生物多样性 ›› 2016, Vol. 24 ›› Issue (8): 863-874.doi: 10.17520/biods.2016114

• • 上一篇    下一篇

浙江省主要亚热带森林群落类型物种和谱系水平的α和β多样性比较

王月霞1, 金毅1, 吴初平1, 2, 翁东明3, 叶立新4, 陈德良5, 余建平6, 刘金亮1, 仲磊1, 于明坚1, *()   

  1. 1 浙江大学生命科学学院, 杭州 310058
    2 浙江省林业科学研究院, 杭州 310023
    3 浙江清凉峰国家级自然保护区管理局, 浙江临安 311300
    4 浙江凤阳山-百山祖国家级自然保护区凤阳山管理处, 浙江龙泉 323700
    5 浙江凤阳山-百山祖国家级自然保护区百山祖管理处, 浙江庆元 323800
    6 浙江古田山国家级自然保护区管理局, 浙江开化 324300
  • 收稿日期:2016-04-29 接受日期:2016-08-10 出版日期:2016-08-20
  • 通讯作者: 于明坚 E-mail:fishmj@zju.edu.cn
  • 基金项目:
    浙江省科技计划(2015C02016)和浙江省自然科学基金(LY16C160003)

Taxonomic and phylogenetic α and β diversities of major subtropical forest community types in Zhejiang Province

Yuexia Wang1, Yi Jin1, Chuping Wu1, 2, Dongming Wong3, Lixing Ye4, Deliang Chen5, Jianping Yu6, Jinliang Liu1, Lei Zhong1, Mingjian Yu1, *()   

  1. 1 College of Life Sciences, Zhejiang University, Hangzhou 310058
    2 Zhejiang Forestry Academy, Hangzhou 310023
    3 Administration Bureau of Zhejiang Qingliangfeng National Nature Reserve, Lin’an, Zhejiang 311300
    4 Management Office of Fengyangshan, Fengyangshan-Baishanzu National Nature Reserve, Longquan, Zhejiang 323800
    5 Management Office of Baishanzu, Fengyangshan-Baishanzu National Nature Reserve, Qingyuan, Zhejiang 323800
    6 Administration Bureau of Zhejiang Gutianshan National Nature Reserve, Kaihua, Zhejiang 324300
  • Received:2016-04-29 Accepted:2016-08-10 Online:2016-08-20
  • Contact: Yu Mingjian E-mail:fishmj@zju.edu.cn

了解不同森林群落类型的物种和谱系水平的α和β多样性, 有助于指导森林经营和生物多样性保护。本研究比较了浙江省内不同地点主要森林类型(包括常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林和针阔叶混交林)的物种α多样性和谱系α多样性, 以及物种β多样性和谱系β多样性。研究表明, 该地区主要森林类型的物种和谱系α多样性均存在较大差异, 但控制了空间和地形因子的作用后, 差异几乎全部消失; 森林类型内部及相互间的物种和谱系β多样性均存在显著差异, 同种森林类型内部的物种和谱系β多样性分别小于不同森林类型之间的物种和谱系β多样性, 且在控制了空间和地形因子的作用后, 以上差异仍然显著。本研究表明影响亚热带主要森林群落类型物种和谱系水平的α和β多样性的因素存在差异: α多样性可能主要受到空间和地形因子等的影响, 而β多样性则可能受到森林类型的重要影响。

关键词: α多样性, β多样性, 地形, 经度, 纬度, 自然保护区

Knowledge of taxonomic and phylogenetic α and β diversities of different forest types is critical to improving our understanding of forests and their structure, which can guide forest management and biodiversity conservation. In this study, we investigated the taxonomic and phylogenetic α (Shannon-Wiener index and PSV (phylogenetic species variability) diversity, respectively) and β (Chao’s index and PCDp (phylogenetic community dissimilarity among nonshared species) diversity, respectively) diversities of four main forest types, including evergreen broad-leaved forest (EBLF), evergreen and deciduous broad-leaved mixed forest (EDBLF), deciduous broad-leaved forest (DBLF), and coniferous and broad-leaved mixed forest (CBLF) in Zhejiang Province. α diversity represents biodiversity within a single forest plot; β diversity is divided into two levels. One is the β diversity between forest plots within a single forest type (intra-forest type β diversity), and the other the β diversity between forest plots from different forest types (inter-forest type β diversity). We found that the taxonomic and phylogenetic α diversities differed among forest types. However, when the geographical and topographical variables were taken into account, these differences largely disappeared. We also found the intra- and inter-forest type β diversities greatly differed, and the overall intra-forest type β diversity was lower than inter-forest type β diversity, regardless of whether geographical and topographical variables were controlled. These results suggest the controlling factors of taxonomic and phylogenetic α and β diversities differ in the studied subtropical forest types. Geographical and topographical variables may play critical roles in influencing forest taxonomic and phylogenetic α diversities, whereas forest type is largely responsible for forest taxonomic and phylogenetic β diversities.

Key words: α diversity, β diversity, topography, longitude, latitude, nature reserve

图1

研究地点的地理分布图。WYL: 乌岩岭; BSZ: 百山祖; FYS: 凤阳山; JLS: 九龙山; GTS: 古田山; QLF: 清凉峰; TMS: 天目山; LWS: 龙王山。"

表1

本研究所使用参数汇总"

变量类型
Variable type
描述
Description
分类变量
Categorical variable
类别
Category
森林类型
Forest type
常绿阔叶林 Evergreen broad-leaved forest (EBLF)
常绿落叶阔叶混交林 Evergreen deciduous broad-leaved mixed forest (EDBLF)
落叶阔叶林 Deciduous broad-leaved forest (DBLF)
针阔叶混交林 Coniferous broad-leaved mixed forest (CBLF)
连续变量
Continuous variable (unit)
范围
Range
平均值
Mean
经度 Longitude (°) 118.06-119.67 119.63
纬度 Latitude (°) 27.54-30.40 28.95
海拔 Elevation (m) 363-1,54 974.08
坡度 Slope (°) 10.2-45 30.36
坡向 Aspect (°) 5.0-358.6 172.5

图2

不同森林类型间物种(A)与谱系(B) α多样性比较。不同小写字母表示组间差异显著(P < 0.05)。CBLF、DBLF、EBLF和EDBLF的含义见表1。"

表2

不同森林类型间物种和谱系α多样性差异的线性混合效应模型结果"

Shannon-Wiener指数
Shannon-Wiener index
PSV指数 PSV index
常绿阔叶林vs.常绿落叶阔叶混交林 EBLF vs. EDBLF -0.128 -0.019
常绿阔叶林vs.落叶阔叶林 EBLF vs. DBLF -0.042 -0.042*
常绿阔叶林vs.针阔叶混交林 EBLF vs. CBLF 0 -0.031
常绿落叶阔叶林vs.落叶阔叶林 EDBLF vs. DBLF -0.111 0.006
常绿落叶阔叶混交林vs.针阔叶混交林 EDBLF vs. CBLF 0.278 0.027
落叶阔叶林vs.针阔叶混交林 DBLF vs. CBLF 0.328 0.019

图3

研究区森林物种(A)和谱系(B) β多样性的非度量多维标度排序(NMDS)排序结果。○表示常绿阔叶林, △表示常绿落叶阔叶混交林, ×表示针阔叶混交林, +表示落叶阔叶林。"

图4

同种森林类型内部的物种(A)与谱系(B) β多样性。不同小写字母表示组间差异显著(P < 0.05)。CBLF、DBLF、EBLF和EDBLF的含义见表1。"

图5

不同森林类型之间的物种(A)与谱系(B) β多样性比较。不同小写字母表示组间差异显著(P < 0.05)。“vs.”表示前后两种森林类型间的β多样性。CBLF、DBLF、EBLF和EDBLF的含义见表1。"

图6

森林群落类型内部及相互间的物种(A)与谱系(B) β多样性比较。使用线性混合效应模型控制了空间和环境因素的影响后, 两个组间的差异仍然显著(P < 0.05)。柱形上方若不存在相同英文字母, 表示组间有显著差异(P < 0.05)。“同种群落间”指同种森林群落间的β多样性, “不同群落类型间”指不同森林群落类型之间的β多样性。"

表3

同种森林类型内部物种和谱系β多样性差异的线性混合效应模型结果"

Chao’s指数 Chao’s index PCDp指数 PCDp index
常绿阔叶林vs.常绿落叶阔叶混交林 EBLF vs. EDBLF -0.073 0.006
常绿阔叶林vs.落叶阔叶林 EBLF vs. DBLF -0.256*** -0.018*
常绿阔叶林vs.针阔叶混交林 EBLF vs. CBLF -0.038 -0.129*
常绿落叶阔叶混交林vs.落叶阔叶林 EDBLF vs. DBLF -0.13* -0.067**
常绿落叶阔叶混交林vs.针阔叶混交林 EDBLF vs. CBLF 0.244** -0.044
落叶阔叶林vs.针阔叶混交林 DBLF vs. CBLF 0.315*** 0.02

表4

不同森林类型之间物种和谱系β多样性差异的线性混合效应模型结果"

Chao’s指数 Chao’s index PCDp指数 PCDp index
常绿阔叶林/常绿落叶阔叶混交林vs.常绿阔叶林/落叶阔叶林
EBLF / EDBLF vs. EBLF / DBLF
-0.135*** -0.09***
常绿阔叶林/常绿落叶阔叶混交林vs.常绿阔叶林/针阔叶混交林
EBLF / EDBLF vs. EBLF / CBLF
0.06 0.063**
常绿阔叶林/常绿落叶阔叶混交林vs.常绿落叶阔叶混交林/落叶阔叶林
EBLF / EDBLF vs. EDBLF / DBLF
0.146*** -0.021
常绿阔叶林/常绿落叶阔叶混交林vs.常绿落叶阔叶混交林/针阔叶混交林
EBLF / EDBLF vs. EDBLF / CBLF
-0.052 0.033
常绿阔叶林/常绿落叶阔叶混交林vs.落叶阔叶林/针阔叶混交林
EBLF / EDBLF vs. DBLF / CBLF
-0.154*** -0.012
常绿阔叶林/落叶阔叶林vs.常绿阔叶林/针阔叶混交林
EBLF / DBLF vs. EBLF / CBLF
0.052* 0.115***
常绿阔叶林/落叶阔叶林vs.常绿落叶阔叶混交林/落叶阔叶林
EBLF / DBLF vs. EDBLF / DBLF
-0.021* 0.059***
常绿阔叶林/落叶阔叶林vs.常绿落叶阔叶混交林/针阔叶混交林
EBLF / DBLF vs. EDBLF / CBLF
0.055* 0.114***
常绿阔叶林/落叶阔叶林vs.落叶阔叶林/针阔叶混交林
EBLF / DBLF vs. DBLF / CBLF
0.019 0.01
常绿阔叶林/针阔叶混交林vs.常绿落叶阔叶混交林/落叶阔叶林
EBLF / CBLF vs. EDBLF / DBLF
-0.141*** -0.056*
常绿阔叶林/针阔叶混交林vs.常绿落叶阔叶混交林/针阔叶混交林
EBLF / CBLF vs. EDBLF / CBLF
-0.063** -0.01
常绿阔叶林/针阔叶混交林vs.落叶阔叶林/针阔叶混交林
EBLF / CBLF vs. DBLF / CBLF
-0.192*** -0.132***
常绿落叶阔叶混交林/落叶阔叶林vs.常绿落叶阔叶混交林/针阔叶混交林
EDBLF / DBLF vs. EDBLF / CBLF
0.064* 0.067**
常绿落叶阔叶混交林/落叶阔叶林vs.落叶阔叶林/针阔叶混交林
EDBLF / DBLF vs. DBLF / CBLF
0.064* -0.005
常绿落叶阔叶混交林/针阔叶混交林vs.落叶阔叶林/针阔叶混交林
EDBLF / CBLF vs. DBLF / CBLF
-0.079** -0.112***
[1] Arellano G, Tello JS, Jørgensen PM, Fuentes AF, Loza MI, Torrez V, Macía MJ (2015) Disentangling environmental and spatial processes of community assembly in tropical forests from local to regional scales. Oikos, 51, 327-335.
[2] Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48.
[3] Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the green mountains of Vermont. Proceedings of the National Academy of Sciences, USA, 105, 4197-4202.
[4] Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127-135.
[5] Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Fischer M, Geißler C, Guo DL, Guo LD, Härdtle W, He JS, Hector A, Kröber W, Kühn P, Lang AC, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Shi XZ, Scholten T, Schuldt A, Trogisch S, von Oheimb G, Welk E, Wirth C, Wu YT, Yang XF, Zeng XQ, Zhang SR, Zhou HZ, Ma KP, Schmid B (2011) Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 81, 25-41.
[6] Cayuela L, Oksanen J (2016) Taxonstand: Taxonomic Standardization of Plant Species Names. R package Version 1.8. (accessed on 2016-04-14)
[7] Chao A, Chazdon RL, Colwell RK, Shen TJ (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics, 62, 361-371.
[8] Chave J (2009) Spatial variation in tree species composition across tropical forests: pattern and process. In: Tropical Forest Community Ecology (eds Carson WP, Schnitzer S), pp. 11-30. Wiley/Blackwell, Hoboken, NJ, USA.
[9] Chen LZ, Chen QL, Liu WH (1997) Forest Diversity and Its Geographical Distribution in China. Science Press, Beijing.
[陈灵芝, 陈清朗, 刘文华 (1997) 中国森林多样性及其地理分布. 科学出版社, 北京.]
[10] Cheng QB, Wu MX, Chen HT (1996) Comprehensive observations report on Fengyangshan-Baishanzu Nature Reserve of Zhejiang. Journal of Zhejiang Forestry Science and Technology, 16(6), 1-7. (in Chinese)
[程秋波, 吴鸣翔, 陈豪庭 (1996) 浙江凤阳山-百山祖自然保护区综合考察报告. 浙江林业科技, 16(6), 1-7.]
[11] Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and A Comparison with Other Plots. Springer Science and Business Media, Berlin, Germany.
[12] Cun YZ, Wang XQ (2010) Plant recolonization in the Himalaya from the Southeastern Qinghai-Tibetan Plateau: geographical isolation contributed to high population differentiation. Molecular Phylogenetics and Evolution, 56, 972-982.
[13] de Cáceres M, Legendre P, Valencia R, Cao M, Chang LW, Chuyong G, Condit R, Hao ZQ, Hsieh CF, Hubbell S, Kenfack D, Ma KP, Mi XC, Noor MNS, Kassim AR, Ren HB, Su SH, Sun IF, Thomas D, Ye WH, He FL (2012) The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 21, 1191-1202.
[14] Ding HB, Wu ZL, Lü DP, Wu QJ, Shan MY, Bai HT, Luo K (2015) Community phylogenetic structural characteristics of various secondary forests in mountainous Eastern Yunnan. Chinese Journal of Ecology, 34, 2720-2726. (in Chinese with English abstract)
[丁洪波, 吴兆录, 吕东蓬, 武秋君, 单梦颖, 白皓天, 罗康 (2015) 云南东部山区不同类型次生林群落谱系结构特征. 生态学杂志, 34, 2720-2726.]
[15] Fang JY, Ohsawa M, Kira T (1996) Vertical vegetation zones along 30° N latitude in humid East Asia. Plant Ecology, 126, 135-149.
[16] Feng G, Svenning JC, Mi XC, Jia Q, Rao MD, Ren HB, Bebber D, Ma KP (2014) Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest. Forest Ecology and Management, 313, 188-198.
[17] Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. The American Naturalist, 169, E68-E83.
[18] Ives AR, Helmus MR (2010) Phylogenetic metrics of community similarity. The American Naturalist, 176, 559-559.
[19] Jin Y, Qian H, Yu MJ (2015) Phylogenetic structure of tree species across different life stages from seedlings to canopy trees in a subtropical evergreen broad-leaved forest. PLoS ONE, 10, e0131162.
[20] Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 155, 593-604.
[21] Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology, 87, S86-S99.
[22] Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
[23] Kira T (1991) Forest ecosystems of East and Southeast Asia in a global perspective. Ecological Research, 6, 185-200.
[24] Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674.
[25] Letcher SG (2010) Phylogenetic structure of angiosperm communities during tropical forest succession. Proceedings of the Royal Society of London B: Biological Sciences, 277, 97-104.
[26] Liu XJ, Swenson NG, Wright SJ, Zhang LW, Song K, Du YJ, Zhang JL, Mi XC, Ren HB, Ma KP (2012) Covariation in plant functional traits and soil fertility within two species-rich forests. PLoS ONE, 7, e34767.
[27] Liu XJ, Swenson NG, Zhang JW, Ma KP (2013) The environment and space, not phylogeny, determine trait dispersion in a subtropical forest. Functional Ecology, 27, 264-272.
[28] Liu YL, Guo RQ, Sun SC (2010) Variations in the vertical vegetation zonation of subtropical Chinese mountains: the importance of climatic seasonality. Acta Ecologica Sinica, 30, 3912-3922. (in Chinese with English abstract)
[刘亚兰, 郭汝清, 孙书存 (2010) 中国亚热带山地植被垂直带分布对气候季节性的响应. 生态学报, 30, 3912-3922.]
[29] López-Martínez JO, Hernández-Stefanoni JL, Dupuy JM, Meave JA (2013) Partitioning the variation of woody plant β-diversity in a landscape of secondary tropical dry forests across spatial scales. Journal of Vegetation Science, 24, 33-45.
[30] Lu P, Jin Y, Chen JH, Li MH, Yu MJ (2013) Influences of geographical distance and topographic difference on β diversity of two large-scale forest dynamics plots. Biodiversity Science, 21, 554-563. (in Chinese with English abstract)
[卢品, 金毅, 陈建华, 李铭红, 于明坚 (2013) 地理距离和地形差异对两个大型森林动态样地β多样性的影响. 生物多样性, 21, 554-563.]
[31] Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo- Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
[32] Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) vegan: Community Ecology Package. R package Version 2.3-4. (accessed on 2016-06-25)
[33] Qian H, Jin Y (2016) An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233-239.
[34] Qian H, Hao ZQ, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154-165.
[35] R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
[36] Shen GC, He FL, Waagepetersen R, Sun IF, Hao ZQ, Chen ZS, Yu MJ (2013) Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. Ecology, 94, 2436-2443.
[37] Silvertown J, Dodd M, Gowing D, Lawson C, Mcconway K (2006) Phylogeny and the hierarchical organization of plant diversity. Ecology, 87, S39-S49.
[38] Singmann H, Bolker B, Westfall J, Aust F, Højsgaard S, Fox J, Lawrence MA, Mertens U (2016) afex: Analysis of Factorial Experiments. R Package Version 0.16-1. https://CRAN.R-project.org/package=afex (accessed on 2016-04-14)
[39] Song K, Mi XC, Jia Q, Ren HB, Bebber D, Ma KP (2011) Variation in phylogenetic structure of forest communities along a human disturbance gradient in Gutianshan forest, China. Biodiversity Science, 19, 190-196. (in Chinese with English abstract)
[宋凯, 米湘成, 贾琪, 任海保, Bebber D, 马克平 (2011) 不同程度人为干扰对古田山森林群落谱系结构的影响. 生物多样性, 19, 190-196.]
[40] Song YC (1999) Perspective of the vegetation zonation of forest region in Eastern China. Acta Botanica Sinica, 41, 541-552. (in Chinese with English abstract)
[宋永昌 (1999) 中国东部森林植被带划分之我见. 植物学报, 41, 541-552.]
[41] Song YC (2013) Evergreen Broad-leaved Forests in China. Science Press, Beijing. (in Chinese)
[宋永昌(2013) 中国常绿阔叶林. 科学出版社, 北京.]
[42] State Environmental Protection Administration (SEPA) (1998) China’s Biodiversity: A Country Study. China Environmental Science Press, Beijing. (in Chinese)
[中华人民共和国国家环境保护局(1998) 中国生物多样性国情研究报告. 中国环境科学出版社, 北京.]
[43] Tello JS, Myers JA, Macía MJ, Fuentes AF, Cayola L, Arellano G, Loza MI, Torrez V, Cornejo, Miranda TB, Jørgensen PM (2015) Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS ONE, 10, e0121458.
[44] Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
[45] Whittaker RH, Niering WA (1965) Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology, 46, 429-452.
[46] Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology Evolution & Systematics, 36, 519-539.
[47] Wu ZY (1995) Vegetation of China. Science Press, Beijing. (in Chinese)
[吴征镒 (1995) 中国植被. 科学出版社, 北京]
[48] Xiang QY (Jenny), Zhang WH, Ricklefs RE, Qian H, Chen ZD, Wen J, Li JH (2004) Regional differences in rates of plant speciation and molecular evolution: a comparison between eastern Asia and eastern North America. Evolution, 58, 2175-2184.
[49] Yu MJ, Hu ZH, Yu JP, Ding BY, Fang T (2001) Forest vegetation types in Gutianshan Nature Reserve in Zhejiang. Journal of Zhejiang University (Agriculture and Life Science), 27, 375-380. (in Chinese with English abstract)
[于明坚, 胡正华, 余建平, 丁炳扬, 方腾 (2001) 浙江古田山自然保护区森林植被类型. 浙江大学学报(农业与生命科学版), 27, 375-380.]
[50] Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2015) Three keys to the radiation of angiosperms into freezing environments. Nature, 521, 89-92.
[51] Zhao TQ, Ouyang ZY, Zheng H, Wang XK, Miao H (2004) Forest ecosystem services and their valuation in China. Journal of Natural Resources, 19, 480-491. (in Chinese with English abstract)
[赵同谦, 欧阳志云, 郑华, 王效科, 苗鸿 (2004) 中国森林生态系统服务功能及其价值评价. 自然资源学报, 19, 480-491.]
[52] Zheng CZ (2005) Key of Seed Plants in Zhejiang Province. Zhejiang Science and Technology Press, Hangzhou. (in Chinese)
[郑朝宗 (2005) 浙江种子植物检索鉴定手册. 浙江科学技术出版社, 杭州.]
[1] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[2] 张明明,杨朝辉,王丞,王娇娇,胡灿实,雷孝平,石磊,粟海军,李佳琦. (2019) 贵州梵净山国家级自然保护区鸟兽红外相机监测. 生物多样性, 27(7): 813-818.
[3] 穆君, 王娇娇, 张雷, 李云波, 李筑眉, 粟海军. (2019) 贵州习水国家级自然保护区红外相机鸟兽监测及活动节律分析. 生物多样性, 27(6): 683-688.
[4] 王渊, 李晟, 刘务林, 朱雪林, 李炳章. (2019) 西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律. 生物多样性, 27(6): 638-647.
[5] 王颖灿, 林家怡, 许涵, 林明献, 李意德. (2019) 海南尖峰岭热带山地雨林60 ha大样地木本植物性别系统数量特征. 生物多样性, 27(3): 297-305.
[6] 肖治术,陈立军,宋相金,束祖飞,肖荣高,黄小群. (2019) 基于红外相机技术对广东车八岭国家级自然保护区大中型兽类与雉类的编目清查与评估. 生物多样性, 27(3): 237-242.
[7] 陈立军,束祖飞,肖治术. (2019) 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例. 生物多样性, 27(3): 266-272.
[8] 陈强强, 李美玲, 王旭, FaisalMueenQamer, 王鹏, 杨建伟, 汪沐阳, 杨维康. (2019) 新疆塔什库尔干野生动物自然保护区马可波罗盘羊潜在生态廊道识别. 生物多样性, 27(2): 186-199.
[9] 陈惠君, 杜虎, 宋同清, 彭晚霞, 张浩, 苏樑, 曾馥平. (2019) 木论喀斯特常绿落叶阔叶混交林群丛数量分类及稳定性. 生物多样性, 27(10): 1056-1068.
[10] 邹东廷, 王庆刚, 罗奥, 王志恒. (2019) 中国蔷薇科植物多样性格局及其资源植物保护现状. 植物生态学报, 43(1): 1-15.
[11] 池秀莲,王庆刚,郭强,杨弦,唐志尧. (2019) 古田山常绿阔叶林不同演替群落的萌生特征. 生物多样性, 27(1): 24-32.
[12] 秦运芝, 张佳鑫, 刘检明, 刘梦婷, 万丹, 吴浩, 周阳, 孟红杰, 肖之强, 黄汉东, 徐耀粘, 卢志军, 乔秀娟, 江明喜. (2018) 湖南八大公山25 ha常绿落叶阔叶混交林动态监测样地群落组成与空间结构. 生物多样性, 26(9): 1016-1022.
[13] 芦伟, 余建平, 任海保, 米湘成, 陈建华, 马克平. (2018) 古田山中亚热带常绿阔叶林群落物种多样性的空间变异特征. 生物多样性, 26(9): 1023-1028.
[14] 刘媛媛, 马进泽, 卜兆君, 王升忠, 张雪冰, 张婷玉, 刘莎莎, 付彪, 康媛. (2018) 地理来源与生物化学属性对泥炭地植物残体分解的影响. 植物生态学报, 42(7): 713-722.
[15] 张则瑾, 郭焱培, 贺金生, 唐志尧. (2018) 中国极小种群野生植物的保护现状评估. 生物多样性, 26(6): 572-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed