生物多样性 ›› 2017, Vol. 25 ›› Issue (6): 608-614.doi: 10.17520/biods.2017039

• 研究报告 • 上一篇    下一篇

同域分布共享传粉者的鼠尾草属植物的生殖隔离

魏宇昆*(), 黄艳波, 李桂彬   

  1. 上海辰山植物园, 中国科学院上海辰山植物科学研究中心, 上海 201602
  • 收稿日期:2017-05-27 接受日期:2017-06-21 出版日期:2017-06-20
  • 通讯作者: 魏宇昆 E-mail:ykwei@sibs.ac.cn
  • 基金项目:
    上海市绿化和市容管理局资助项目(G162408, G172410)

Reproductive isolation in sympatric Salvia species sharing a sole pollinator

Yukun Wei*(), Yanbo Huang, Guibin Li   

  1. Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences; Shanghai Chenshan Botanical Garden, Shanghai 201602
  • Received:2017-05-27 Accepted:2017-06-21 Online:2017-06-20
  • Contact: Wei Yukun E-mail:ykwei@sibs.ac.cn

生殖隔离是生物多样性产生的重要原因之一, 不同物种间的生殖隔离形成阶段、方式和强度不完全相同。为了揭示生殖隔离在鼠尾草属(Salvia)物种多样性产生和维持过程中的作用和特点, 本文研究了浙江天目山同域分布的舌瓣鼠尾草(S. liguliloba)和南丹参(S. bowleyana)的开花、传粉和生殖隔离, 利用人工授粉和杂交实验检测它们的种间遗传相容程度。结果表明, 在花的形态结构、花及花序的生长、着生方式与数量特征上, 2种鼠尾草属植物均差异显著(P < 0.05)。2种鼠尾草属植物共享同一种有效传粉昆虫——三条熊蜂(Bombus trifasciatus), 但通过访花行为的显著差异和明显不同的花粉落置部位, 有效避免了异源花粉干扰。人工杂交授粉的结果表明2个物种间遗传相容性较高, 互为亲本的杂交结实率分别达到77.8 ± 10.7%和78.7 ± 11.2%。我们的研究表明, 同域分布、花期重叠且共享唯一传粉者的2种鼠尾草属植物, 以花部的传粉结构和传粉部位的差异, 产生了较高程度的传粉前生殖隔离, 避免了物种间的异源花粉干扰和自然杂交, 保障各自较高的繁殖成效, 以维持自然种群的多样性和遗传结构的稳定。

关键词: 机械隔离, 遗传相容性, 物种多样性, 自然杂交, 三条熊蜂

Reproductive isolation (RI) is one of the key factors for speciation and diversity maintenance, however, there are differences in formation stage, means, and strength of RI for different species. To assess the effects and the significance of reproductive isolation in Salvia species, we compared flowering, pollination, and reproduction characteristics of Salvia liguliloba and S. bowleyana, which grow sympatrically and have overlapping flowering periods in the Tianmu Mountain, Zhejiang. Furthermore, artificial hybridization between the two species were conducted to estimate and understand their genetic compatibility and reproductive isolation. Results indicated that the two Salvia species considerably differed in their flower morphological structures, inflorescence organization, and the number of flowers produced per inflorescence. Bombus trifasciatus is the sole pollinator for these two species during the overlapping flowering period. However, different visitation behavior and floral structure (P < 0.05) leads to obviously different pollination patterns between the two species. Pollen is deposited on distinctly separate areas of the pollinator’s body in a manner precluding contact with any heterospecific Salvia stigmata. Under natural condition, the two species are equally successful in reproduction (natural seed set > 87%). Artificial pollination and hybridization experiments between these two species showed that they have a higher genetic compatibility. The cross seed sets are 77.8 ± 10.7% and 78.7 ± 11.2% when the two species are reciprocally cross parents. Our research suggests that for the two Salvia species lacking genetic incompatibility systems and relying on pollinators for outcrossing, there are differences in floral structures and pollen placement sites. The mechanical isolation (a form of pre-pollination RI) prevents heterospecific pollen interference and natural hybridization of the two different species that grow sympatrically and have overlapping flowering periods, and also maintains species diversity and the constancy of species heredity.

Key words: mechanical isolation, genetic compatibility, species diversity, natural hybridization, Bombus trifasciatus

图1

舌瓣鼠尾草和南丹参的花序、花结构及昆虫传粉特征(图中标尺均为2 mm)。(a)舌瓣鼠尾草花序; (b)舌瓣鼠尾草花冠纵切(箭头所示为雄蕊花药); (c)舌瓣鼠尾草花正面观; (d)三条熊蜂访问舌瓣鼠尾草及其传粉过程(箭头所示为传粉部位); (e)南丹参花序; (f)南丹参花冠纵切(箭头所示为雄蕊花药); (g)南丹参花正面观; (h)三条熊蜂访问南丹参及其传粉过程(箭头所示为传粉部位)。"

表1

舌瓣鼠尾草与南丹参的花部结构比较(平均值 ± 标准差)"

花冠长
Corolla length
花冠宽
Corolla width
花冠高
Corolla height
冠筒长
Tube length
冠口高
Entrance height
冠筒口高
Tube entrance height
冠筒口宽
Tube entrance width
花丝长
Filament length
药隔长
Connective
length
雌蕊长
Pistil length
舌瓣鼠尾草
S. liguliloba
23.7 ± 0.74a 5.31 ± 0.34a 7.30 ± 0.67b 19.5 ± 0.8a 4.87 ± 0.61b 4.87 ± 0.61a 4.41 ± 0.52a 2.39 ± 0.14b 5.19 ± 0.33b 23.7 ± 0.43b
南丹参
S. bowleyana
22.8 ± 1.10b 4.47 ± 0.26b 16.6 ± 0.94a 12.4 ± 0.76b 11.2 ± 0.80a 4.47 ± 0.28a 3.21 ± 0.23b 4.30 ± 0.26a 14.3 ± 0.68a 26.1 ± 1.85a
P 0.0407 0.000 0.000 0.000 0.000 0.0585 0.000 0.000 0.000 0.0011

表2

舌瓣鼠尾草和南丹参花及花序数量特征(平均值 ± 标准差)"

单株花序总数
No. of infloresce-
nce in individual
plant
假圆锥花序
分枝数
No. of branch
in a false panicle
假总状花序的
轮伞花序数
No. of verticillaster
in a false raceme
轮伞花序小
花总数
No. of flower in
a verticillaster
轮伞花序同时
开放小花数
No. of flowering
in a verticillaster
单株总花数
Total no. of
flower in
individual plant
单株总开花数
Total no. of
flowering in
individual plant
舌瓣鼠尾草
S. liguliloba
2.0±2.1a (n = 35) 2.0±1.9b (n = 39) 9.3±2.4a (n = 83) 5.6±1.1b (n = 93) 1.4±1.7b (n = 234) 262±299b (n = 26) 21±30a (n = 36)
南丹参
S. bowleyana
2.2±0.45a (n = 5) 5.8±3.0a (n = 11) 9.5±1.9a (n = 40) 9.8±1.9a (n = 160) 1.8±1.0a (n = 160) 891±472a (n = 5) 48±56a (n = 16)
P 0.681 0.0020 0.7166 0.000 0.0053 0.0005 0.089

表3

三条熊蜂对2种鼠尾草的访花行为比较(平均值 ± 标准差)"

相对频次
Relative frequency
单花访问时间
Visit time per flower (s)
活跃度
Activity rate
访花频率
Visitation rate
舌瓣鼠尾草 S. liguliloba 0.14 ± 0.017 b (n = 3) 2.01 ± 0.85 a (n = 30) 9.71 ± 3.15 b (n = 7) 1.36 ± 0.17 b (n = 3)
南丹参 S. bowleyana 0.86 ± 0.017 a (n = 3) 1.80 ± 0.63 a (n = 30) 16.2 ± 3.4 a (n = 52) 13.9 ± 0.28 a (n = 3)
P 0.000 0.2758 0.000 0.000

图2

2种鼠尾草的种内异交、自交和种间杂交结实率比较(平均值 ± 标准差)。(A)舌瓣鼠尾草异交、自交以及与南丹参杂交的结实率多重比较结果; (B)南丹参异交、自交以及与舌瓣鼠尾草杂交的结实率多重比较结果。统计分析采用t-检验, 不同字母代表差异显著(P < 0.05)。"

[1] Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D (2015) The origins of reproductive isolation in plants. New Phytologist, 207, 968-984.
[2] Claßen-Bockhoff R, Speck T, Tweraser E, Wester P, Thimm S, Reith M (2004) The staminal lever mechanism in Salvia L. (Lamiaceae): a key innovation for adaptive radiation? Organisms Diversity & Evolution, 4, 189-205.
[3] Claßen-Bockhoff R, Wester P, Tweraser E (2003) The staminal lever mechanism in Salvia L. (Lamiaceae): a review. Plant Biology, 5, 33-41.
[4] Epling C (1947) Natural hybridization of Salvia apiana and S. mellifera. Evolution, 1, 69-78.
[5] Hopkins R (2013) Reinforcement in plants. New Phytologist, 197, 1095-1103.
[6] Huang S, Shi X (2013) Floral isolation in Pedicularis: how do congeners with shared pollinators minimize reproductive interference? New Phytologist, 199, 858-865.
[7] Huang YB, Wei YK, Ge BJ, Wang Q (2014) Research progress in pollination biology of genus Salvia (Lamiaceae) and their pollination mechanisms in East Asia (China). Acta Ecologica Sinica, 34, 2282-2289. (in Chinese with English abstract)
[黄艳波, 魏宇昆, 葛斌杰, 王琦 (2014) 鼠尾草属东亚分支的传粉模式. 生态学报, 34, 2282-2289.]
[8] Huang YB, Wei YK, Wang Q, Xiao YE, Ye XY (2015) Floral morphology and pollination mechanism of Salvia liguliloba, a narrow endemic species with degraded lever-like stamens. Chinese Journal of Plant Ecology, 39, 753-761. (in Chinese with English abstract)
[黄艳波, 魏宇昆, 王琦, 肖月娥, 叶喜阳 (2015) 舌瓣鼠尾草退化杠杆雄蕊的相关花部特征及传粉机制. 植物生态学报, 39, 753-761.]
[9] Huang Z, Liu H, Huang S (2015) Interspecific pollen transfer between two coflowering species was minimized by bumblebee fidelity and differential pollen placement on the bumblebee body. Journal of Plant Ecology, 8, 109-115.
[10] Kipling R, Warren J (2013) How generalists coexist: the role of floral phenotype and spatial factors in the pollination systems of two Ranunculus species. Journal of Plant Ecology, 7, 480-489.
[11] Ma YP, Xie WJ, Sun WB, Marczewski T (2016a) Strong reproductive isolation despite occasional hybridization between a widely distributed and a narrow endemic Rhododendron species. Scientific Reports, 6, 19146.
[12] Ma YP, Zhou RC, Milne R (2016b) Pollinator-mediated isolation may be an underestimated factor in promoting homoploid hybrid speciation. Frontiers in Plant Science, 7, 1183.
[13] Melo MC, Grealy A, Brittain B, Walter GM, Ortiz-Barrientos D (2014) Strong extrinsic reproductive isolation between parapatric populations of an Australian groundsel. New Phytologist, 203, 323-334.
[14] Meyn O, Emboden WA (1987) Parameters and consequences of introgression in Salvia apiana × S. mellifera (Lamiaceae). Systematic Botany, 12, 390-399.
[15] Pauw A (2013) Can pollination niches facilitate plant coexistence? Trends in Ecology & Evolution, 28, 30-37.
[16] Pedron M, Buzatto CR, Singer RB, Batista JAN, Moser A (2012) Pollination biology of four sympatric species of Habenaria (Orchidaceae: Orchidinae) from southern Brazil. Botanical Journal of the Linnean Society, 170, 141-156.
[17] Ruchisansakun S, Tangtorwongsakul P, Cozien RJ, Smets EF, Niet TVD (2016) Floral specialization for different pollinators and divergent use of the same pollinator among co-occuring Impatiens species (Balsaminaceae) from Southeast Asia. Botanical Journal of the Linnean Society, 181, 651-666.
[18] Wei YK, Wang Q, Huang YB (2015) Species diversity and distribution of Salvia (Lamiaceae). Biodiversity Science, 23, 3-10. (in Chinese with English abstract)
[魏宇昆, 王琦, 黄艳波 (2015) 唇形科鼠尾草属的物种多样性与分布. 生物多样性, 23, 3-10.]
[19] Wester P, Claßen-Bockhoff R (2007) Floral diversity and pollen transfer mechanisms in bird-pollinated Salvia species. Annals of Botany, 100, 401-421.
[20] Widmer A, Lexer C, Cozzolino S (2009) Evolution of reproductive isolation in plants. Heredity, 102, 31-38.
[21] Yang FC (1992) Comprehensive Investigation Report on Natural Resource of Tianmu Mountain Nature Reserve. Zhejiang Science and Technology Press, Hangzhou. (in Chinese)
[杨逢春 (1992) 天目山自然保护区自然资源综合考察报告. 浙江科学技术出版社, 杭州.]
[1] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响[J]. 生物多样性, 2019, 27(6): 607-618.
[2] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. 海南岛翼手目物种多样性现状与分布预测[J]. 生物多样性, 2019, 27(4): 400-408.
[3] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局[J]. 生物多样性, 2019, 27(2): 177-185.
[4] 陈作艺, 许晓静, 朱素英, 翟梦怡, 李扬. 中国沿海洛氏角毛藻复合群的多样性组成及地理分布[J]. 生物多样性, 2019, 27(2): 149-158.
[5] 邹东廷, 王庆刚, 罗奥, 王志恒. 中国蔷薇科植物多样性格局及其资源植物保护现状[J]. 植物生态学报, 2019, 43(1): 1-15.
[6] 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系[J]. 生物多样性, 2018, 26(9): 941-950.
[7] 孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建[J]. 生物多样性, 2018, 26(7): 655-666.
[8] 张宇, 冯刚. 内蒙古昆虫物种多样性分布格局及其机制[J]. 生物多样性, 2018, 26(7): 701-706.
[9] 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局[J]. 生物多样性, 2018, 26(6): 578-589.
[10] 田成, 李俊清, 杨旭煜, 余鳞, 袁丹, 黎运喜. 利用红外相机技术对四川王朗国家级自然保护区野生动物物种多样性的初步调查[J]. 生物多样性, 2018, 26(6): 620-626.
[11] 杨倩, 王娓, 曾辉. 氮添加对内蒙古退化草地植物群落多样性和生物量的影响[J]. 植物生态学报, 2018, 42(4): 430-441.
[12] 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429.
[13] 商天其, 叶诺楠, 高海卿, 高洪娣, 伊力塔. 基于多元回归树的公益林群落结构解析[J]. 植物学报, 2018, 53(2): 238-249.
[14] 刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252-260.
[15] 胡一鸣, 梁健超, 金崑, 丁志锋, 周智鑫, 胡慧建, 蒋志刚. 喜马拉雅山哺乳动物物种多样性垂直分布格局[J]. 生物多样性, 2018, 26(2): 191-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed