Biodiv Sci ›› 2024, Vol. 32 ›› Issue (10): 24273. DOI: 10.17520/biods.2024273 cstr: 32101.14.biods.2024273
• Technology and Methodologies • Previous Articles Next Articles
Wantao Huang1, Zezhou Hao2, Zixin Zhang1, Zhishu Xiao3(), Chengyun Zhang1,*(
)(
)
Received:
2024-06-28
Accepted:
2024-11-12
Online:
2024-10-20
Published:
2024-12-03
Contact:
*E-mail: cyzhang@gzhu.edu.cn
Supported by:
Wantao Huang, Zezhou Hao, Zixin Zhang, Zhishu Xiao, Chengyun Zhang. A comparison of bird sound recognition performance among acoustic recorders[J]. Biodiv Sci, 2024, 32(10): 24273.
鸟类类别 Bird species | 频带范围 Frequency range (kHz) | 采样率 Sample rate (kHz) | 位深度 Bit depth (bit) | Xeno-canto来源编号 Xeno-canto number |
---|---|---|---|---|
四声杜鹃 Cuculus micropterus | 1-2 | 48 | 32 | 65059、290487、359666、359167、578346、822303 |
长尾缝叶莺 Orthotomus sutorius | 2-6 | 48 | 32 | 835177、835194 |
黄胸草鹀 Ammodramus savannarum | 6-11 | 48 | 32 | 784134、801423、825420、838342 |
红翅凤头鹃 Clamator coromandus | 1-12 | 48 | 32 | 421901、421904、423390、812451 |
Table 1 Song signal information of four bird species
鸟类类别 Bird species | 频带范围 Frequency range (kHz) | 采样率 Sample rate (kHz) | 位深度 Bit depth (bit) | Xeno-canto来源编号 Xeno-canto number |
---|---|---|---|---|
四声杜鹃 Cuculus micropterus | 1-2 | 48 | 32 | 65059、290487、359666、359167、578346、822303 |
长尾缝叶莺 Orthotomus sutorius | 2-6 | 48 | 32 | 835177、835194 |
黄胸草鹀 Ammodramus savannarum | 6-11 | 48 | 32 | 784134、801423、825420、838342 |
红翅凤头鹃 Clamator coromandus | 1-12 | 48 | 32 | 421901、421904、423390、812451 |
Fig. 4 On-site deployment of playback experimental sound source equipment and recording devices. (a) Six types of recording equipment; (b) Sound source playback device.
录音设备类型 Acoustic recorder | 价格 Price (USD) | 麦克风 Microphone | 指向性 Directivity | 声道 Audio channel | GPS | 参数配置 Parameter configuration | 电池类型 Battery type | 频带范围 Frequency range (kHz) | 采样率 Sampling rate (kHz) |
---|---|---|---|---|---|---|---|---|---|
Song Meter 4 (SM4) | 899 | 外置 External | 全向性 Omnidirectional | 双声道 Stereo | 有 Equipped | 设备屏幕 Device screen | AA | 0-13 | 8-96 |
Song Meter Mini (SMM) | 499 | 外置 External | 全向性 Omnidirectional | 双声道 Stereo | 有 Equipped | 蓝牙 Bluetooth | AAA | 0-11 | 8-96 |
麓音 Luyin (LY) | - | 外置 External | 全向性 Omnidirectional | 双声道 Stereo | 有 Equipped | 设备屏幕 Device screen | AA | 0-18 | 8-48 |
Audio Moth (AM) | 97 | 内置 Internal | 全向性 Omnidirectional | 单声道 Mono | 选配 Optional | 蓝牙 Bluetooth | AAA | 0-24 | 8-384 |
SureAnySound (SAS) | - | 内置 Internal | 全向性 Omnidirectional | 单声道 Mono | 选配 Optional | 蓝牙 Bluetooth | AA | 0-24 | 16-384 |
寻声 Xunsheng (XS) | - | 内置 Internal | 全向性 Omnidirectional | 单声道 Mono | 无 None | USB | 钠离子电池 (18650型) Sodium-ion battery (18650 type) | 0-22 | 44.1-384 |
Table 2 Specifications of the six recording devices used in the study
录音设备类型 Acoustic recorder | 价格 Price (USD) | 麦克风 Microphone | 指向性 Directivity | 声道 Audio channel | GPS | 参数配置 Parameter configuration | 电池类型 Battery type | 频带范围 Frequency range (kHz) | 采样率 Sampling rate (kHz) |
---|---|---|---|---|---|---|---|---|---|
Song Meter 4 (SM4) | 899 | 外置 External | 全向性 Omnidirectional | 双声道 Stereo | 有 Equipped | 设备屏幕 Device screen | AA | 0-13 | 8-96 |
Song Meter Mini (SMM) | 499 | 外置 External | 全向性 Omnidirectional | 双声道 Stereo | 有 Equipped | 蓝牙 Bluetooth | AAA | 0-11 | 8-96 |
麓音 Luyin (LY) | - | 外置 External | 全向性 Omnidirectional | 双声道 Stereo | 有 Equipped | 设备屏幕 Device screen | AA | 0-18 | 8-48 |
Audio Moth (AM) | 97 | 内置 Internal | 全向性 Omnidirectional | 单声道 Mono | 选配 Optional | 蓝牙 Bluetooth | AAA | 0-24 | 8-384 |
SureAnySound (SAS) | - | 内置 Internal | 全向性 Omnidirectional | 单声道 Mono | 选配 Optional | 蓝牙 Bluetooth | AA | 0-24 | 16-384 |
寻声 Xunsheng (XS) | - | 内置 Internal | 全向性 Omnidirectional | 单声道 Mono | 无 None | USB | 钠离子电池 (18650型) Sodium-ion battery (18650 type) | 0-22 | 44.1-384 |
Fig. 5 Bird vocalization identification results from six recording devices in forest environment. (a) Cuculus micropterus; (b) Clamator coromandus; (c) Orthotomus sutorius; (d) Ammodramus savannarum.
Fig. 6 Bird vocalization identification results from six recording devices in grassland environment. (a) Cuculus micropterus; (b) Clamator coromandus; (c) Orthotomus sutorius; (d) Ammodramus savannarum.
变量名 Variable name | 瓦尔德卡方 Wald square | 自由度 Degree of freedom | P | 变量名 Variable name | 瓦尔德卡方 Wald square | 自由度 Degree of freedom | P |
---|---|---|---|---|---|---|---|
录音设备类型 Acoustic recorder type | 112 | 4 | < 0.001 | 录音设备类型 × 距离 Acoustic recorder type × Distance | 83 | 16 | < 0.001 |
距离 Distance | 2,275 | 4 | < 0.001 | 录音设备类型 × 角度 Acoustic recorder type × Angle | 20 | 8 | < 0.05 |
角度 Angle | 610 | 2 | < 0.001 | 录音设备类型 × 鸟类类别 Acoustic recorder type × Bird species | 199 | 12 | < 0.001 |
植被类型 Vegetation type | 1,042 | 1 | < 0.001 | 录音设备类型 × 植被类型 Acoustic recorder type × Vegetation type | 39 | 4 | < 0.001 |
鸟类类别 Bird species | 642 | 3 | < 0.001 | 录音设备类型 × 距离 Acoustic recorder type × Distance | 83 | 16 | < 0.001 |
Table 3 Main effects and interactions of the dependent variable in the generalized linear model
变量名 Variable name | 瓦尔德卡方 Wald square | 自由度 Degree of freedom | P | 变量名 Variable name | 瓦尔德卡方 Wald square | 自由度 Degree of freedom | P |
---|---|---|---|---|---|---|---|
录音设备类型 Acoustic recorder type | 112 | 4 | < 0.001 | 录音设备类型 × 距离 Acoustic recorder type × Distance | 83 | 16 | < 0.001 |
距离 Distance | 2,275 | 4 | < 0.001 | 录音设备类型 × 角度 Acoustic recorder type × Angle | 20 | 8 | < 0.05 |
角度 Angle | 610 | 2 | < 0.001 | 录音设备类型 × 鸟类类别 Acoustic recorder type × Bird species | 199 | 12 | < 0.001 |
植被类型 Vegetation type | 1,042 | 1 | < 0.001 | 录音设备类型 × 植被类型 Acoustic recorder type × Vegetation type | 39 | 4 | < 0.001 |
鸟类类别 Bird species | 642 | 3 | < 0.001 | 录音设备类型 × 距离 Acoustic recorder type × Distance | 83 | 16 | < 0.001 |
Fig. 7 Interaction moderation analysis comparison of mean species identification accuracy for five recording devices across distance (a), angle (b), bird frequency bands (c), and vegetation types (d), with 95% Wald confidence intervals. Horizontal lines show mean estimates, and whiskers represent confidence intervals.
[1] | Darras K, Furnas B, Fitriawan I, Mulyani Y, Tscharntke T (2018) Estimating bird detection distances in sound recordings for standardizing detection ranges and distance sampling. Methods in Ecology and Evolution, 9, 1928-1938. |
[2] | Ducrettet M, Forget PM, Ulloa JS, Yguel B, Gaucher P, Princé K, Haupert S, Sueur J (2020) Monitoring canopy bird activity in disturbed landscapes with automatic recorders: A case study in the tropics. Biological Conservation, 245, 108574. |
[3] | Ghani B, Denton T, Kahl S, Klinck H (2023) Global birdsong embeddings enable superior transfer learning for bioacoustic classification. Scientific Reports, 13, 22876. |
[4] |
Goerlitz HR (2018) Weather conditions determine attenuation and speed of sound: Environmental limitations for monitoring and analyzing bat echolocation. Ecology and Evolution, 8, 5090-5100.
DOI PMID |
[5] |
Gupta G, Kshirsagar M, Zhong M, Gholami S, Ferres JL (2021) Comparing recurrent convolutional neural networks for large scale bird species classification. Scientific Reports, 11, 17085.
DOI PMID |
[6] | Hill AP, Prince P, Piña Covarrubias E, Doncaster CP, Snaddon JL, Rogers A (2018) AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods in Ecology and Evolution, 9, 1199-1211. |
[7] | Hutschenreiter A, Sosa-López JR, González-García F, Aureli F (2023) Evaluating factors affecting species detection using passive acoustic monitoring in neotropical forests: A playback experiment. Bioacoustics, 32, 660-678. |
[8] |
Jin YJ, Zhao LH, Qin YY, Wang JC (2023) Diversity of anurans in the Bawangling Area of Hainan National Park based on auto-recording technique. Biodiversity Science, 31, 22360. (in Chinese with English abstract)
DOI |
[金彦君, 赵龙辉, 覃远玉, 汪继超 (2023) 海南国家公园霸王岭片区无尾两栖类鸣声多样性: 基于自动录音技术. 生物多样性, 31, 22360.]
DOI |
|
[9] | Kahl S, Wood CM, Eibl M, Klinck H (2021) BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61, 101236. |
[10] | Liu H, Liu CH, Zhao TZ, Liu Y (2021) Bird song classification based on improved Bi-LSTM-DenseNet network. In: 4th International Conference on Robotics, Control and Automation Engineering, pp. 152-155. November 4-6, 2021, Wuhan, China. |
[11] |
Metcalf OC, Barlow J, Devenish C, Marsden S, Berenguer E, Lees AC (2021) Acoustic indices perform better when applied at ecologically meaningful time and frequency scales. Methods in Ecology and Evolution, 12, 421-431.
DOI |
[12] | Newson SE, Bas Y, Murray A, Gillings S (2017) Potential for coupling the monitoring of bush-crickets with established large-scale acoustic monitoring of bats. Methods in Ecology and Evolution, 8, 1051-1062. |
[13] | Parker DM, Bernard RTF (2018) The use of acoustic detectors for assessing bat species richness and functional activity in a South African national park. Mammalia, 83, 53-63. |
[14] | Pérez-Granados C (2023a) BirdNET: Applications, performance, pitfalls and future opportunities. Ibis, 165, 1068-1075. |
[15] | Pérez-Granados C (2023b) A first assessment of birdnet performance at varying distances: A playback experiment. Ardeola, 70, 257-269. |
[16] | Pérez-Granados C, Bota G, Giralt D, Albarracín J, Traba J (2019) Cost-effectiveness assessment of five audio recording systems for wildlife monitoring: Differences between recording distances and singing direction. Ardeola, 66, 311. |
[17] | Prior L, Aland K, Levengood AL, Potvin DA (2023) Vocal activity of the Eastern Ground Parrot (Pezoporus wallicus wallicus) and implications for acoustic monitoring efforts. Emu-Austral Ornithology, 123, 364-369. |
[18] |
Rhinehart TA, Chronister LM, Devlin T, Kitzes J (2020) Acoustic localization of terrestrial wildlife: Current practices and future opportunities. Ecology and Evolution, 10, 6794-6818.
DOI PMID |
[19] | Winiarska D, Szymański P, Osiejuk TS (2024) Detection ranges of forest bird vocalisations: Guidelines for passive acoustic monitoring. Scientific Reports, 14, 894. |
[20] |
Xu ZH, Liu SY, Zhao Y, Tu WQ, Chang ZF, Zhang ET, Guo J, Zheng D, Geng J, Gu GY, Guo CP, Guo LL, Wang J, Xu CY, Peng C, Yang T, Cui MQ, Sun WC, Zhang JT, Liu HT, Ba CQ, Wang HQ, Jia JC, Wu JZ, Xiao C, Ma KP (2020) Evaluation of the identification ability of eight commonly used plant identification application softwares in China. Biodiversity Science, 28, 524-533. (in Chinese with English abstract)
DOI |
[许展慧, 刘诗尧, 赵莹, 涂文琴, 常诏峰, 张恩涛, 郭靖, 郑迪, 耿鋆, 顾高营, 郭淳鹏, 郭璐璐, 王静, 徐春阳, 彭钏, 杨腾, 崔梦琪, 孙伟成, 张剑坛, 刘皓天, 巴超群, 王鹤琪, 贾竞超, 武金洲, 肖翠, 马克平 (2020) 国内8款常用植物识别软件的识别能力评价. 生物多样性, 28, 524-533.]
DOI |
|
[21] | Zhong EZ, Guan ZH, Zhou XC, Zhao YJ, Li H, Tan SB, Hu KR (2021) Application of passive acoustic monitoring technology in the monitoring of western black crested gibbons. Biodiversity Science, 29, 109-117. (in Chinese with English abstract) |
[钟恩主, 管振华, 周兴策, 赵友杰, 李函, 谭绍斌, 胡坤融 (2021) 被动声学监测技术在西黑冠长臂猿监测中的应用. 生物多样性, 29, 109-117.] |
[1] | Haotian Bai, Shang Yu, Xinyuan Pan, Jiale Ling, Juan Wu, Kaiqi Xie, Yang Liu, Xueye Chen. AI-assisted recognition for passive acoustic monitoring of birds in urban wetland parks [J]. Biodiv Sci, 2024, 32(8): 24188-. |
[2] | Yongcai Wang, Huawei Wan, Jixi Gao, Zhuowei Hu, Chenxi Sun, Na Lü, Zhiru Zhang. Identification of common native grassland plants in northern China using deep learning [J]. Biodiv Sci, 2024, 32(4): 23435-. |
[3] | Jiangjian Xie, Chen Shen, Feiyu Zhang, Zhishu Xiao. Cross-regional bird species recognition method integrating audio and ecological niche information [J]. Biodiv Sci, 2024, 32(10): 24259-. |
[4] | Qianrong Guo, Shufei Duan, Jie Xie, Xueyan Dong, Zhishu Xiao. Advances in bird sound annotation methods for passive acoustic monitoring [J]. Biodiv Sci, 2024, 32(10): 24313-. |
[5] | Lei Chen, Zhiyong Xu, Pukun Su, Xiaotian Lai, Zhao Zhao. Exploring the application of frequency-dependent acoustic diversity index in human-dominated areas [J]. Biodiv Sci, 2024, 32(10): 24286-. |
[6] | Yingying Liu, Lixin Gong, Hao Zeng, Jiang Feng, Yongjun Dong, Lei Wang, Tinglei Jiang. Application of passive acoustic monitoring in Chiropteran research [J]. Biodiv Sci, 2024, 32(10): 24233-. |
[7] | Le Li, Chengyun Zhang, Nancai Pei, Bingtao Gao, Na Wang, Jiarui Li, Ruichen Wu, Zezhou Hao. Correlation analysis of urban green landscape patterns and bird diversity based on passive acoustic monitoring technology [J]. Biodiv Sci, 2024, 32(10): 24296-. |
[8] | Zezhou Hao, Chengyun Zhang, Le Li, Bingtao Gao, Wei Zeng, Chun Wang, Zixuan Wang, Wantao Huang, Yue Zhang, Nancai Pei, Zhishu Xiao. Applications of passive acoustic monitoring and evaluation in urban bird research [J]. Biodiv Sci, 2024, 32(10): 24123-. |
[9] | Jianmin Cai, Peiyu He, Zhipeng Yang, Luying Li, Qijun Zhao, Fan Pan. A deep feature fusion-based method for bird sound recognition and its interpretability analysis [J]. Biodiv Sci, 2023, 31(7): 23087-. |
[10] | Yufei Huang, Chunyan Lu, Mingming Jia, Zili Wang, Yue Su, Yanlin Su. Plant species classification of coastal wetlands based on UAV images and object- oriented deep learning [J]. Biodiv Sci, 2023, 31(3): 22411-. |
[11] | Xiaohu Shen, Xiangyu Zhu, Hongfei Shi, Chuanzhi Wang. Research progress of birdsong recognition algorithms based on machine learning [J]. Biodiv Sci, 2023, 31(11): 23272-. |
[12] | Zhishu Xiao, Jianguo Cui, Daiping Wang, Zhitao Wang, Jinhong Luo, Jie Xie. Interdisciplinary development trends of contemporary bioacoustics and the opportunities for China [J]. Biodiv Sci, 2023, 31(1): 22423-. |
[13] | Haigang Ma, Penglai Fan. Application, progress, and future perspective of passive acoustic monitoring in terrestrial mammal research [J]. Biodiv Sci, 2023, 31(1): 22374-. |
[14] | Keyi Wu, Wenda Ruan, Difeng Zhou, Qingchen Chen, Chengyun Zhang, Xinyuan Pan, Shang Yu, Yang Liu, Rongbo Xiao. Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring [J]. Biodiv Sci, 2023, 31(1): 22370-. |
[15] | Yan Xu, Congling Zhang, Ruijiao Jiang, Zifei Wang, Mengchen Zhu, Guochun Shen. UAV-based hyperspectral images and monitoring of canopy tree diversity [J]. Biodiv Sci, 2021, 29(5): 647-660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn