生物多样性 ›› 2016, Vol. 24 ›› Issue (4): 399-406.doi: 10.17520/biods.2015245

所属专题: 中国西南干旱河谷的植物多样性

• 研究报告 • 上一篇    下一篇

地理距离及环境差异对云南元江干热河谷植物群落beta多样性的影响

李新辉1, 2, 刘延虹1, 2, 刘晔3, 许玥4, 杨阳4, 沈泽昊4, *()   

  1. 1 西南林业大学环境科学与工程学院, 昆明 650224。
    2 云南玉溪森林生态系统国家定位观测研究站, 云南玉溪 653400)。
    3 北京大学深圳研究生院城市规划与设计学院, 广东深圳 518055。
    4 北京大学城市与环境学院生态学系, 地表过程分析与模拟教育部重点实验室, 北京 100871
  • 收稿日期:2015-09-14 接受日期:2016-03-12 出版日期:2016-04-20
  • 通讯作者: 沈泽昊 E-mail:shzh@urban.pku.edu.cn
  • 基金项目:
    国家自然科学基金(41371190)、交通运输部西部计划项目(2008 318 799 17)和云南省高校优势特色重点学科(生态学)建设项目

Impacts of geographical distances and environmental differences on the beta diversity of plant communities in the dry-hot valley of the Yuanjiang River

Xinhui Li1, 2, Yanhong Liu1, 2, Ye Liu3, Yue Xu4, Yang Yang4, Zehao Shen4, *()   

  1. 1 College of Environmental Science and Technology, Southwest China Forestry University, Kunming 650224.
    2 National Station for Forest Ecosystem in Yuxi, Yuxi, Yunnan 653400.
    3 School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055.
    4 Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871
  • Received:2015-09-14 Accepted:2016-03-12 Online:2016-04-20
  • Contact: Shen Zehao E-mail:shzh@urban.pku.edu.cn

beta多样性反映了群落间物种组成的差异, 是生物多样性研究的热点之一。本研究通过对云南元江干热河谷41个植物群落样方进行调查, 用Jaccard相异系数表征物种beta多样性, 用样方之间的最近谱系距离(mean nearest taxon distance, MNTD)及平均谱系距离(mean pairwise distance, MPD)表征谱系beta多样性, 采用基于距离矩阵的多元回归和方差分解方法, 探讨了该区域干热河谷典型植物群落的物种beta多样性和谱系beta多样性与样方间环境差异(主要是气候)及地理距离之间的关系。结果表明: (1)群落间的地理距离和年平均温度差异对干热河谷植物群落的物种beta多样性和谱系beta多样性有显著影响; (2)地理距离对物种beta多样性和MNTD的影响最大; 地理距离和年平均温度差异对MPD的影响均较大; (3)样方间年平均温度与年平均降水量的差异和地理距离能够解释群落间beta多样性及谱系beta多样性11-13%的变异。以上结果表明, 生态位分化和扩散限制对该地区植物群落的beta多样性均有显著影响, 其中扩散限制的影响可能更大。此外, 人类活动等其他因素也很可能对元江干热河谷的群落组成具有非常重要的影响。

关键词: 群落构建, 谱系beta多样性, 生态位, 扩散限制, 人类干扰

Beta diversity is the difference in species composition between locations. Recently, much of the published biodiversity research has focused on the assessment of beta diversity because it can be used to investigate community assembly and maintenance of species diversity. In this study, we investigated the impacts of dispersal limitation and habitat on the beta diversity of communities by sampling 41 plots throughout the dry-hot valley of Yuanjiang River. Taxonomic beta diversity and phylogenetic beta diversity were quantified using Jaccard dissimilarity, mean nearest taxon distance (MNTD), and mean pairwise distance (MPD). These indices were then related to the differences in environmental characteristics between sample plots and the geographical distances separating sample plots using multiple regression on distance matrices (MRM) and variance partitioning. The results showed that taxonomic and phylogenetic beta diversity indices significantly increased with the spatial distance and difference in mean annual temperature between communities; that taxonomic beta diversity and MNTD were most strongly influenced by spatial distance, whereas MPD was equally influenced by spatial distance and mean annual temperature difference between communities; and that only 11-13% of the variance in beta diversity was explained by the spatial distance and mean annual temperature difference between communities. These results highlight the effects of niche and dispersal limitations on beta diversity, and suggest that dispersal limitation may play a greater role than habitat differences between plant community locations. Additionally, human disturbances may greatly impact species composition along the dry-hot valley of the Yuanjiang River.

Key words: community assembly, phylogenetic beta diversity, niche, dispersal limitation, human disturbances

图1

云南元江干热河谷41个样方的地理分布"

图2

元江干热河谷样方内有支长的植物系统进化树。基于Zanne等(2014)系统树作图。"

图3

beta多样性与年平均温度差异、年平均降水量差异及样方之间地理距离的关系"

图4

年平均温度差异、年平均降水量差异和样方之间地理距离对beta多样性的解释比例(< 0的值未显示)。A: 物种beta多样性; B: 平均谱系距离; C: 最近谱系距离。"

1 Bellier E, Grotan V, Engen S, Schartau AK, Herfindal I, Finstad AG (2014) Distance decay of similarity, effects of environmental noise and ecological heterogeneity among species in the spatio-temporal dynamics of a dispersal-limited community. Ecography, 37, 172-182.
2 Bin Y, Wang ZG, Wang ZM, Ye WH, Cao HL, Lian JY (2010) The effects of dispersal limitation and topographic heterogeneity on beta diversity and phylobetadiversity in a subtropical forest. Plant Ecology, 209, 237-256.
3 Burrascano S, Anzellotti I, Carli E, del Vico E, Facioni L, Pretto F, Sabatini FM, Tilia A, Blasi C (2013) Drivers of beta-diversity variation in Bromus erectus semi-natural dry grasslands. Applied Vegetation Science, 16, 404-416.
4 Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109-S122.
5 Chen GQ, Qiang S (2011) Human activities are the principle cause of biotic homogenization. Acta Ecologica Sinica, 31, 4107-4116.(in Chinese with English abstract)
[陈国奇, 强胜 (2011) 人类活动是导致生物均质化的主要因素. 生态学报,31, 4107-4116.]
6 Chen SB, Ouyang ZY, Xu WH, Xiao Y (2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335.(in Chinese with English abstract)
[陈圣宾, 欧阳志云, 徐卫华, 肖燚 (2010) Beta多样性研究进展. 生物多样性, 18, 323-335.]
7 Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Nunez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science, 295, 666-669.
8 de Cáceres M, Legendre P, Valencia R, Cao M, Chang LW, Chuyong G, Condit R, Hao ZQ, Hsieh CF, Hubbell S, Kenfack D, Ma KP, Mi XC, Noor MNS, Kassim AR, Ren HB, Su SH, Sun IF, Thomas DC, Ye WH, He FL (2012) The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 21, 1191-1202.
9 Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296-299.
10 Fernandez-Going BM, Harrison SP, Anacker BL, Safford HD (2013) Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology, 94, 2007-2018.
11 Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1-19.
12 Graham CH, Fine PVA (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265-1277.
13 Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158.
14 He YB, Lu PZ, Zhu T (2000) Causes for the formation of dry-hot valleys in Hengduan Mountain-Yunnan Plateau. Resources Science, 22(5), 69-72.in Chinese with English abstract)
( [何永彬, 卢培泽, 朱彤 (2000) 横断山-云南高原干热河谷形成原因研究. 资源科学, 22(5), 69-72.]
15 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
16 Jin ZZ (1999) A phytosociological study on the semi-savanna vegetation in the dry-hot valleys of Yuanjiang River, Yunnan. Guihaia, 19, 289-302.(in Chinese with English abstract)
[金振洲 (1999) 云南元江干热河谷半萨王纳植被的植物群落学研究. 广西植物, 19, 289-302.]
17 Jin ZZ (2002) Floristic Features of Dry-hot and Dry-warm Valleys, Yunnan and Sichuan. Yunnan Science and Technology Press, Kunming.(in Chinese)
[金振洲 (2002) 滇川干热河谷与干暖河谷植物区系特征. 云南科技出版社, 昆明.]
18 Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
19 Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
20 Kubota Y, Hirao T, Fujii SJ, Murakami M (2011) Phylogenetic beta diversity reveals historical effects in the assemblage of the tree floras of the Ryukyu Archipelago. Journal of Biogeography, 38, 1006-1008.
21 Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecology, 188, 117-131.
22 Niu HY, Wang ZF, Lian JY, Ye WH, Shen H (2011) New progress in community assembly: community phylogenetic structure combining evolution and ecology. Biodiversity Science, 19, 275-283.(in Chinese with English abstract)
[牛红玉, 王峥峰, 练琚愉, 叶万辉, 沈浩 (2011) 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究. 生物多样性, 19, 275-283.]
23 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0-10.
24 Olivier PI, van Aarde RJ (2014) Multi-scale sampling boosts inferences from beta diversity patterns in coastal forests of South Africa. Journal of Biogeography, 41, 1428-1439.
25 Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices, estimation and comparison of fractions. Ecology, 87, 2614-2625.
26 Qian H (2001) A comparison of generic endemism of vascular plants between East Asia and North America. International Journal of Plant Sciences, 162, 191-199.
27 Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332.
28 Qian H, Kissling WD (2010) Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology, 91, 1172-1183.
29 Qian H, Swenson NG, Zhang J (2013) Phylogenetic beta diversity of angiosperms in North America. Global Ecology and Biogeography, 22, 1152-1161.
30 Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655.
31 Svenning JC, Flojgaard C, Baselga A (2011) Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. Journal of Animal Ecology, 80, 393-402.
32 Swenson NG (2011) Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS ONE, 6, e21264.
33 Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418-2424.
34 Tuomisto H, Ruokolainen K, Kalliola R, Linna A, Danjoy W, Rodriguez Z (1995) Dissecting Amazonian biodiversity. Science, 269, 63-66.
35 Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244.
36 Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernandez C, Romoleroux K, Losos E, Magard E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214-229.
37 Vavrek MJ (2011) Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica, 14,.
38 Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 145-155.
39 Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
40 Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183.
41 Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
42 Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society B: Biological Sciences, 268, 2211-2220.
43 WuZY(1980) Vegetation of China. Science Press, Beijing.(in Chinese)
[吴征镒 (1980) 中国植被. 科学出版社, 北京.]
44 Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
45 Zhang JL, Swenson NG, Chen SB, Liu XJ, Li ZS, Huang JH, Mi XC, Ma KP (2013) Phylogenetic beta diversity in tropical forests: implications for the roles of geographical and environmental distance. Journal of Systematics and Evolution, 51, 71-85.
[1] 胡菀,张志勇,陈陆丹,彭焱松,汪旭. (2020) 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报, 44(1): 44-55.
[2] 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. (2019) 华北区域环境梯度上阔叶林构建模式及分布成因. 植物生态学报, 43(9): 732-741.
[3] 唐丽丽,张梅,赵香林,康慕谊,刘鸿雁,高贤明,杨彤,郑璞帆,石福臣. (2019) 华北地区胡桃楸林分布规律及群落构建机制分析. 植物生态学报, 43(9): 753-761.
[4] 柴永福,许金石,刘鸿雁,刘全儒,郑成洋,康慕谊,梁存柱,王仁卿,高贤明,张峰,福臣,刘晓,岳明. (2019) 华北地区主要灌丛群落物种组成及系统发育结构特征. 植物生态学报, 43(9): 793-805.
[5] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[6] 袁海生, 魏玉莲, 周丽伟, 秦问敏, 崔宝凯, 何双辉. (2019) 东北4种林木干基腐朽病原真菌潜在分布范围预测及其生态位分析. 生物多样性, 27(8): 873-879.
[7] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. (2019) 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征. 生物多样性, 27(6): 619-629.
[8] 刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣. (2019) 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性, 27(4): 380-387.
[9] 江焕, 张辉, 龙文兴, 方燕山, 符明期, 朱孔新. (2019) 金钟藤入侵群落的种间联结及生态位特征. 生物多样性, 27(4): 388-399.
[10] 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. (2019) 长白山温带森林不同演替阶段群落功能性状的空间变化. 植物生态学报, 43(3): 208-216.
[11] 程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. (2019) 功能多样性和谱系多样性对热带云雾林群落构建的影响. 植物生态学报, 43(3): 217-226.
[12] 范靖宇, 李汉芃, 杨琢, 朱耿平. (2019) 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布. 生物多样性, 27(2): 140-148.
[13] 温纯,金光泽. (2019) 功能多样性对典型阔叶红松林生产力的影响. 植物生态学报, 43(2): 94-106.
[14] 刘金亮, 于明坚. (2019) 片段化森林群落构建的生态过程及其检验方法. 植物生态学报, 43(11): 929-945.
[15] 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. (2019) 古田山10种主要森林群落类型的α和β多样性格局及影响因素. 生物多样性, 27(1): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed