC value 物种 Species AUC值 AUC value
褐紫乌头 Aconitum brunneum 0.969 广布红门兰 Orchis chusua 0.910
八宿雪灵芝 Arenaria baxoiensis 0.969 宽叶红门兰 Orchis latifolia 0.919
三刺草 Aristida triseta 0.978 河北红门兰 Orchis tschiliensis 0.995
华雀麦 Bromus sinensis 0.962 青海固沙草 Orinus kokonorica 0.982
凹舌兰 Coeloglossum viride 0.948 川赤芍 Paeonia veitchii 1.000
毛杓兰 Cypripedium franchetii 0.997 羽叶点地梅 Pomatosace filicula 0.833
黑紫披碱草 Elymus atratus 0.867 小丛红景天 Rhodiola dumulosa 0.992
短芒披碱草 Elymus breviaristatus 0.884 喜马红景天 Rhodiola himalensis 0.876
矮麻黄 Ephedra minuta 0.930 圆丛红景天 Rhodiola juparensis 0.830
单子麻黄 Ephedra monosperma 0.839 狭叶红景天 Rhodiola kirilowii 0.911
中华羊茅 Festuca sinensis 0.915 四裂红景天 Rhodiola quadrifida 0.844
南山龙胆 Gentiana grumii 0.880 粗茎红景天 Rhodiola wallichiana 0.844
西南手参 Gymnadenia orchidis 0.942 短颖鹅观草 Roegneria breviglumis 0.906
落地金钱 Habenaria aitchisonii 0.981 短柄鹅观草 Roegneria brevipes 0.953
裂瓣角盘兰 Herminium alaschanicum 0.984 青海鹅观草 Roegneria kokonorica 0.980
角盘兰 Herminium monorchis 0.981 云状雪兔子 Saussurea aster 0.818
沼兰 Malaxis monophyllos 0.983 苞叶雪莲 Saussurea obvallata 0.927
红花绿绒蒿 Meconopsis punicea 0.921 红叶雪兔子 Saussurea paxiana 0.855
颈果草 Metaeritrichium microuloides 0.873 羌塘雪兔子 Saussurea wellbyi 0.916
羌活 Notopterygium incisum 0.940 华福花 Sinadoxa corydalifolia 0.993

图2

基于MaxEnt模型的三江源自然保护区草地濒危植物当前分布概率图。物种存在概率为0-1, 暖色为物种存在概率高的区域, 最高为红色, 依次下降为橙色、黄色、绿色、青色、淡青色, 深蓝色为最低。"

图3

三江源自然保护区草地濒危保护植物多样性热点分布图"

图4

气候变化RCP2.6情景下2070年三江源自然保护区草地濒危保护植物多样性热点分布图"

图5

三江源自然保护区草地濒危保护植物热点区保护情况"

[1] Bai WQ, Zhang YL, Xie GD, Shen ZX (2012) Analysis of formation causes of grassland degradation in Maduo County in the source region of Yellow River. Chinese Journal of Applied Ecology, 13, 823-826. (in Chinese with English abstract)
[摆万奇, 张镱锂, 谢高地, 沈振西 (2012) 黄河源区玛多县草地退化成因分析. 应用生态学报, 13, 823-826.]
[2] Beaumont L, Pitman A, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Global Change Biology, 13, 1368-1385.
[3] Canton Y, Barrio GD, Sole-Benet A, Lazaro R (2004) Topog¬raphic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. Catena, 55, 341-365.
[4] Chi XL, Zhang ZJ, Xu XT, Zhang XB, Zhao ZP, Liu YN, Wang QG, Wang H, Li Y, Yang G, Guo LP, Tang ZY, Huang LQ (2017) Threatened medicinal plants in China: Distributions and conservation priorities. Biological Con¬servation, 210, 89-95.
[5] Costanza R, Groot RD, Farberk S, Grasso M, Hannon B, Lim¬burg KE, Naeem S, Paruelo JM, Raskin RG, Suttonkk P, Belt MVD (1997) The value of the world’s ecosystem ser¬vices and natural capital. Nature, 386, 253-260.
[6] Dalton R (2000) Biodiversity cash aimed at hotspots. Nature, 406, 818.
[7] Dong SK, Wen L, Zhu L, Li XY (2010) Implication of coupled natural and human systems in sustainable rangeland ecosystem management in HKH region. Frontiers of Earth Science in China, 4, 42-50.
[8] Goberville E, Beaugrand G, Hautekeete N, Piquot Y, Luczak C (2015) Uncertainties in the projection of species distribu¬tions related to general circulation models. Ecology and Evolution, 5, 1100-1116.
[9] Guo YL Wei HY, Lu CY, Zhang HL, Gu W (2014) Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change. Chinese Journal of Plant Ecology, 38, 249-261. (in Chinese with English abstract)
[郭彦龙, 卫海燕, 路春燕, 张海龙, 顾蔚 (2014) 气候变化下桃儿七潜在地理分布的预测. 植物生态学报, 38, 249-261.]
[10] Gould S, Beeton N, Harris R, Hutchinson M, Lechner A, Porfirio L, Mackey B (2014) A tool for simulating and communicating uncertainty when modelling species distributions under future climates. Ecology and Evolution, 4, 4798-4811.
[11] Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
[12] IPCC(2013) Climate change 2013: The physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM). Cambridge University Press, Cambridge and New York.
[13] Jiang C, Zhang LB (2015) Climate change and its impact on the eco-environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China. International Journal of Environmental Research and Public Health, 12, 12057-12081.
[14] Jiang ZG, Fan EY (2003) Exploring the endangered species criteria: Rethinking the IUCN Red List Criteria. Biodiversity Science, 11, 382-392. (in Chinese with English abstract)
[蒋志刚, 樊恩源 (2003) 关于物种濒危等级标准之探讨——对IUCN物种濒危等级的思考. 生物多样性, 11, 382-392.]
[15] John R, Dalling JW, Harms KE Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104, 864-869.
[16] Liana NJ, Richard FM, Hugh PP (2008) Optimal allocation of resources among threatened species: A project prioritization protocol. Conservation Biology, 23, 328-338.
[17] Liu JY, Xu XL, Shao QQ (2008) The spatial and temporal characteristics of grassland degradation in the Three-River Headwaters region in Qinghai Province. Acta Geographica Sinica, 63, 364-376. (in Chinese with English abstract)
[刘纪远, 徐新良, 邵全琴 (2008) 近30年来青海三江源地区草地退化的时空特征. 地理学报, 63, 364-376.]
[18] Liu MC, Li DQ, Wen YM, Luan XF (2006) Assessment of the priorities of species diversity conservation in Sanjiangyuan region by GIS. Journal of Arid Land Resources and Environment, 20(4), 51-54. (in Chinese with English abstract)
[刘敏超, 李迪强, 温琰茂, 栾晓峰 (2006) 基于GIS的三江源地区物种多样性保护优先性分析. 干旱区资源与环境, 20(4), 51-54.]
[19] Liu ZS, Gao H, Teng LW, Su Y, Wang XQ, Kong FY (2013) Habitat suitability assessment of blue sheep in Helan Mountain based on MaxEnt modeling. Acta Ecologica Sinica, 33, 7243-7249. (in Chinese with English abstract)
[刘振生, 高惠, 滕丽微, 苏云, 王晓勤, 孔芳毅 (2013) 基于MaxEnt模型的贺兰山岩羊生境适宜性评价. 生态学报, 33, 7243-7249.]
[20] Ma KP, Qian YQ (1998) Biodiversity conservation and its research progress. Chinese Journal of Applied and Environmental Biology, 4, 95-99. (in Chinese with English abstract)
[马克平, 钱迎倩 (1998) 生物多样性保护及其研究进展. 应用与环境生物学报, 4, 95-99.]
[21] Ma LZ, Pan JB (2012) Floristic study of rare and endangered plants and national key protected plants in Qinghai Province. Journal of Northwest Normal University, 48(1), 78-85. (in Chinese with English abstract)
[马莉贞, 潘建斌 (2012) 青海省珍稀濒危植物的区系研究. 西北师范大学学报, 48(1), 78-85.]
[22] Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z (2007) Global climate projections. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL).Cambridge University Press, Cambridge and New York.
[23] Murray-Smith C, Brummitt NA, Oliverira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas EJ (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biology, 23, 151-163.
[24] Myers N, Mittermeier RA, Mittermeier CG, Fonseca GABD, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-859.
[25] Orme CD, Davies RG, Burgess M, Rigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens IP (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016-1019.
[26] Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117.
[27] Phillips S, Anderson RI, Schapille RE (2006) Maximum entropy modeling of species geographic distribution. Ecological Modeling, 190, 231-259.
[28] Shao QQ, Liu JY, Huang L, Fan JW, Xu XL, Wang JB (2013) Integrated assessment on the effectiveness of ecological conservation in Sanjiangyuan National Nature Reserve. Geographical Research, 32, 1645-1656. (in Chinese with abstract)
[邵全琴, 刘纪远, 黄麟, 樊江文, 徐新良, 王军邦 (2013) 2005-2009年三江源自然保护区生态保护和建设工程生态成效综合评估. 地理研究, 32, 1645-1656.]
[29] State Environmental Protection Administration, Institute of Botany of the Chinese Academy of Sciences(1987) China Rare and Endangered Plant Species List, Vol I. Science Press, Beijing. (in Chinese)
[国家环境保护局, 中国科学院植物所(1987) 中国珍稀濒危保护植物名录(第一册). 科学出版社, 北京.]
[30] Sun HQ, Shi HX, Ma L (2013) Floristic study on Sanjiangyuan National Nature Reserve. Chinese Journal of Grassland, 35(3), 85-91. (in Chinese with English abstract)
[孙海群, 石红霄, 马雷 (2013) 三江源自然保护区种子植物区系分析. 中国草地学报, 35(3), 85-91.]
[31] Swets JA (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
[32] Wang S, Xie Y (2004) China Species Red List, Vol I: Red List. Higher Education Press, Beijing. (in Chinese)
[汪松, 解焱 (2004) 中国物种红色名录, 第一卷: 红色名录. 高等教育出版社, 北京.]
[33] Wilson KA, Mcbride MF, Bode MF Possingham HP (2006) Prioritizing global conservation efforts. Nature, 440, 337-340.
[34] Wu YH (2006) The Endemic Species of Seed Plants and Their Eco-geographic Distribution in Qinghai. Acta Botanica Yunnanica, 28, 327-336. (in Chinese with English abstract)
[吴玉虎 (2006) 青海种子植物特有种及其生态地理分布. 云南植物研究, 28, 327-336.]
[35] Wulff AS, Hollingsworth PM, Ahrends A, Jaffre T, Veillon JM, Huillier LL, Fogliani B (2013) Conservation priorities in a biodiversity hotspot: Analysis of narrow endemic plant species in New Caledonia. PLoS ONE, 8, e73371.
[36] Zhang L, Guo HD, Ji L, Lei LP, Wang CZ, Yan DM, Li B, Li J (2013) Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau. Journal of Applied Remote Sensing, 7, 1-17.
[37] Zhang L, Ouyang ZY, Xu WH (2015) Theory, work frame and hot issues of systematic conservation planning. Acta Ecologica Sinica, 35,1284-1295. (in Chinese with English abstract)
[张路, 欧阳志云, 徐卫华 (2015) 系统保护规划的理论、方法及关键问题. 生态学报, 35, 1284-1295.]
[1] 李熠 唐志尧 闫昱晶 王科 蔡磊 贺金生 古松 姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[2] 肖凌云, 程琛, 万华伟, 张德海, 王永财, 才旦, 侯鹏, 李娟, 杨欣, 吕植, 刘玉平. (2019) 三江源地区雪豹保护优先区规划. 生物多样性, 27(9): 943-950.
[3] 杨锐, 彭钦一, 曹越, 钟乐, 侯姝彧, 赵智聪, 黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[4] 李顺, 邹亮, 宫一男, 杨海涛, 王天明, 冯利民, 葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[5] 李永民, 吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[6] 袁海生, 魏玉莲, 周丽伟, 秦问敏, 崔宝凯, 何双辉. (2019) 东北4种林木干基腐朽病原真菌潜在分布范围预测及其生态位分析. 生物多样性, 27(8): 873-879.
[7] 杨云卉, 白可喻, Devra Jarvis, 龙春林. (2019) 西双版纳黄瓜农家品种及其传统知识. 生物多样性, 27(7): 743-748.
[8] 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. (2019) 南麂列岛东侧海域春秋季虾蟹类生物多样性. 生物多样性, 27(7): 787-795.
[9] 丁陆彬, 马楠, 王国萍, 何思源, 闵庆文. (2019) 生物多样性相关传统知识研究热点与前沿的可视化分析. 生物多样性, 27(7): 716-727.
[10] 孔嘉鑫, 张昭臣, 张健. (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27(7): 796-812.
[11] 曹宁, 薛达元. (2019) 论壮族传统文化对生物多样性的保护: 以广西靖西市为例. 生物多样性, 27(7): 728-734.
[12] 张渊媛. (2019) 生物多样性相关传统知识的国际保护及中国应对策略. 生物多样性, 27(7): 708-715.
[13] 邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才. (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27(6): 648-657.
[14] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[15] 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. (2019) 未来气候变化对不同国家茶适宜分布区的影响. 生物多样性, 27(6): 595-606.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed