Biodiv Sci ›› 2022, Vol. 30 ›› Issue (8): 22186. DOI: 10.17520/biods.2022186
Special Issue: 土壤生物与土壤健康
• Review • Previous Articles Next Articles
Bing Yan1, Qing Lu2, Song Xia1, Junsheng Li3,*()
Received:
2022-04-14
Accepted:
2022-06-23
Online:
2022-08-20
Published:
2022-08-31
Contact:
Junsheng Li
Bing Yan, Qing Lu, Song Xia, Junsheng Li. An overview of advances in soil microbial diversity of urban environment[J]. Biodiv Sci, 2022, 30(8): 22186.
研究区域 Study area | 研究对象 Research object | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
---|---|---|---|---|---|
中国16个城市 16 representative cities, China | 公园土壤 Park soil | - | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes | Xu et al, |
中国广东东莞 Dongguan, Guangdong, China | 公园土壤 Park soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、疣微菌门、WPS-2、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, WPS-2, Planctomycetes, Chloroflexi, and Bacteroidetes | Tan et al, |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门 Ascomycota, Basidiomycota, and Zygomycota | ||||
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/substrate | 街边绿地-城市森林 Street green space-Urban forest | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、疣微菌门、浮霉菌门、绿弯菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Chloroflexi | Joyner et al, |
西班牙加利西亚 Galicia, Spain | 海滩沙丘 Coastal dune | 城市海滩-自然海滩 Urban beaches-Natural beaches | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes | Novoa et al, |
美国纽瓦克市 Newark, USA | 树木根际土壤 Tree rhizosphere soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 浮霉菌门、变形菌门、绿弯菌门、酸杆菌门 Planctomycetes, Proteobacteria, Chloroflexi, and Acidobacteria | Rosier et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 现代公园-古典公园 Young park-Old park | 细菌 Bacteria | 酸杆菌门、变形菌门、绿弯菌门、放线菌门 Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria | 张骏达等, |
中国福建 Fujian, China | 草坪土壤 Turfgrass soil | 城市-郊区-自然区域 Urban-Suburban-Natural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、装甲菌门、厚壁菌门、疣微菌门 Acidobacteria, Acidobacteria, Actinobacteria, Armatimonadetes, Firmicutes, and Verrucomicrobia | Zhang et al, |
美国芝加哥 Chicago, USA | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 人口密度/绿地类型 Population densities/Greenspace types | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、疣微菌门、放线菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, and Actinobacteria | Wang et al, |
芬兰赫尔辛基、拉赫蒂 Helsinki and Lahti, Finland | 公园土壤 Park soil | 公园年龄: 10, 50, >100 Park age: 10, 50, >100 | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、绿弯菌门、芽单胞菌门、硝化螺旋菌门 Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Nitrospirae | Hui et al, |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门、球囊菌门、壶菌门 Ascomycota, Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota | ||||
中国北京 Beijing, China | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 城市环路: 2环、2-3环、3-4环、4-5环、5环 Urban ring road: 2H, 2-3H, 3-4H, 4-5H, 5H | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Verrucomicrobia | Yan et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄: 10, 30, >100年 Park age: 10, 30, > 100 | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门、浮霉菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, and Planctomycetes | Yan et al, |
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/subtrate | 绿色屋顶-街旁洼地-非工程化绿色基础设施 Green roof-Bioswale-Non-engineered Green infrastructure | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门、浮霉菌门、疣微菌门、厚壁菌门、绿弯菌门、芽单胞菌门 Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Verrucomicrobia, Firmicutes, Chloroflexi, and Gemmatimonadetes | Gill et al, |
真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、球囊菌门、油壶菌门 Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota, and Olpidiomycota | ||||
研究区域 Location | 研究对象 | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
中国北京 Beijing, China | 公园/居民区/街道绿地土壤 Park/Residential/ Street soil | 公园-街道-居民区-工业区绿地 Park-Street-Residential- Industrial green space | 细菌 Bacteria | 变形菌门、酸杆菌门、绿弯菌门、放线菌门、芽单胞菌门、拟杆菌门 Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Gemmatimonadetes, and Bacteroidetes | Zhang et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄 Park ages | 真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、壶菌门、隐真菌门 Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, and Cryptomycota | 于天赫等, |
Table 1 Microbial community composition in urban soil
研究区域 Study area | 研究对象 Research object | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
---|---|---|---|---|---|
中国16个城市 16 representative cities, China | 公园土壤 Park soil | - | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi, and Bacteroidetes | Xu et al, |
中国广东东莞 Dongguan, Guangdong, China | 公园土壤 Park soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、疣微菌门、WPS-2、浮霉菌门、绿弯菌门、拟杆菌门 Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, WPS-2, Planctomycetes, Chloroflexi, and Bacteroidetes | Tan et al, |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门 Ascomycota, Basidiomycota, and Zygomycota | ||||
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/substrate | 街边绿地-城市森林 Street green space-Urban forest | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、疣微菌门、浮霉菌门、绿弯菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Chloroflexi | Joyner et al, |
西班牙加利西亚 Galicia, Spain | 海滩沙丘 Coastal dune | 城市海滩-自然海滩 Urban beaches-Natural beaches | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门 Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes | Novoa et al, |
美国纽瓦克市 Newark, USA | 树木根际土壤 Tree rhizosphere soil | 城市-郊区-农村 Urban-Suburban-Rural | 细菌 Bacteria | 浮霉菌门、变形菌门、绿弯菌门、酸杆菌门 Planctomycetes, Proteobacteria, Chloroflexi, and Acidobacteria | Rosier et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 现代公园-古典公园 Young park-Old park | 细菌 Bacteria | 酸杆菌门、变形菌门、绿弯菌门、放线菌门 Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria | 张骏达等, |
中国福建 Fujian, China | 草坪土壤 Turfgrass soil | 城市-郊区-自然区域 Urban-Suburban-Natural | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、装甲菌门、厚壁菌门、疣微菌门 Acidobacteria, Acidobacteria, Actinobacteria, Armatimonadetes, Firmicutes, and Verrucomicrobia | Zhang et al, |
美国芝加哥 Chicago, USA | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 人口密度/绿地类型 Population densities/Greenspace types | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、疣微菌门、放线菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, and Actinobacteria | Wang et al, |
芬兰赫尔辛基、拉赫蒂 Helsinki and Lahti, Finland | 公园土壤 Park soil | 公园年龄: 10, 50, >100 Park age: 10, 50, >100 | 细菌 Bacteria | 变形菌门、酸杆菌门、放线菌门、绿弯菌门、芽单胞菌门、硝化螺旋菌门 Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Nitrospirae | Hui et al, |
真菌 Fungi | 子囊菌门、担子菌门、接合菌门、球囊菌门、壶菌门 Ascomycota, Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota | ||||
中国北京 Beijing, China | 公园/街道/居民区绿地土壤 Park/Street/Resid-ential soil | 城市环路: 2环、2-3环、3-4环、4-5环、5环 Urban ring road: 2H, 2-3H, 3-4H, 4-5H, 5H | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, and Verrucomicrobia | Yan et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄: 10, 30, >100年 Park age: 10, 30, > 100 | 细菌 Bacteria | 变形菌门、酸杆菌门、拟杆菌门、放线菌门、芽单胞菌门、疣微菌门、浮霉菌门 Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, and Planctomycetes | Yan et al, |
美国纽约 New York, USA | 绿色基础设施土壤/生长介质 Green infrastructure soil/subtrate | 绿色屋顶-街旁洼地-非工程化绿色基础设施 Green roof-Bioswale-Non-engineered Green infrastructure | 细菌 Bacteria | 变形菌门、放线菌门、酸杆菌门、拟杆菌门、浮霉菌门、疣微菌门、厚壁菌门、绿弯菌门、芽单胞菌门 Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Verrucomicrobia, Firmicutes, Chloroflexi, and Gemmatimonadetes | Gill et al, |
真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、球囊菌门、油壶菌门 Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota, and Olpidiomycota | ||||
研究区域 Location | 研究对象 | 环境梯度 Environmental gradient | 微生物类群 Microbial taxa | 优势菌门 Dominant phylum | 文献来源 References |
中国北京 Beijing, China | 公园/居民区/街道绿地土壤 Park/Residential/ Street soil | 公园-街道-居民区-工业区绿地 Park-Street-Residential- Industrial green space | 细菌 Bacteria | 变形菌门、酸杆菌门、绿弯菌门、放线菌门、芽单胞菌门、拟杆菌门 Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, Gemmatimonadetes, and Bacteroidetes | Zhang et al, |
中国北京 Beijing, China | 公园土壤 Park soil | 公园年龄 Park ages | 真菌 Fungi | 子囊菌门、担子菌门、被孢霉门、壶菌门、隐真菌门 Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, and Cryptomycota | 于天赫等, |
[1] |
Abo Shelbaya MM, Abd El-Azeim MM, Menesi AM,Abd El-Mageed MM (2021) Heavy metals and microbial activity in alluvial soils affected by different land-uses. Journal of Soil Sciences and Agricultural Engineering, 12, 165-177.
DOI URL |
[2] | Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, USA, 105, 11512-11519. |
[3] | Baiser B, Olden JD, Record S, Lockwood JL, McKinney ML (2012) Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B: Biological Sciences, 279, 4772-4777. |
[4] |
Barrico L, Azul AM, Morais MC, Coutinho AP, Freitas H, Castro P (2012) Biodiversity in urban ecosystems: Plants and macromycetes as indicators for conservation planning in the city of Coimbra (Portugal). Landscape and Urban Planning, 106, 88-102.
DOI URL |
[5] | Barrico L, Castro H, Coutinho AP, Gonçalves MT, Freitas H, Castro P (2018) Plant and microbial biodiversity in urban forests and public gardens: Insights for cities’ sustainable development. Urban Forestry & Urban Greening, 29, 19-27. |
[6] |
Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1-13.
DOI URL |
[7] |
Betts R (2007) Implications of land ecosystem‐atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B: Chemical and Physical Meteorology, 59, 602-615.
DOI URL |
[8] |
Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R (2018) Globally rising soil heterotrophic respiration over recent decades. Nature, 560, 80-83.
DOI URL |
[9] |
Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
DOI URL |
[10] | Buczkowski G, Richmond DS (2012) The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE, 7, e41729. |
[11] |
Byrne LB (2007) Habitat structure: A fundamental concept and framework for urban soil ecology. Urban Ecosystems, 10, 255-274.
DOI URL |
[12] |
Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12, 2998-3006.
DOI URL |
[13] |
Cousins JR, Hope D, Gries C, Stutz JC (2003) Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem. Mycorrhiza, 13, 319-326.
DOI URL |
[14] |
Curtis TP, Sloan WT (2005) Exploring microbial diversity—A vast below. Science, 309, 1331-1333.
PMID |
[15] |
de Kimpe CR, Morel JL (2000) Urban soil management: A growing concern. Soil Science, 165, 31-40.
DOI URL |
[16] |
de Miguel E, de Grado MJ, Llamas JF, Martı́n-Dorado A, Mazadiego LF (1998) The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Science of the Total Environment, 215, 113-122.
DOI URL |
[17] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
DOI PMID |
[18] |
Demina S, Vasenev V, Ivashchenko K, Ananyeva N, Plyushchikov V, Hajiaghayeva R, Dovletyarova E (2018) Microbial properties of urban soils with different land-use history in New Moscow. Soil Science, 183, 132-140.
DOI URL |
[19] | Dunivin TK, Shade A (2018) Community structure explains antibiotic resistance gene dynamics over a temperature gradient in soil. FEMS Microbiology Ecology, 94, fiy016. |
[20] |
Eilers KG, Debenport S, Anderson S, Fierer N (2012) Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology & Biochemistry, 50, 58-65.
DOI URL |
[21] | Epp Schmidt DJ, Pouyat R, Szlavecz K, Setälä H, Kotze DJ, Yesilonis I, Cilliers S, Hornung E, Dombos M, Yarwood SA (2017) Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology & Evolution, 1, 123. |
[22] | Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, USA, 103, 626-631. |
[23] |
Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature, 509, 612-616.
DOI URL |
[24] | Fu FY, Lu HF (2015) Effects of urbanization on soil community structure under subtropical evergreen broad-leaved forests. Ecology and Environmental Sciences, 24, 938-946. (in Chinese with English abstract) |
[符方艳, 陆宏芳 (2015) 城市化对南亚热带常绿阔叶林土壤生物群落结构的影响. 生态环境学报, 24, 938-946.] | |
[25] |
Fuhrman JA (2009) Microbial community structure and its functional implications. Nature, 459, 193-199.
DOI URL |
[26] |
Garbeva P, Elsas JD, Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant and Soil, 302, 19-32.
DOI URL |
[27] |
Ghosh S, Scharenbroch BC, Ow LF (2016) Soil organic carbon distribution in roadside soils of Singapore. Chemosphere, 165, 163-172.
DOI URL |
[28] | Gill AS, Lee A, McGuire KL (2017) Phylogenetic and functional diversity of total (DNA) and expressed (RNA) bacterial communities in urban green infrastructure bioswale soils. Applied and Environmental Microbiology, 83, e00287. |
[29] |
Gill AS, Purnell K, Palmer MI, Stein J, McGuire KL (2020) Microbial composition and functional diversity differ across urban green infrastructure types. Frontiers in Microbiology, 11, 912.
DOI URL |
[30] | Gkorezis P, Daghio M, Franzetti A, van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective. Frontiers in Microbiology, 7, 1836. |
[31] |
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008) Global change and the ecology of cities. Science, 319, 756-760.
DOI URL |
[32] | Guo DL, Zhang J, Shen S, Yu ZJ, Yang JS, Luo HY (2022) Effects of heavy metal content on fungal community structure in urban soil. Environmental Science, 43, 510-520. (in Chinese with English abstract) |
[郭大陆, 张建, 申思, 余子洁, 杨军顺, 罗红燕 (2022) 重金属含量对城市土壤真菌群落结构的影响. 环境科学, 43, 510-520.] | |
[33] | Hang XS, Wang HY, Zhou JM, Du CW, Chen XQ (2010) Heavy metal contamination characteristics and its impacts on microbial and enzymatic activities in the soil surrounding an electroplating factory. Journal of Agro-Environment Science, 29, 2133-2138. (in Chinese with English abstract) |
[杭小帅, 王火焰, 周健民, 杜昌文, 陈小琴 (2010) 电镀厂附近土壤重金属污染特征及其对微生物与酶活性的影响. 农业环境科学学报, 29, 2133-2138.] | |
[34] | Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences, USA, 109, 8334-8339. |
[35] | He Y, Li CT, Yu YC, He HP, Tao X (2021) Variation of subtropical forest soil microbial biomass and soil microbial community functional characteristics along an urban-rural gradient. Chinese Journal of Applied Ecology, 32, 93-102. (in Chinese with English abstract) |
[何越, 李春涛, 俞元春, 何黄盼, 陶晓 (2021) 亚热带森林土壤微生物生物量及群落功能特征的城乡梯度变化. 应用生态学报, 32, 93-102.]
DOI |
|
[36] | Hermans SM, Taylor M, Grelet G, Curran-Cournane F, Buckley HL, Handley KM, Lear G (2020) From pine to pasture: Land use history has long-term impacts on soil bacterial community composition and functional potential. FEMS Microbiology Ecology, 96, fiaa041. |
[37] | Hou Y, Zhou HP, Zhang C (2014) Effects of urbanization on community structure of soil microorganism. Ecology and Environmental Sciences, 23, 1108-1112. (in Chinese with English abstract) |
[侯颖, 周会萍, 张超 (2014) 城市化对土壤微生物群落结构的影响. 生态环境学报, 23, 1108-1112.] | |
[38] |
Hu YH, Dou XL, Li JY, Li F (2018) Impervious surfaces alter soil bacterial communities in urban areas: A case study in Beijing, China. Frontiers in Microbiology, 9, 226.
DOI URL |
[39] |
Hui N, Jumpponen A, Francini G, Kotze DJ, Liu XX, Romantschuk M, Strömmer R, Setälä H (2017) Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental Microbiology, 19, 1281-1295.
DOI URL |
[40] |
Huot H, Joyner J, Córdoba A, Shaw RK, Wilson MA, Walker R, Muth TR, Cheng ZQ (2017) Characterizing urban soils in New York City: Profile properties and bacterial communities. Journal of Soils and Sediments, 17, 393-407.
DOI URL |
[41] |
Jesus ED, Marsh TL, Tiedje JM, Moreira FMD (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 3, 1004-1011.
DOI URL |
[42] | Jiang YF (2009) Preliminary Study on Composition, Distribution and Source Identification of Persistent Organic Pollutants in Soil of Shanghai. PhD dissertation, Shanghai University, Shanghai. (in Chinese with English abstract) |
[蒋煜峰 (2009) 上海地区土壤中持久性有机污染物污染特征、分布及来源初步研究. 上海大学, 上海.] | |
[43] |
Joyner JL, Kerwin J, Deeb M, Lozefski G, Prithiviraj B, Paltseva A, McLaughlin J, Groffman P, Cheng ZQ, Muth TR (2019) Green infrastructure design influences communities of urban soil bacteria. Frontiers in Microbiology, 10, 982.
DOI URL |
[44] |
Karpati AS, Handel SN, Dighton J, Horton TR (2011) Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza, 21, 537-547.
DOI PMID |
[45] |
Kaye JP, Groffman M, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends in Ecology & Evolution, 21, 192-199.
DOI URL |
[46] |
Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152-3166.
DOI URL |
[47] | Li YW, Wang J, Ju TZ, Wang L, Lin N, Zhang SN, Zha XH (2017) Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin, Gansu, China. Chinese Journal of Ecology, 36, 1408-1418. (in Chinese with English abstract) |
[李有文, 王晶, 巨天珍, 王莉, 林宁, 张胜楠, 查向浩 (2017) 白银市不同功能区土壤重金属污染特征及其健康风险评价. 生态学杂志, 36, 1408-1418.] | |
[48] |
Loranger-Merciris G, Barthes L, Gastine A, Leadley P (2006) Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology & Biochemistry, 38, 2336-2343.
DOI URL |
[49] | Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences, USA, 104, 11436-11440. |
[50] |
Madejón E, Burgos P, López R, Cabrera F (2001) Soil enzymatic response to addition of heavy metals with organic residues. Biology and Fertility of Soils, 34, 144-150.
DOI URL |
[51] |
Magle SB, Hunt VM, Vernon M, Crooks KR (2012) Urban wildlife research: Past, present, and future. Biological Conservation, 155, 23-32.
DOI URL |
[52] |
McBride MB, Shayler HA, Spliethoff HM, Mitchell RG, Marquez-Bravo LG, Ferenz GS, Russell-Anelli JM, Casey L, Bachman S (2014) Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables. Environmental Pollution, 194, 254-261.
DOI PMID |
[53] |
McDonnell MJ, Hahs AK (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landscape Ecology, 23, 1143-1155.
DOI URL |
[54] | McGuire KL, Payne SG, Palmer MI, Gillikin CM, Keefe D, Kim SJ, Gedallovich SM, Discenza J, Rangamannar R, Koshner JA, Massmann AL, Orazi G, Essene A, Leff JW, Fierer N (2013) Digging the New York City Skyline:Soil fungal communities in green roofs and city parks. PLoS ONE, 8, e58020. |
[55] |
McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience, 52, 883-890.
DOI URL |
[56] |
McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247-260.
DOI URL |
[57] |
McKinney ML (2008) Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems, 11, 161-176.
DOI URL |
[58] |
McKinney ML, Lockwood JL (1999) Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14, 450-453.
DOI URL |
[59] | Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences, USA, 105, 19780-19785. |
[60] |
Michel HM, Williams MA (2011) Soil habitat and horizon properties impact bacterial diversity and composition. Soil Science Society of America Journal, 75, 1440-1448.
DOI URL |
[61] | Mills JG, Bissett A, Gellie NJC, Lowe AJ, Selway CA, Thomas T, Weinstein P, Weyrich LS, Breed MF (2020) Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restoration Ecology, 28, S322-S334. |
[62] |
Morel JL, Chenu C, Lorenz K (2015) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). Journal of Soils and Sediments, 15, 1659-1666.
DOI URL |
[63] | Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, Knight R, Gilbert JA, Quade J, Caporaso JG, Maier RM (2017) Significant impacts of increasing aridity on the arid soil microbiome. mSystems, 2, e00195-16. |
[64] | Novoa A, Keet JH, Lechuga-Lago Y, Pyšek P, Roux JJL (2020) Urbanization and Carpobrotus edulis invasion alter the diversity and composition of soil bacterial communities in coastal areas. FEMS Microbiology Ecology, 96, fiaa106. |
[65] |
Ochimaru TO, Fukuda KF (2007) Changes in fungal communities in evergreen broad-leaved forests across. Canadian Journal of Forest Research, 37, 247-258.
DOI URL |
[66] |
Orwin KH, Wardle DA, Greenfield LG (2006) Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology, 87, 580-593.
PMID |
[67] |
Ossola A, Hahs AK, Livesley SJ (2015) Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems. Journal of Environmental Management, 159, 1-10.
DOI URL |
[68] |
Parajuli A, Grönroos M, Siter N, Puhakka R, Vari HK, Roslund MI, Jumpponen A, Nurminen N, Laitinen OH, Hyöty H, Rajaniemi J, Sinkkonen A (2018) Urbanization reduces transfer of diverse environmental microbiota indoors. Frontiers in Microbiology, 9, 84.
DOI URL |
[69] |
Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment, 9, 27-36.
DOI URL |
[70] |
Peng C, Wang ME, Zhao Y, Chen WP (2016) Distribution and risks of polycyclic aromatic hydrocarbons in suburban and rural soils of Beijing with various land uses. Environmental Monitoring and Assessment, 188, 162.
DOI PMID |
[71] |
Perrodin Y, Boillot C, Angerville R, Donguy G, Emmanuel E (2011) Ecological risk assessment of urban and industrial systems: A review. Science of the Total Environment, 409, 5162-5176.
DOI URL |
[72] |
Pickett STA, Cadenasso ML (2006) Advancing urban ecological studies: Frameworks, concepts, and results from the Baltimore Ecosystem Study. Austral Ecology, 31, 114-125.
DOI URL |
[73] |
Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science, 269, 347-350.
PMID |
[74] |
Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 18, 85-95.
DOI URL |
[75] |
Rai PK, Rai A, Singh S (2018) Change in soil microbial biomass along a rural-urban gradient in Varanasi (U.P., India). Geology, Ecology, and Landscapes, 2, 15-21.
DOI URL |
[76] |
Rajaniemi TK, Allison VJ (2009) Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biology & Biochemistry, 41, 102-109.
DOI URL |
[77] | Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, Kelly EF, Oldfield EE, Shaw EA, Steenbock C, Bradford MA, Wall DH, Fierer N (2014) Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20141988. |
[78] |
Reese AT, Savage A, Youngsteadt E, McGuire KL, Koling A, Watkins O, Frank SD, Dunn RR (2016) Urban stress is associated with variation in microbial species composition—but not richness—in Manhattan. The ISME Journal, 10, 751-760.
DOI URL |
[79] |
Rex D, Clough TJ, Richards KG, Klein C, Morales SE, Samad MS, Grant J, Lanigan GJ (2018) Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutrient Cycling in Agroecosystems, 110, 135-149.
DOI URL |
[80] |
Rosier CL, Polson SW, D’Amico V, Kan JJ, Trammell TLE (2021) Urbanization pressures alter tree rhizosphere microbiomes. Scientific Reports, 11, 9447.
DOI PMID |
[81] | Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, Cinek O, Kramná L, Siter N, Vari HK, Soininen L, Parajuli A, Rajaniemi J, Kinnunen T, Laitinen OH, Hyöty H, Sinkkonen A,ADELE Research Group (2020) Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Science Advances, 6, eaba2578. |
[82] |
Ruokolainen L, von Hertzen L, Fyhrquist N, Laatikainen T, Lehtomäki J, Auvinen P, Karvonen AM, Hyvärinen A, Tillmann V, Niemelä O, Knip M, Haahtela T, Pekkanen J, Hanski I (2015) Green areas around homes reduce atopic sensitization in children. Allergy, 70, 195-202.
DOI PMID |
[83] |
Russo D, Ancillotto L (2015) Sensitivity of bats to urbanization: A review. Mammalian Biology, 80, 205-212.
DOI URL |
[84] |
Savard JPL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landscape and Urban Planning, 48, 131-142.
DOI URL |
[85] |
Scharenbroch BC, Lloyd JE, Johnson-Maynard JL (2005) Distinguishing urban soils with physical, chemical, and biological properties. Pedobiologia, 49, 283-296.
DOI URL |
[86] |
Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, Lowe A, Breed MF, Weyrich LS (2020) Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environment International, 145, 106084.
DOI URL |
[87] |
Shanahan DF, Lin BB, Gaston KJ, Bush R, Fuller RA (2015) What is the role of trees and remnant vegetation in attracting people to urban parks? Landscape Ecology, 30, 153-165.
DOI URL |
[88] |
Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57, 204-211.
DOI URL |
[89] |
Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30, 428-471.
DOI URL |
[90] |
Singh JP, Vaidya BP, Goodey NM, Krumins JA (2019) Soil microbial response to metal contamination in a vegetated and urban brownfield. Journal of Environmental Management, 244, 313-319.
DOI URL |
[91] | Stabler LB, Martin CA, Stutz JC (2001) Effect of urban expansion on arbuscular mycorrhizal fungal mediation of landscape tree growth. Journal of Arboriculture, 27, 193-202. |
[92] |
Tan X, Kan L, Su Z, Liu X, Zhang L (2019) The composition and diversity of soil bacterial and fungal communities along an urban-to-rural gradient in South China. Forests, 10, 797.
DOI URL |
[93] | UN DESA (2018) World Population Prospects 2018:Highlights. United Nations Department for Economic and Social Affairs, New York (US). |
[94] |
van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. The ISME Journal, 1, 28-37.
DOI URL |
[95] |
van Rensburg BJ, Peacock DS, Robertson MP (2009) Biotic homogenization and alien bird species along an urban gradient in South Africa. Landscape and Urban Planning, 92, 233-241.
DOI URL |
[96] |
von Hertzen L, Hanski I, Haahtela T (2011) Natural immunity: Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Reports, 12, 1089-1093.
DOI PMID |
[97] |
Wang FH, Qiao M, Su JQ, Chen Z, Zhou X, Zhu YG (2014) High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environmental Science & Technology, 48, 9079-9085.
DOI URL |
[98] | Wang HH, Li LQ, Pan GX, Wu XM (2005) Topsoil microbial carbon and nitrogen and enzyme activity of different city zones in Nanjing, China. Chinese Journal of Ecology, 24, 273-277. (in Chinese with English abstract) |
[王焕华, 李恋卿, 潘根兴, 吴新民 (2005) 南京市不同功能城区表土微生物碳氮与酶活性分析. 生态学杂志, 24, 273-277.] | |
[99] |
Wang HT, Cheng MY, Dsouza M, Weisenhorn P, Zheng TL, Gilbert JA (2018) Soil bacterial diversity is associated with human population density in urban greenspaces. Environmental Science & Technology, 52, 5115-5124.
DOI URL |
[100] |
Wang HT, Marshall CW, Cheng MY, Xu HJ, Li H, Yang XR, Zheng TL (2017) Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Scientific Reports, 7, 44049.
DOI URL |
[101] | White MP, Alcock I, Grellier J, Wheeler BW, Hartig T, Warber SL, Bone A, Depledge MH, Fleming LE (2019) Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Scientific Reports, 9, 7730. |
[102] | Wichmann F, Udikovic-Kolic N, Andrew S, Handelsman J (2014) Diverse antibiotic resistance genes in dairy cow manure. MBio, 5, e01017. |
[103] |
Wu TH, Chellemi DO, Graham JH, Martin KJ, Rosskopf EN (2008) Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. Microbial Ecology, 55, 293-310.
DOI URL |
[104] | Xie Y, Fan JB, Zhu WX, Amombo E, Lou YH, Chen L, Fu JM (2016) Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Frontiers in Plant Science, 7, 755. |
[105] |
Xu HJ, Li S, Su JQ, Nie SA, Gibson V, Li H, Zhu YG (2014) Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiology Ecology, 87, 182-192.
DOI URL |
[106] | Yan B, Li JS, Lu Q, Xiong JH, Xiao NW, Fu G (2019) Soil microbial carbon metabolic activity of green-land of urban park in Beijing. Research of Environmental Sciences, 32, 1567-1574. (in Chinese with English abstract) |
[闫冰, 李俊生, 陆晴, 熊继海, 肖能文, 付刚 (2019) 北京城市公园绿地土壤微生物群落碳源代谢活性特征. 环境科学研究, 32, 1567-1574.] | |
[107] |
Yan B, Li JS, Xiao NW, Qi Y, Fu G, Liu GH, Qiao MP (2016) Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing. Scientific Reports, 6, 38811.
DOI URL |
[108] |
Yan B, Lu Q, He J, Qi Y, Fu G, Xiao NW, Li JS (2021) Composition and interaction frequencies in soil bacterial communities change in association with urban park age in Beijing. Pedobiologia, 84, 150699.
DOI URL |
[109] | Yan B, Xiao NW, Qi Y, Fu G, Gao XQ, Liu GH, Li JS (2016) Effects of urban development on soil microbial functional diversity in Beijing. Research of Environmental Sciences, 29, 1325-1335. (in Chinese with English abstract) |
[闫冰, 肖能文, 齐月, 付刚, 高晓琦, 刘高慧, 李俊生 (2016) 北京城市发展对土壤微生物群落功能多样性的影响. 环境科学研究, 29, 1325-1335.] | |
[110] |
Yan ZZ, Chen QL, Zhang YJ, He JZ, Hu HW (2019) Antibiotic resistance in urban green spaces mirrors the pattern of industrial distribution. Environment International, 132, 105106.
DOI URL |
[111] |
Yang YG, Campbell CD, Clark L, Cameron CM, Paterson E (2006) Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63, 1942-1952.
DOI URL |
[112] | Yang YG, Paterson E, Campbell C (2000) Study on microbial properties of urban soils in Aberdeen City, Scotland, UK. Acta Mineralogica Sinica, 20, 342-348. (in Chinese with English abstract) |
[杨元根, Paterson E, Campbell C (2000) 苏格兰阿伯丁城市土壤的微生物特性研究. 矿物学报, 20, 342-348.] | |
[113] | Yu TH, Zhang NL, Yu S, Qu LY (2021) The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing. Acta Ecologica Sinica, 41, 1835-1845. (in Chinese with English abstract) |
[于天赫, 张乃莉, 于爽, 曲来叶 (2021) 北京城市公园常见乔木土壤真菌群落特征及影响因素. 生态学报, 41, 1835-1845.] | |
[114] |
Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology, 84, 2042-2050.
DOI URL |
[115] |
Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 69, 395-406.
DOI URL |
[116] | Zhang GL, Zhu YG, Fu BJ (2003) Quality changes of soils in urban and suburban areas and its eco-environmental impacts—A review. Acta Ecologica Sinica, 23, 539-546. (in Chinese with English abstract) |
[张甘霖, 朱永官, 傅伯杰 (2003) 城市土壤质量演变及其生态环境效应. 生态学报, 23, 539-546.] | |
[117] | Zhang GX, Xu J, Wang GB, Wu SS, Ruan HH (2010) Soil respiration under different vegetation types in Nanjing urban green space. Chinese Journal of Ecology, 29, 274-280. (in Chinese with English abstract) |
[张鸽香, 徐娇, 王国兵, 武珊珊, 阮宏华 (2010) 南京城市公园绿地不同植被类型土壤呼吸的变化. 生态学杂志, 29, 274-280.] | |
[118] |
Zhang J, Wang LH, Yang JC, Liu H, Dai JL (2015) Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Science of the Total Environment, 508, 29-36.
DOI URL |
[119] |
Zhang JD, Li SY, Sun XY, Tong J, Fu Z, Li J (2019) Sustainability of urban soil management: Analysis of soil physicochemical properties and bacterial community structure under different green space types. Sustainability, 11, 1395.
DOI URL |
[120] | Zhang JD, Li SY, Sun XY, Zhang H, Hu N, Fu Z, Guo ZT (2019) Analysis of soil bacterial diversity in urban parks with different ages by high throughput sequencing. Microbiology China, 46, 65-74. (in Chinese with English abstract) |
[张骏达, 李素艳, 孙向阳, 张骅, 呼诺, 傅振, 郭子腾 (2019) 基于高通量测序技术的不同年代公园绿地土壤细菌多样性. 微生物学通报, 46, 65-74.] | |
[121] |
Zhang Y, Ji GD, Wu T, Qiu JX (2020) Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale. Environmental Pollution, 258, 113708.
DOI URL |
[122] |
Zhao D, Li F, Wang RS, Yang QR, Ni HS (2012) Effect of soil sealing on the microbial biomass, N transformation and related enzyme activities at various depths of soils in urban area of Beijing, China. Journal of Soils and Sediments, 12, 519-530.
DOI URL |
[123] |
Zhao JJ, Ouyang ZY, Xu WH, Zheng H, Meng XS (2010) Sampling adequacy estimation for plant species composition by accumulation curves: A case study of urban vegetation in Beijing, China. Landscape and Urban Planning, 95, 113-121.
DOI URL |
[124] |
Zhu WX, Carreiro MM (2004) Variations of soluble organic nitrogen and microbial nitrogen in deciduous forest soils along an urban-rural gradient. Soil Biology & Biochemistry, 36, 279-288.
DOI URL |
[1] | Jiali Lian, Jing Chen, Xueqin Yang, Ying Zhao, Xu Luo, Cui Han, Yaxin Zhao, Jianping Li. Responses of desert steppe plant diversity and microbial diversity to precipitation change [J]. Biodiv Sci, 2024, 32(6): 24044-. |
[2] | Tingwei Dong, Meiling Huang, Xu Wei, Shuo Ma, Qu Yue, Wenli Liu, Jiaxin Zheng, Gang Wang, Rui Ma, Youzhong Ding, Shunqi Bo, Zhenghuan Wang. Potential spatial distribution pattern and landscape connectivity of Pelophylax plancyi in Shanghai, China [J]. Biodiv Sci, 2023, 31(8): 22692-. |
[3] | Zhengming Luo, Jinxian Liu, Bianhua Zhang, Yanying Zhou, Aihua Hao, Kai Yang, Baofeng Chai. Diversity characteristics and driving factors of soil protist communities in subalpine meadow at different degradation stages [J]. Biodiv Sci, 2023, 31(8): 23136-. |
[4] | Xiaohua Zhu, Cheng Gao, Cong Wang, Peng Zhao. Research progress on the effect of urea on bacterial and fungal diversity in soil [J]. Biodiv Sci, 2023, 31(6): 22636-. |
[5] | Renxiu Yao, Yan Chen, Xiaoqin Lü, Jianghu Wang, Fujun Yang, Xiaoyue Wang. Altitude-related environmental factors shape the phenotypic characteristics and chemical profile of Rhododendron [J]. Biodiv Sci, 2023, 31(2): 22259-. |
[6] | Wen Zhao, Dandan Wang, Mumin Reyila, Kaichuan Huang, Shun Liu, Baokai Cui. Soil microbial community structure of Larix gmelinii forest in the Aershan area [J]. Biodiv Sci, 2023, 31(2): 22258-. |
[7] | Lujia Tian, Xiaobo Yang, Donghai Li, Long Li, Lin Chen, Caiqun Liang, Peichun Zhang, Chendi Li. Species diversity and nestedness of bird assemblages in the forest fragments of Haikou and Sanya cities [J]. Biodiv Sci, 2022, 30(6): 21424-. |
[8] | Haifeng Yao, Saichao Zhang, Huayuan Shangguan, Zhipeng Li, Xin Sun. Effects of urbanization on soil fauna community structure and diversity [J]. Biodiv Sci, 2022, 30(12): 22547-. |
[9] | Jinfeng Zheng, Rong Tang, Shuang He, Yuehong Chen, Su Wu, Kai Zhang, Yu Xu, Xiao Zou. Bird diversity and nestedness on fragmented woodlots in Huaxi University Town, Guizhou Province [J]. Biodiv Sci, 2021, 29(5): 661-667. |
[10] | Bo Chen, Lan Jiang, Ziyang Xie, Yangdi Li, Jiaxuan Li, Mengjia Li, Chensi Wei, Cong Xing, Jinfu Liu, Zhongsheng He. Taxonomic and phylogenetic diversity of plants in a Castanopsis kawakamiinatural forest [J]. Biodiv Sci, 2021, 29(4): 439-448. |
[11] | Fangyuan Lan, Xingjian Ma, Jinyao Lu, Yuguo Li, Rusong Chai, Xiang Li, Yiou Luo, Yuze Zhang, Ziling Ye, Changjian Fu, Wenshuang Bao, Li Li, Xiaoying Xing. Effects of urbanization on bird nesting: A review [J]. Biodiv Sci, 2021, 29(11): 1539-1553. |
[12] | Tingting Li, Ximei Zhang. Research progress of the maintaining mechanisms of soil microbial diversity in Inner Mongolia grasslands under global change [J]. Biodiv Sci, 2020, 28(6): 749-758. |
[13] | Anrong Liu, Teng Yang, Wei Xu, Zijian Shangguan, Jinzhou Wang, Huiying Liu, Yu Shi, Haiyan Chu, Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987. |
[14] | Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765. |
[15] | Jing Yan, Xiaoya Zhang, Xue Chen, Yue Wang, Fengjuan Zhang, Fanghao Wan. Effects of rhizosphere soil microorganisms and soil nutrients on competitiveness of Bidens pilosa with different native plants [J]. Biodiv Sci, 2016, 24(12): 1381-1389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn