生物多样性 ›› 2016, Vol. 24 ›› Issue (8): 966-976.doi: 10.17520/biods.2016057

• • 上一篇    

细胞核和有性生殖是如何起源的?

谢平*()   

  1. 中国科学院水生生物研究所, 武汉 430072
  • 收稿日期:2016-02-28 接受日期:2016-07-12 出版日期:2016-08-20
  • 通讯作者: 谢平 E-mail:xieping@ihb.ac.cn

How did nucleus and sexual reproduction come into being?

Ping Xie*()   

  1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072
  • Received:2016-02-28 Accepted:2016-07-12 Online:2016-08-20
  • Contact: Xie Ping E-mail:xieping@ihb.ac.cn

真核生物的起源是一个根本性的、令人生畏的进化谜题, 目前设想的关于“核”起源的流行情景还远谈不上清晰。关于真核生物的起源可谓众说纷纭, 有共营模型、自演化模型、病毒性真核生物起源模型和外膜假说, 等等。迄今为止, 真核演化的动因则鲜有涉及。笔者发现, 从原核生物到真核生物, 基因组的DNA总量大约增加了3.5个数量级, 而这与现代真核生物的DNA压缩比(packing ratio)惊人地一致! 这样, 仅仅用偶然的吞噬、共生或寄生来解释真核生物的起源, 无论如何是难以让人信服的(其实, 正是内共生理论将人们引入了歧途), 而关键是需要解释基因组为何急剧增大。这可能与DNA的复制错误或多倍化现象不无关系, 当然并非完全排除不同种类个体之间的侧向的基因流动或整合的可能贡献。不难理解, DNA压缩机制的成型应该就是迈向真核生物的关键一步, 自然还伴随了细胞内部的结构分化、更为精巧而复杂的细胞分裂机制的发展, 等等。因此, 本文提出细胞核起源的新学说——压缩与结构化假说。此外, 从分子遗传学的角度来说, “性”一点都不神秘, 就是将两个个体的基因组拼在一起而已, 藉此种族多样的遗传信息分散到了个体之中; 而从生态的角度来看, “性”的原始动机就是与休眠事件的偶联。

关键词: 真核的起源, DNA, 染色体, 压缩比, 压缩与结构化假说, 有性生殖, 休眠事件假说

The origin of eukaryote is a fundamental, forbidding evolutionary puzzle, and the popular scenarios of eukaryogenesis are far from being clear. So far, there have been various theories (e.g., syntrophic model, autogenous model, viral eukaryogenesis model, exomembrane hypothesis), but few explain why. I observed that C-value (the amount of DNA contained within a haploid nucleus) increased by 3.5 orders of magnitude from prokaryote to eukaryotes, which is inconceivably close to the packing ratio of DNA in extant eukaryotes. Thus, it is never convincing to explain eukaryogenesis solely by using accident phagocytosis, symbiosis or parasitism (the influential endosymbiont theory unfortunately took the wrong turning!), but what is important is to explain why genome increased so sharply. This may be mainly related to DNA replication errors or polyploidization, of course not completely ruling out the possible contribution from lateral gene flow or genetic integration between individuals of different species. It is above suspicion that successful packing of DNA (finally into chromosome) was a key step towards eukaryogenesis, of course also accompanied with structural differentiation in cell and development of more subtle and complex cell division, and so on. This paper presents “packing and structurization hypothesis” to explain eukaryogenesis. In addition, from a molecular genetic point of view, sexual reproduction is never a mystery as it is just a process to merge two individual genomes, by which diverse genetic information of the species are dispersed into its individuals. On the other hand, from an ecological point of view, the original motivation of “sex” was accidently coupled with dormancy.

Key words: eukaryogenesis, DNA, chromosome, packing ratio, “packing and structurization hypothesis”, sexual reproduction, accident dormancy hypothesis

图1

用蓝色荧光染料染色的海拉细胞(HeLa cells)的核DNA, 中间以及最右的细胞处于细胞间期, 因此整个核被标记, 而左边的细胞正在进入有丝分裂, 因此核DNA已经浓缩(来源: 维基百科)"

图2

通过冷替代方式固定和准备的Gemmata obscuriglobus(a)和斯氏小梨形菌(Pirellula staleyi)(b)的薄切片透射电镜图。NE: 核膜; N: 拟核; ICM: 细胞质内膜; P: 外室细胞质; PL: pirellulosome (小梨形菌属的一种膜细胞隔室) (引自Fuerst, 2005)"

图3

一种纤毛虫(Nassula ornata)与藻类的共生现象(× 160倍)(来源: Wim van Egmond)"

图4

DNA压缩成染色体的过程(来源: 百度图片)"

图5

根据各类生物的C值推测真核生物DNA的压缩原理, 带箭头的红色虚线表示C值中位数的演化轨迹, 绿色虚线表示大多数真核生物C值的主要分布区间, 问号表示该类生物起源的年代仍然存在争议。C值引自Gregory (2004)。"

图6

原核(上图, 大肠杆菌Escherichia coli)和真核(下图)细胞的分裂比较(引自Campbell & Reece, 2008)"

图7

细菌结合示意图。1: 供体细胞产生性菌毛; 2: 性菌毛接触受体细胞, 使两个细胞连接在一起; 3: 能移动的质体被切开, 一个单股的DNA被转移到受体细胞; 4: 两个细胞质粒重新环化, 合成第二股链, 产生性菌毛, 两个细胞又称为活性的供体(来源: 维基百科)。"

图8

酵母的生活史。(1)出芽生殖; (2)细胞融合; (3)孢子(引自Wikipedia)"

图9

绿藻—衣藻的生活史(引自Raven et al, 1992)"

图10

周期性孤雌生殖水蚤的生活周期(仿Ebert, 2005)"

[1] Bell G (1982) The Masterpiece of Nature: the Evolution and Genetics of Sexuality. University of California Press, Berkeley.
[2] Bell PJ (2001) Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution, 53, 251-256.
[3] Campbell NA, Reece JB (2008) Biology, 8th edn. Benjamin Cummings, San Francisco.
[4] Coyne JA (2009) Why Evolution is True. Viking Penguin, New York David LA, Alm EJ (2011) Rapid evolutionary innovation during an Archaean genetic expansion. Nature, 469, 93-96.
[5] de Roos AD (2006) The origin of the eukaryotic cell based on conservation of existing interfaces. Artificial Life, 12, 513-523.
[6] Ebert D (2005) Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD.
[7] Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annual Review of Microbiology, 59, 299-328.
[8] Gregory TR (2004) Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology, 30, 179-202.
[9] Hadany L, Comeron JM (2008) Why are sex and recombination so common? Annals of the New York Academy of Sciences, 1133, 26-43.
[10] Hogan CM (2010) Archaea. In: Encyclopedia of Earth (eds Monosson E, Cleveland C). National Council for Science and the Environment, Washington, DC.
[11] Jacob F (1998) Of Flies, Mice and Men (translated from the French edition). Harvard University Press, Cambridge MA.
[12] Koonin EV (2015) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philosophical Transactions of the Royal Society B, 370, 20140333.
[13] Margulis L (1981) Symbiosis in Cell Evolution, pp. 206-227. W. H. Freeman and Company, San Francisco.
[14] Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philosophical Transactions of the Royal Society B, 370, 20140330.
[15] McInerney J, Pisani D, O’Connell MJ (2015) The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philosophical Transactions of the Royal Society B, 370, 20140323
[16] Mereschkowsky K (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biologisches Centralblatt 30, 353-367.
[17] Moreira D, López-García P (2015) Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philosophical Transactions of the Royal Society B, 370, 20140327.
[18] Pennisi E (2004) Evolutionary biology. The birth of the nucleus. Science, 305, 766-768.
[19] Prescott DM (1994) The DNA of ciliated protozoa. Microbiological Reviews, 58, 233-267.
[20] Raven PH, Evert RF, Eichhorn SE (1992) Biology of Plants, 5th edn. Worth Publishers, New York.
[21] Schurko AM, Neiman M, Logsdon JM Jr (2008) Signs of sex: what we know and how we know it. Trends in Ecology & Evolution, 24, 208-217.
[22] Takemura M (2001) Poxviruses and the origin of the eukaryotic nucleus. Journal of Molecular Evolution, 52, 419-442.
[23] Villarreal L, DeFilippis V (2000) A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. Journal of Virology, 74, 7079-7084.
[24] Wallin IE (1923) The mitochondria problem. The American Naturalist, 57, 255-261.
[25] Xie P (2013) Scaling Ecology to Understand Natural Design of Life Systems and Their Operations and Evolutions—Integration of Ecology, Genetics and Evolution Through Reproduction. Science Press, Beijing.
[谢平 (2013) 从生态学透视生命系统的设计、运作与演化——生态、遗传和进化通过生殖的融合. 科学出版社, 北京.]
[26] Xie P (2014) The Aufhebung and Breakthrough of the Theories on the Origin and Evolution of Life—Life in Philosophy and Philosophy in Life Sciences. Science Press, Beijing.
[谢平 (2014) 生命的起源-进化理论之扬弃与革新——哲学中的生命, 生命中的哲学. 科学出版社, 北京.]
[27] Zimmer C (2009) On the origin of sexual reproduction. Science, 324, 1254-1256.
[1] 陈威,杨颖增,陈锋,周文冠,舒凯. (2019) 表观遗传修饰介导的植物胁迫记忆. 植物学报, 54(6): 779-785.
[2] 刘山林. (2019) DNA条形码参考数据集构建和序列分析相关的新兴技术. 生物多样性, 27(5): 526-533.
[3] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. (2019) 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析. 生物多样性, 27(5): 543-556.
[4] 李晗溪, 黄雪娜, 李世国, 战爱斌. (2019) 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警. 生物多样性, 27(5): 491-504.
[5] 李诣远, DavidC.Molik, MichaelE.Pfrender. (2019) 基于Nextflow构建的宏条形码自动化分析流程EPPS. 生物多样性, 27(5): 567-575.
[6] 徐婉约, 王应祥. (2019) 染色体展片法观察拟南芥雄性减数分裂过程中的染色体形态. 植物学报, 54(5): 620-624.
[7] 张亚红, 贾会霞, 王志彬, 孙佩, 曹德美, 胡建军. (2019) 滇杨种群遗传多样性与遗传结构. 生物多样性, 27(4): 355-365.
[8] 程新杰, 于恒秀, 程祝宽. (2019) 水稻减数分裂染色体分析方法. 植物学报, 54(4): 503-508.
[9] 胡建霖,刘志芳,慈秀芹,李捷. (2019) DNA条形码在热带龙脑香科树种鉴定中的应用. 植物学报, 54(3): 350-359.
[10] 程广前,贾克利,李娜,邓传良,李书粉,高武军. (2019) 石刁柏核质体DNA的生物信息学分析及染色体定位. 植物学报, 54(3): 328-334.
[11] 农全东,张明永,张美,简曙光,陆宏芳,夏快飞,文和明. (2019) 火龙果茎基因组DNA提取方法改良. 植物学报, 54(3): 371-377.
[12] 史册, 罗盼, 邹颉, 孙蒙祥. (2018) DELLA蛋白在被子植物有性生殖中的作用. 植物学报, 53(6): 745-755.
[13] 舒江平, 罗俊杰, 韦宏金, 严岳鸿. (2018) 基于模式产地的分子证据澄清南平鳞毛蕨的分类学地位. 植物学报, 53(6): 793-800.
[14] 侯勤曦, 慈秀芹, 刘志芳, 徐武美, 李捷. (2018) 基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护. 生物多样性, 26(3): 217-228.
[15] 黄勋和, 余哲琪, 翁茁先, 何丹林, 易振华, 李威娜, 陈洁波, 张细权, 杜炳旺, 钟福生. (2018) 广东省地方鸡线粒体遗传多样性与母系起源. 生物多样性, 26(3): 238-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed