生物多样性 ›› 2017, Vol. 25 ›› Issue (6): 600-607. DOI: 10.17520/biods.2017028
所属专题: 物种形成与系统进化
收稿日期:
2017-02-01
接受日期:
2017-04-12
出版日期:
2017-06-20
发布日期:
2017-07-10
通讯作者:
李霖锋
基金资助:
Received:
2017-02-01
Accepted:
2017-04-12
Online:
2017-06-20
Published:
2017-07-10
Contact:
Li Linfeng
摘要:
杂交(hybridization)与多倍化(polyploidization)普遍存在于现存植物类群中, 并对物种形成(speciation)与多样化(diversification)起到了重要作用。在以往的研究中, 已有众多的学者分别从生态学、生理学与遗传学等角度对植物杂交与多倍化进行了广泛的探讨。本综述侧重于从进化生物学的角度探讨表观遗传变异在植物杂交与多倍化过程中所起到的作用, 并基于在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)和芸薹属物种(Brassica spp.)中已有的实例探讨表观遗传变异与表型革新(phenotypic novelty)的相关性。通过对已有研究的总结与展望, 我们建议将进化表观遗传学研究扩展到自然群体和多个近缘物种间比较的水平, 并同时需要改进从全基因组水平鉴定关键表观遗传变异的检测方法。
李霖锋, 刘宝 (2017) 表观遗传变异在植物杂交与多倍化过程中的作用. 生物多样性, 25, 600-607. DOI: 10.17520/biods.2017028.
Linfeng Li, Bao Liu (2017) The roles of epigenetic variation in plant hybridization and polyploidization. Biodiversity Science, 25, 600-607. DOI: 10.17520/biods.2017028.
[1] | Abbott R, Albach D, Ansell S, Arntzen J, Baird S, Bierne N, Boughman J, Brelsford A, Buerkle C, Buggs R (2013) Hybridization and speciation. Journal of Evolutionary Biology, 26, 229-246. |
[2] | Ammiraju JS, Luo M, Goicoechea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros NB, Blackmon B (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Research, 16, 140-147. |
[3] | Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annual Review of Ecology and Systematics, 58, 113-148. |
[4] | Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature, 480, 245-249. |
[5] | Bomblies K, Madlung A (2014) Polyploidy in the Arabidopsis genus. Chromosome Research, 22, 117-134. |
[6] | Chao DY, Dilkes B, Luo H, Douglas A, Yakubova E, Lahner B, Salt DE (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science, 341, 658-659. |
[7] | Chodavarapu RK, Feng S, Ding B, Simon SA, Lopez D, Jia Y, Wang GL, Meyers BC, Jacobsen SE, Pellegrini M (2012) Transcriptome and methylome interactions in rice hybrids. Proceedings of the National Academy of Sciences, USA, 109, 12040-12045. |
[8] | Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401, 157-161. |
[9] | del Pozo JC, Ramirez-Parra E (2015) Whole genome duplications in plants: an overview from Arabidopsis. Journal of Experimental Botany, 66, 6991-7003. |
[10] | Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annual Review of Genetics, 42, 443-461. |
[11] | Feinberg AP, Irizarry RA (2010) Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proceedings of the National Academy of Sciences, USA, 107, 1757-1764. |
[12] | Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harbor Perspectives in Biology, 6, a018200. |
[13] | Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proceedings of the National Academy of Sciences, USA, 96, 14400-14405. |
[14] | Ge XH, Ding L, Li ZY (2013) Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. Plant Cell Reports, 32, 1661-1673. |
[15] | Ghani MA, Li J, Rao L, Raza MA, Cao L, Yu N, Zou X, Chen L (2014) The role of small RNAs in wide hybridisation and allopolyploidisation between Brassica rapa and Brassica nigra. BMC Plant Biology, 14, 272. |
[16] | Gill BS, Friebe B (2002) Cytogenetics, phylogeny and evolution of cultivated wheats. In: FAO Plant Production and Protection Series No. 30: Bread Wheat: Improvement and Production (eds Curtis BC, Rajaram S, Macpherson HG), pp. 71-88. Food and Agriculture Organization of the United Nations, Rome. |
[17] | Goldstein DB (2009) Common genetic variation and human traits. New England Journal of Medicine, 360, 1696. |
[18] | Greaves IK, Groszmann M, Ying H, Taylor JM, Peacock WJ, Dennis ES (2012) Trans chromosomal methylation in Arabidopsis hybrids. Proceedings of the National Academy of Sciences, USA, 109, 3570-3575. |
[19] | Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES (2011) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proceedings of the National Academy of Sciences, USA, 108, 2617-2622. |
[20] | He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. The Plant Cell, 22, 17-33. |
[21] | Holliday R (2006) Epigenetics: a historical overview. Epigenetics, 1, 76-80. |
[22] | Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Annals of the New York Academy of Sciences, 981, 82-96. |
[23] | Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84, 131-176. |
[24] | Lauss K, Wardenaar R, van Hulten MH, Guryev V, Keurentjes JJ, Stam M, Johannes F (2016) Epigenetic divergence is sufficient to trigger heterosis in Arabidopsis thaliana. bioRxiv. doi:. |
[25] | Li LF, Liu B, Olsen KM, Wendel JF (2015a) Multiple rounds of ancient and recent hybridizations have occurred within the Aegilops-Triticum complex. New Phytologist, 208, 11-12. |
[26] | Li LF, Liu B, Olsen KM, Wendel JF (2015b) A re-evaluation of the homoploid hybrid origin of Aegilops tauschii, the donor of the wheat D‐subgenome. New Phytologist, 208, 4-8. |
[27] | Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE, 5, e10326. |
[28] | Mallet J (2007) Hybrid speciation. Nature, 446, 279-283. |
[29] | Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, Wulff BB, Steuernagel B, Mayer KF, Olsen OA (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345, 1250092. |
[30] | Matsushita SC, Tyagi AP, Thornton GM, Pires JC, Madlung A (2012) Allopolyploidization lays the foundation for evolution of distinct populations: evidence from analysis of synthetic Arabidopsis allohexaploids. Genetics, 191, 535-547. |
[31] | Moghaddam AMB, Roudier F, Seifert M, Bérard C, Magniette MLM, Ashtiyani RK, Houben A, Colot V, Mette MF (2011) Additive inheritance of histone modifications in Arabidopsis thaliana intra-specific hybrids. The Plant Journal, 67, 691-700. |
[32] | Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. The Journal of Japanese Botany 7, 389-452. |
[33] | Ng DW, Zhang C, Miller M, Shen Z, Briggs S, Chen Z (2012) Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors. Heredity, 108, 419-430. |
[34] | Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 457, 327-331. |
[35] | Otto SP (2007) The evolutionary consequences of polyploidy. Cell, 131, 452-462. |
[36] | Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytologist, 186, 5-17. |
[37] | Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Molecular Biology and Evolution, 27, 2465-2473. |
[38] | Rakyan VK, Beck S (2006) Epigenetic variation and inheritance in mammals. Current Opinion in Genetics & Development, 16, 573-577. |
[39] | Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences, USA, 108, 7096-7101. |
[40] | Ran LP, Fang TT, Hao R, Jiang JJ, Fang YJ, Wang YP (2016) Analysis of cytosine methylation in early generations of resynthesized Brassica napus. Journal of Integrative Agriculture, 15, 1228-1238. |
[41] | Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nature Reviews Genetics, 7, 395-401. |
[42] | Rieseberg LH, Willis JH (2007) Plant speciation. Science, 317, 910-914. |
[43] | Riggs AD, Porter TN (1996) Overview of epigenetic mechanisms. Cold Spring Harbor Monograph Archive, 32, 29-45. |
[44] | Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science, 334, 369-373. |
[45] | Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, Smith LM, Cao J, Fitz J, Warthmann N (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proceedings of the National Academy of Sciences, USA, 108, 10249-10254. |
[46] | Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, Sorenson AL, De S, Kishony R, Michor F, Dowell R (2015) Polyploidy can drive rapid adaptation in yeast. Nature, 519, 349-352. |
[47] | Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. The Plant Cell, 24, 875-892. |
[48] | Shi X, Zhang C, Ko DK, Chen ZJ (2015) Genome-wide dosage-dependent and -independent regulation contributes to gene expression and evolutionary novelty in plant polyploids. Molecular Biology and Evolution, 32, 2351-2366. |
[49] | Solhaug EM, Ihinger J, Jost M, Gamboa V, Marchant B, Bradford D, Doerge RW, Tyagi A, Replogle A, Madlung A (2016) Environmental regulation of heterosis in the allopolyploid Arabidopsis suecica. Plant Physiology, 170, 2251-2263. |
[50] | Soltis DE, Buggs RJ, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon, 59, 1387-1403. |
[51] | Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561-588. |
[52] | Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Current Opinion in Plant Biology, 24, 101-109. |
[53] | Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature, 150, 563-565. |
[54] | Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge R, Comai L (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics, 172, 507-517. |
[55] | Wang X, Zhang H, Li Y, Zhang Z, Li L, Liu B (2016) Transcriptome asymmetry in synthetic and natural allotetraploid wheats, revealed by RNA‐sequencing. New Phytologist, 209, 1264-1277. |
[56] | Weiss KM (2004) The smallest grain in the balance. Evolutionary Anthropology: Issues, News, and Reviews, 13, 122-126. |
[57] | Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biology, 17, 1. |
[58] | Wu W, Yi MR, Wang X, Ma L, Jiang L, Li X, Xiao H, Sun M, Li L, Liu B (2013) Genetic and epigenetic differentiation between natural Betula ermanii (Betulaceae) populations inhabiting contrasting habitats. Tree Genetics & Genomes, 9, 1321-1328. |
[59] | Xu C, Bai Y, Lin X, Zhao N, Hu L, Gong Z, Wendel JF, Liu B (2014) Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Molecular Biology and Evolution, 31, 1066-1076. |
[60] | Xu Y, Zhong L, Wu X, Fang X, Wang J (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta, 229, 471-483. |
[61] | Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 328, 916-919. |
[62] | Zhang HK, Gou XW, Zhang A, Wang XT, Zhao N, Dong YZ, Li LF, Liu B (2016) Transcriptome shock invokes disruption of parental expression-conserved genes in tetraploid wheat. Scientific Reports, 6, 26363. |
[63] | Zhang J, Liu Y, Xia EH, Yao QY, Liu XD, Gao LZ (2015) Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proceedings of the National Academy of Sciences, USA, 112, E7022-E7029. |
[64] | Zohary D, Feldman M (1962) Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution, 16, 44-61. |
[1] | 蒲佳佳, 杨平俊, 戴洋, 陶可欣, 高磊, 杜予州, 曹俊, 俞晓平, 杨倩倩. 长江下游外来生物福寿螺的种类及其种群遗传结构[J]. 生物多样性, 2023, 31(3): 22346-. |
[2] | 金恒镳. 从天择到人择: 在华莱士的肩膀上看地球的未来[J]. 生物多样性, 2023, 31(12): 23267-. |
[3] | 肖钰, 王茜, 何梓晗, 李玲玲, 胡新生. 基于生物学物种定义探讨物种形成理论与验证的研究进展[J]. 生物多样性, 2022, 30(5): 21480-. |
[4] | 薛成, 李波卡, 雷天宇, 山红艳, 孔宏智. 生物多样性起源与进化研究进展[J]. 生物多样性, 2022, 30(10): 22460-. |
[5] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[6] | 王婷, 夏增强, 舒江平, 张娇, 王美娜, 陈建兵, 王慷林, 向建英, 严岳鸿. 全基因组复制事件的绝对定年揭示莲座蕨属植物的迟滞演化[J]. 生物多样性, 2021, 29(6): 722-734. |
[7] | 李敏岚, 王超, 王瑞武. 路径依赖下的物种形成机制[J]. 生物多样性, 2021, 29(3): 409-418. |
[8] | 张军, 彭焕文, 夏富才, 王伟. 青藏高原高山区和泛北极地区种子植物多倍体比较[J]. 生物多样性, 2021, 29(11): 1470-1480. |
[9] | 范兴科, 燕霞, 冯媛媛, 冉进华, 钱朝菊, 尹晓月, 周姗姗, 房庭舟, 马小飞. 红砂基因组大小变异及物种分化[J]. 生物多样性, 2021, 29(10): 1308-1320. |
[10] | 李媛媛, 刘超男, 王嵘, 罗水兴, 农寿千, 王静雯, 陈小勇. 分子标记在濒危物种保护中的应用[J]. 生物多样性, 2020, 28(3): 367-375. |
[11] | 黄建峰,徐睿,彭艳琼. 榕树种间杂交研究进展[J]. 生物多样性, 2019, 27(4): 457-467. |
[12] | 庄平. 杜鹃花属植物的可育性研究进展[J]. 生物多样性, 2019, 27(3): 327-338. |
[13] | 胡颖, 王茜, 张新新, 周玮, 陈晓阳, 胡新生. 叶绿体DNA标记在谱系地理学中的应用研究进展[J]. 生物多样性, 2019, 27(2): 219-234. |
[14] | 莫日根高娃, 商辉, 刘保东, 康明, 严岳鸿. 一个种还是多个种? 简化基因组及其形态学证据揭示中国白桫椤植物的物种多样性分化[J]. 生物多样性, 2019, 27(11): 1196-1204. |
[15] | 梁思琪, 张宪春, 卫然. 利用整合分类学方法进行蕨类植物复合体的物种划分: 以线裂铁角蕨复合体为例[J]. 生物多样性, 2019, 27(11): 1205-1220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn