Biodiv Sci ›› 2018, Vol. 26 ›› Issue (2): 149-157. DOI: 10.17520/biods.2017196
• Orginal Article • Previous Articles Next Articles
Ruiling Song1, Hao Wang1,*(), Di Zhang1, Zhi Lü1,2, Ziyun Zhu1,2, Lu Zhang1, Yanlin Liu1,3, gongbao Caiwen2, Lan Wu1
Received:
2017-07-04
Accepted:
2018-01-18
Online:
2018-02-20
Published:
2018-05-05
Contact:
Wang Hao
About author:
# Co-first authors
Ruiling Song, Hao Wang, Di Zhang, Zhi Lü, Ziyun Zhu, Lu Zhang, Yanlin Liu, gongbao Caiwen, Lan Wu. Conservation outcomes assessment of Sanjiangyuan alpine grassland with MODIS-EVI approach[J]. Biodiv Sci, 2018, 26(2): 149-157.
模型 Model | 拟合方程 Function | 决定系数R2 Coefficients of determination | Sig. | 平均误差系数 Mean error coefficients |
---|---|---|---|---|
线性 Linear | Y = 376.571X - 17.075 | 0.606 | < 0.001 | 33.4% |
二次 Quadratic | Y = 163.385X2 + 280.199X - 6.634 | 0.609 | < 0.001 | 43.0% |
乘幂 Power | Y = 383.897X1.3 | 0.675 | < 0.001 | 24.3% |
指数 Exponential | Y = 11.977e5.653X | 0.611 | < 0.001 | 32.4% |
Table 1 The four regression models based on the measured aboveground biomass and the related enhanced vegetation index (EVI) (X = EVI; Y = aboveground biomass)
模型 Model | 拟合方程 Function | 决定系数R2 Coefficients of determination | Sig. | 平均误差系数 Mean error coefficients |
---|---|---|---|---|
线性 Linear | Y = 376.571X - 17.075 | 0.606 | < 0.001 | 33.4% |
二次 Quadratic | Y = 163.385X2 + 280.199X - 6.634 | 0.609 | < 0.001 | 43.0% |
乘幂 Power | Y = 383.897X1.3 | 0.675 | < 0.001 | 24.3% |
指数 Exponential | Y = 11.977e5.653X | 0.611 | < 0.001 | 32.4% |
匹配前后 Before & after matching (BM & AM) | 统计值 Statistics | 海拔 Elevation (m) | 坡度 Slope (°) | 草地类型(高寒草甸/高寒草原) Grassland type (Alpine meadow/ Alpine steppe) | 人口密度(人/km2) Population density (per km2) |
---|---|---|---|---|---|
匹配前 BM | 均值 Mean (内/外 Inside/Outside) | 4,567.200 /4,414.500 | 10.911/12.770 | 1.129/1.092 | 0.799/2.782 |
匹配后 AM | 均值 Mean (内/外 Inside/Outside) | 4,566.700 /4,572.500 | 10.914/11.085 | 1.129/1.120 | 0.799/1.752 |
匹配前 BM | 标准化均数差 Standardized mean difference | 49.409 | -19.899 | 11.040 | -9.659 |
匹配后 AM | 标准化均数差 Standardized mean difference | -1.894 | -1.833 | 2.453 | -4.639 |
Table 2 The differences of the 4 covariates inside and outside of Sanjiangyuan Nature Reserve were smaller after matching
匹配前后 Before & after matching (BM & AM) | 统计值 Statistics | 海拔 Elevation (m) | 坡度 Slope (°) | 草地类型(高寒草甸/高寒草原) Grassland type (Alpine meadow/ Alpine steppe) | 人口密度(人/km2) Population density (per km2) |
---|---|---|---|---|---|
匹配前 BM | 均值 Mean (内/外 Inside/Outside) | 4,567.200 /4,414.500 | 10.911/12.770 | 1.129/1.092 | 0.799/2.782 |
匹配后 AM | 均值 Mean (内/外 Inside/Outside) | 4,566.700 /4,572.500 | 10.914/11.085 | 1.129/1.120 | 0.799/1.752 |
匹配前 BM | 标准化均数差 Standardized mean difference | 49.409 | -19.899 | 11.040 | -9.659 |
匹配后 AM | 标准化均数差 Standardized mean difference | -1.894 | -1.833 | 2.453 | -4.639 |
序号 No. | 评估对象(处理组/对照组) Items(treatment /control) | ATT | t | P-value |
---|---|---|---|---|
1 | 保护区内/外 Inside/outside of NR | -158.170 | -4.7394 | 0.000** |
2 | 保护区内/外(去除10 km 缓冲区) Inside/outside (without 10 km buffer) of NR | -126.700 | -3.030 | 0.002** |
3 | 保护区内/外5 km缓冲区 5 km buffer inside and outside the border of NR | -211.200 | -5.755 | 0.000** |
4 | 保护区核心区 Core areas of NR | -185.410 | -5.668 | 0.000** |
Table 3 Results of the average treatment effect on the treated (ATT) and paired-samples t-test of aboveground biomass change rate inside and outside of Sanjiangyuan Nature Reserve (NR)
序号 No. | 评估对象(处理组/对照组) Items(treatment /control) | ATT | t | P-value |
---|---|---|---|---|
1 | 保护区内/外 Inside/outside of NR | -158.170 | -4.7394 | 0.000** |
2 | 保护区内/外(去除10 km 缓冲区) Inside/outside (without 10 km buffer) of NR | -126.700 | -3.030 | 0.002** |
3 | 保护区内/外5 km缓冲区 5 km buffer inside and outside the border of NR | -211.200 | -5.755 | 0.000** |
4 | 保护区核心区 Core areas of NR | -185.410 | -5.668 | 0.000** |
序号 No. | 保护分区 Sub-reserves | ATT | t | P-value |
---|---|---|---|---|
1 | 格拉丹东 Kelha Dandong | -119.880 | -0.777 | 0.436 |
2 | 麦秀 Manshuk | -139.200 | -0.770 | 0.442 |
3 | 果宗木查 Gorzong Mecha | 295.070 | 8.240 | 0.000** |
4 | 当曲 Dangchu | -259.300 | -9.970 | 0.000** |
5 | 索加-曲麻河 Suogya-Chemar River | 94.364 | 3.438 | 0.001** |
6 | 多可河 Dokhuk River | -198.440 | -0.600 | 0.548 |
7 | 玛可河 Makhuk River | 587.030 | 3.740 | 0.000** |
8 | 年保玉则 Nyanpo Yetse | 540.270 | 5.380 | 0.000** |
9 | 约古宗列 Yeger Zongne | -309.160 | -7.644 | 0.000** |
10 | 扎陵湖-鄂陵湖 Gyaring Lake-Ngoring Lake | -777.280 | -19.414 | 0.000** |
11 | 星星海 Xingxing Lake | -1695.200 | -29.040 | 0.000** |
12 | 阿尼玛卿 Anye Maching | -584.970 | -8.290 | 0.000** |
13 | 中铁-军功 Zhongtie-Jungong | -612.480 | -7.840 | 0.000** |
14 | 通天河沿岸 Druchu Riverbank | 609.100 | 8.250 | 0.000** |
15 | 东仲 Dorzong | -568.930 | -4.140 | 0.000** |
16 | 江西 Skyoshi | -966.400 | -5.270 | 0.000** |
17 | 白扎 Drultsa | -285.800 | -4.670 | 0.000** |
18 | 昂赛 Namser | -755.750 | -5.510 | 0.000** |
Table 4 Results of the average treatment effect on the treated (ATT) of aboveground biomass change rate inside and outside of 18 sub-reserves
序号 No. | 保护分区 Sub-reserves | ATT | t | P-value |
---|---|---|---|---|
1 | 格拉丹东 Kelha Dandong | -119.880 | -0.777 | 0.436 |
2 | 麦秀 Manshuk | -139.200 | -0.770 | 0.442 |
3 | 果宗木查 Gorzong Mecha | 295.070 | 8.240 | 0.000** |
4 | 当曲 Dangchu | -259.300 | -9.970 | 0.000** |
5 | 索加-曲麻河 Suogya-Chemar River | 94.364 | 3.438 | 0.001** |
6 | 多可河 Dokhuk River | -198.440 | -0.600 | 0.548 |
7 | 玛可河 Makhuk River | 587.030 | 3.740 | 0.000** |
8 | 年保玉则 Nyanpo Yetse | 540.270 | 5.380 | 0.000** |
9 | 约古宗列 Yeger Zongne | -309.160 | -7.644 | 0.000** |
10 | 扎陵湖-鄂陵湖 Gyaring Lake-Ngoring Lake | -777.280 | -19.414 | 0.000** |
11 | 星星海 Xingxing Lake | -1695.200 | -29.040 | 0.000** |
12 | 阿尼玛卿 Anye Maching | -584.970 | -8.290 | 0.000** |
13 | 中铁-军功 Zhongtie-Jungong | -612.480 | -7.840 | 0.000** |
14 | 通天河沿岸 Druchu Riverbank | 609.100 | 8.250 | 0.000** |
15 | 东仲 Dorzong | -568.930 | -4.140 | 0.000** |
16 | 江西 Skyoshi | -966.400 | -5.270 | 0.000** |
17 | 白扎 Drultsa | -285.800 | -4.670 | 0.000** |
18 | 昂赛 Namser | -755.750 | -5.510 | 0.000** |
Fig. 4 The spatial pattern of the trend of average biomass of growing season during the first-stage projects period (2005-2012) in Sanjiangyuan and the protection effectiveness in each sub-reserve
[1] | Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. Proceedings of the National Academy of Sciences, USA, 105, 16089-16094. |
[2] | Chen B, Liu FZ, Zhang YB, Du JH, Wang W, Li JS (2017) Assessment of forest conservation in the Cangshan Nature Reserve based on propensity score matching. Biodiversity Science, 25, 999-1007. (in Chinese with English abstract) |
[陈冰, 刘方正, 张玉波, 杜金鸿, 王伟, 李俊生 (2017) 基于倾向评分配比法评估苍山自然保护区的森林保护成效. 生物多样性, 25, 999-1007.] | |
[3] | Chu D, Deji YZ, Ji QM, Tang H (2013) Aboveground biomass estimate methods for typical grassland types in the Tibetan Plateau. Remote Sensing for Land and Resources, 25(3), 43-50. (in Chinese with English abstract) |
[除多, 德吉央宗, 姬秋梅, 唐红 (2013) 西藏高原典型草地地上生物量遥感估算. 国土资源遥感, 25(3), 43-50.] | |
[4] | Clements T, Suon S, Wilkie DS, Milner-Gulland EJ (2014) Impacts of protected areas on local livelihoods in Cambodia. World Development, 64, S125-S134. |
[5] | Eisfelder C, Kuenzer C, Dech S (2012) Derivation of biomass information for semi-arid areas using remote-sensing data. International Journal of Remote Sensing, 33, 2937-2984. |
[6] | Fan JW, Shao QQ, Liu JY, Wang JB, Harris W, Chen ZQ, Zhong HP, Xu XL, Liu RG (2010) Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environmental Monitoring and Assessment, 170, 571-584. |
[7] | Gu L, Wen C, Luo M, Wang H, Lü Z (2015) A rapid approach for assessing the conservation effectiveness of the most concerned endangered species in China. Biodiversity Science, 23, 583-590. (in Chinese with English abstract) |
[顾垒, 闻丞, 罗玫, 王昊, 吕植 (2015) 中国最受关注濒危物种保护现状快速评价的新方法探讨. 生物多样性, 23, 583-590.] | |
[8] | Greenwood E (1945) Experimental Sociology:A Study in Method. King’s Crown Press, New York. |
[9] | Harris RB (2010) Rangeland degradation on the Qinghai- Tibetan Plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 74, 1-12. |
[10] | Ho DE, Imai K, King G, Stuart EA (2007) Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political analysis, 15, 199-236. |
[11] | Joppa LN, Pfaff A (2011) Global protected area impacts. Proceedings of the Royal Society B: Biological Sciences, 278, 1633-1638. |
[12] | Lehnert LW, Wesche K, Trachte K, Reudenbach C, Bendix J (2016) Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Scientific Reports, 6, 24367. |
[13] | Li C, Xiao JD, Cao ZZ, Shi Y, Yang ZH (2007) Application of MODIS data in remote sensing estimation of prairie biomass in different seasons. Arid Zone Research, 24, 386-391. (in Chinese with English abstract) |
[李聪, 肖继东, 曹占洲, 石玉, 杨志华 (2007) 应用MODIS数据估算草地生物量. 干旱区研究, 24, 386-391.] | |
[14] | Liu MC, Li DQ, Wen YM (2005) The protection of biological diversity in the Sanjiangyuan Nature Reserve. JournaI of Arid Land Resources and Environment, 19(4), 49-53. (in Chinese with English abstract) |
[刘敏超, 李迪强, 温琰茂 (2005) 论三江源自然保护区生物多样性保护. 干旱区资源与环境, 19(4), 49-53.] | |
[15] | Long Y, Zhou L, Liu W, Zhou HK (2010) Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China. Pedosphere, 20, 342-351. |
[16] | Rubin DB (1974) Estimating causal effects of treatment in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688-701. |
[17] | Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55. |
[18] | Sekhon JS (2011) Multivariate and propensity score matching software with automated balance optimization: The matching package for R. Journal of Statistical Software, 42(7), 52. |
[19] | Shao QQ, Fan JW (2012) Integrated Monitoring and Assessment of Ecosystem in Sanjiangyuan Region. Science Press, Beijing. (in Chinese) |
[邵全琴, 樊江文 (2012) 三江源区生态系统综合监测与评估. 科学出版社, 北京.] | |
[20] | Shao QQ, Fan JW, Liu JY, Huang L, Cao W, Xu XL, Ge JS, Wu D, Li ZQ, Gong GL, Nie XM, He T, Wang LY, Bing LF, Li QJ, Chen ZQ, Zhang GQ, Zhang LX, Yang YS, Yang F, Zhou WF, Liu LL, Qi YG, Zhao GS, Li YZ (2016) Assessment on the effects of the first-stage ecological conservation and restoration project in Sanjiangyuan Region. Acta Geographica Sinica, 71, 3-20. (in Chinese with English abstract) |
[邵全琴, 樊江文, 刘纪远, 黄麟, 曹巍, 徐新良, 葛劲松, 吴丹, 李志强, 巩国丽, 聂学敏, 贺添, 王立亚, 邴龙飞, 李其江, 陈卓奇, 张更权, 张良侠, 杨永顺, 杨帆, 周万福, 刘璐璐, 祁永刚, 赵国松, 李愈哲 (2016) 三江源生态保护和建设一期工程生态成效评估. 地理学报, 71, 3-20.] | |
[21] | Su J, Aryal A, Nan Z, Ji W (2015) Climate change-induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PLoS ONE, 10, e0138969. |
[22] | Sun QL, Li BL, Xu LL, Zhang T, Ge JS, Li F (2016) Analysis of NDVI change trend and its impact factors in the Three-River Headwater Region from 2000 to 2013. Journal of Geoinformation Science, 18, 1707-1716. (in Chinese with English abstract) |
[孙庆龄, 李宝林, 许丽丽, 张涛, 葛劲松, 李飞 (2016) 2000-2013年三江源植被NDVI变化趋势及影响因素分析. 地球信息科学学报, 18, 1707-1716.] | |
[23] | Wang W, Xin LJ, Du JH, Chen B, Liu FZ, Zhang LB, Li JS (2016) Evaluating conservation effectiveness of protected areas: Advances and new perspectives. Biodiversity Science, 24, 1177-1188. (in Chinese with English abstract) |
[王伟, 辛利娟, 杜金鸿, 陈冰, 刘方正, 张立博, 李俊生 (2016) 自然保护地保护成效评估: 进展与展望. 生物多样性, 24, 1177-1188.] | |
[24] | Wang JB, Liu JY, Shao QQ, Liu RG, Fan JW, Chen ZQ (2009) Spatial-temporal patterns of net primary productivity for 1988-2004 based on GLOPEM-CEVSA model in the “Three-River Headwaters” Region of Qinghai Province, China. Chinese Journal of Plant Ecology, 33, 254-269. (in Chinese with English abstract) |
[王军邦, 刘纪远, 邵全琴, 刘荣高, 樊江文, 陈卓奇 (2009) 基于遥感-过程耦合模型的1988-2004年青海三江源区净初级生产力模拟. 植物生态学报, 33, 254-269.] | |
[25] | Wen XX, Du ZC (2015) Survey on matching method: Theory and applications. Statistical Research, 32(4), 104-112. (in Chinese with English abstract) |
[温兴祥, 杜在超 (2015) 匹配法综述: 方法与应用. 统计研究, 32(4), 104-112.] | |
[26] | Wu L, Wang H (2017) Poisoning the pika: Must protection of grasslands be at the expense of biodiversity? Science China Life Science, 60, 545-547. |
[27] | Xiao T, Wang CZ, Feng M, Qu R, Zhai J (2014) Dynamic characteristic of vegetation coverage in the Three-River Source Region from 2000 to 2011. Acta Agrestia Sinica, 22(1), 39-45. (in Chinese with English abstract) |
[肖桐, 王昌佐, 冯敏, 屈冉, 翟俊 (2014) 2000-2011年青海三江源地区草地覆盖度的动态变化特征. 草地学报, 22(1), 39-45.] | |
[28] | Xu XL, Liu JY, Shao QQ, Fan JW (2008) The dynamic changes of ecosystem spatial pattern and structure in the Three-River Headwaters region in Qinghai Province during recent 30 years. Geographical Research, 27, 829-838, 974. (in Chinese with English abstract) |
[徐新良, 刘纪远, 邵全琴, 樊江文 (2008) 30年来青海三江源生态系统格局和空间结构动态变化. 地理研究, 27, 829-838, 974.] | |
[29] | Yu X, Wang H, Li C, Wang YC (2011) Assessment of vegetation cover change in the Argun basin based on MODIS/EVI. Journal of China Institute of Water Resources and Hydropower Research, 9(2), 110-115. (in Chinese with English abstract) |
[余晓, 王昊, 李翀, 王义成 (2011) 基于MODIS/EVI的额尔古纳河流域植被变化分析. 中国水利水电科学研究院学报, 9(2), 110-115.] | |
[30] | Zhang JP, Liu CL, Hao HG, Sun L, Qiao Q, Wang H, Ning YC (2015) Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters Region based on MODIS GPP/NPP data. Ecology and Environmental Sciences, 24, 8-13. |
(in Chinese with English abstract) [张继平, 刘春兰, 郝海广, 孙莉, 乔青, 王辉, 宁杨翠 (2015) 基于 MODIS GPP/NPP 数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究. 生态环境学报, 24, 8-13.] | |
[31] | Zhang L, Wylie B, Loveland T, Fosnight E, Tieszen LL, Ji L, Gilmanov T (2007) Evaluation and comparison of gross primary production estimates for the Northern Great Plains Grasslands. Remote Sensing of Environment, 106, 173-189. |
[32] | Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95, 164-176. |
[1] | Yanjun Jin Longhui Zhao Yuanyu Qin. Diversity of anurans in the Bawangling Area of Hainan National Park based on auto-recording technique [J]. Biodiv Sci, 2023, 31(1): 22360-. |
[2] | Yuanfang Hu, Binqiang Li, Dan Liang, Xingquan Li, Lanxiang Liu, Jiawei Yang, Xu Luo. Effect of anthropogenic disturbance on Lady Amherst’s pheasant (Chrysolophus amherstiae) activity [J]. Biodiv Sci, 2022, 30(8): 21484-. |
[3] | Wenna Tu, Jiawei Yi, Yunyan Du, Nan Wang, Jiale Qian, Sheng Huang, Xiaoyue Wang. A spatiotemporal analysis of human digital footprint and the human activities exposure of grassland biomass in Qinghai Lake National Nature Reserve [J]. Biodiv Sci, 2022, 30(6): 21310-. |
[4] | Haiping Li, Zhuqing Xu, Zhihang Long. Conservation gap analysis of key protected and rare animals in Da Hinggan Range Region, China [J]. Biodiv Sci, 2022, 30(2): 21294-. |
[5] | Le Qin, Yanpeng Zhu, Yueheng Ren, Boyan Li, Mengdi Fu, Junsheng Li. Differences in management capacity of national nature reserves on the Qinghai-Tibet Plateau and the impact on conservation effectiveness [J]. Biodiv Sci, 2022, 30(11): 22419-. |
[6] | Wei Wang, Yue Zhou, Yu Tian, Junsheng Li. Biodiversity conservation research in protected areas: A review [J]. Biodiv Sci, 2022, 30(10): 22459-. |
[7] | Shichen Xing, Luyan Tang, Zun Dai, Shuwen Tu, Xing Chen, Jianhang Zhang, Hongqing Li, Tao Peng, Jian Wang. Bryophyte diversity in Shitai County and Qingyang County, Anhui Province [J]. Biodiv Sci, 2022, 30(1): 21186-. |
[8] | Cong Liang, Kan Liu, Xiaodong Wang, Shu Li, Bo Wu, Peng Xiang, Zhaobin Song. Status of fish resources in the Sichuan Nuoshuihe Precious Aquatic Animal National Nature Reserve [J]. Biodiv Sci, 2021, 29(7): 938-949. |
[9] | Aixia Wang, Jingjing Ma, Huidie Gong, Guoan Fan, Mao Wang, Hongmei Zhao, Junhui Cheng. Patterns and drivers of species richness of early spring annual ephemeral plants in northern Xinjiang [J]. Biodiv Sci, 2021, 29(6): 735-745. |
[10] | Run Zhou, Xiuqin Ci, Jianhua Xiao, Guanlong Cao, Jie Li. Effects and conservation assessment of climate change on the dominant group—The genusCinnamomum of subtropical evergreen broad-leaved forests [J]. Biodiv Sci, 2021, 29(6): 697-711. |
[11] | Yuanli Ouyang, Cancan Zhang, Xiaofan Lin, Lixin Tian, Hanjiao Gu, Fusheng Chen, Wensheng Bu. Growth differences and characteristics of root and leaf morphological traits for different mycorrhizal tree species in the subtropical China: A case study of Xingangshan, Jiangxi Province [J]. Biodiv Sci, 2021, 29(6): 746-758. |
[12] | Ming Cao, Junsheng Li, Wei Wang, Juyi Xia, Chunting Feng, Gang Fu, Wenjie Huang, Fangzheng Liu. Assessing the effectiveness of water retention ecosystem service in Qinling National Nature Reserve based on InVEST and propensity score matching model [J]. Biodiv Sci, 2021, 29(5): 617-628. |
[13] | Zusheng Yi, Yuanjun Huang, Hui Yi, Xinwang Zhang, Wenjun Li. Biodiversity of macrozoobenthos in the Chebaling National Nature Reserve, Guangdong Province [J]. Biodiv Sci, 2021, 29(5): 680-687. |
[14] | Chaodan Guo, Jinfang Zhu, Xiaoyan Liu, Caiyun Zhao, Junsheng Li. Contrasting biodiversity of invasive herbs inside and outside nature reserves in Guizhou [J]. Biodiv Sci, 2021, 29(5): 596-604. |
[15] | Kai Huang, Yaqiong Wan, Jiaqi Li, Yujing Zhu, Zhiyu Sun, Wancai Xia, Dayong Li, Baoping Ren. Camera-trapping survey on mammals and birds in Baihe National Nature Reserve, Sichuan Province [J]. Biodiv Sci, 2021, 29(4): 554-559. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn