Biodiv Sci ›› 2024, Vol. 32 ›› Issue (8): 24188. DOI: 10.17520/biods.2024188 cstr: 32101.14.biods.2024188
• Original Papers • Previous Articles Next Articles
Haotian Bai1,2, Shang Yu2,3, Xinyuan Pan4, Jiale Ling2,3, Juan Wu5, Kaiqi Xie6, Yang Liu7, Xueye Chen1,8,*()
Received:
2024-05-16
Accepted:
2024-08-09
Online:
2024-08-20
Published:
2024-08-28
Contact:
*E-mail: xueye31@163.com
Supported by:
Haotian Bai, Shang Yu, Xinyuan Pan, Jiale Ling, Juan Wu, Kaiqi Xie, Yang Liu, Xueye Chen. AI-assisted recognition for passive acoustic monitoring of birds in urban wetland parks[J]. Biodiv Sci, 2024, 32(8): 24188.
声景指数 Acoustic indices | 计算公式 Formula | 说明 Explanation | 参考文献 Reference |
---|---|---|---|
声学多样性指数 Acoustic diversity index (ADI) | Pi为第i个频段内信号强度高于阈值-50 dB的信号比例, S为频段数量 Pi is the proportion of signals in the i-th band with signal strength above the threshold -50 dB, S is the number of bands | Villanueva-Rivera et al, | |
声熵指数 Acoustic entropy index (H) | H=Hf × Ht | Hf为频谱熵, Ht为时间熵 Hf is spectral entropy, Ht is temporal entropy | Sueur et al, |
归一化声景指数 Normalized difference soundscape index (NDSI) | Bs为生物声, 一般集中在2-11 kHz,; As为人工声; 一般集中在1-2 kHz Bs is biophony, generally concentrated in 2-11 kHz; As is anthropophony; generally concentrated in 1-2 kHz | Kasten et al, | |
生物声学指数 Bioacoustic index (BI) | Si为子带内信号强度, ∆f为子带宽度, Smin为子带内最小信号强度 Si is the signal intensity within the sub-band, ∆f is the sub-band width, and Smin is the minimum signal intensity within the sub-band | Boelman et al, | |
Jaccard相似性指数Jaccard similarity index (J) | A为样线调查物种集合, B为声学调查物种集合 A is the transect survey species set, B is the acoustic monitoring species set | Chung et al, | |
Sørensen相似性指数Sørensen similarity index (D) | A为样线调查物种集合, B为声学调查物种集合 A is the transect survey species set, B is the acoustic monitoring species set | Engen et al, |
Table 1 Calculation methods of soundscape indices and similarity indices
声景指数 Acoustic indices | 计算公式 Formula | 说明 Explanation | 参考文献 Reference |
---|---|---|---|
声学多样性指数 Acoustic diversity index (ADI) | Pi为第i个频段内信号强度高于阈值-50 dB的信号比例, S为频段数量 Pi is the proportion of signals in the i-th band with signal strength above the threshold -50 dB, S is the number of bands | Villanueva-Rivera et al, | |
声熵指数 Acoustic entropy index (H) | H=Hf × Ht | Hf为频谱熵, Ht为时间熵 Hf is spectral entropy, Ht is temporal entropy | Sueur et al, |
归一化声景指数 Normalized difference soundscape index (NDSI) | Bs为生物声, 一般集中在2-11 kHz,; As为人工声; 一般集中在1-2 kHz Bs is biophony, generally concentrated in 2-11 kHz; As is anthropophony; generally concentrated in 1-2 kHz | Kasten et al, | |
生物声学指数 Bioacoustic index (BI) | Si为子带内信号强度, ∆f为子带宽度, Smin为子带内最小信号强度 Si is the signal intensity within the sub-band, ∆f is the sub-band width, and Smin is the minimum signal intensity within the sub-band | Boelman et al, | |
Jaccard相似性指数Jaccard similarity index (J) | A为样线调查物种集合, B为声学调查物种集合 A is the transect survey species set, B is the acoustic monitoring species set | Chung et al, | |
Sørensen相似性指数Sørensen similarity index (D) | A为样线调查物种集合, B为声学调查物种集合 A is the transect survey species set, B is the acoustic monitoring species set | Engen et al, |
Fig. 2 Time-frequency spectrogram of audio files collected by the device WZT-1 triggered at 18:54:22 on April 7, 2023 (Garrulax perspicillatus in solid boxes and Amaurornis phoenicurus in a dotted box)
3月March | 4月 April | 5月 May | 总计 Total | |
---|---|---|---|---|
声学监测种数 Species number of acoustic monitoring | 43 | 37 | 29 | 49 |
样线调查种数 Species number of transect survey | 35 | 35 | 31 | 48 |
样线调查只次数 Individuals of transect survey | 540 | 831 | 829 | 2,200 |
鸣声数 Number of sounds | 14,479 | 13,760 | 5,795 | 34,034 |
独立事件数 Number of sound-independent events | 3,922 | 3,606 | 2,058 | 9,586 |
总计种数 Total number of species | 57 | 53 | 41 | 70 |
共同物种数 Number of shared species | 21 | 19 | 19 | 27 |
声学监测独有物种数 Number of species unique to acoustic monitoring | 22 | 18 | 10 | 22 |
样线独有物种数 Number of species unique to transect survey | 14 | 16 | 12 | 21 |
Jaccard相似性指数 Jaccard similarity coefficient | 0.37 | 0.36 | 0.46 | 0.39 |
Sørensen相似性指数 Sørensen similarity coefficient | 0.54 | 0.53 | 0.63 | 0.56 |
Table 2 Comparison of the results of the two survey methods by month
3月March | 4月 April | 5月 May | 总计 Total | |
---|---|---|---|---|
声学监测种数 Species number of acoustic monitoring | 43 | 37 | 29 | 49 |
样线调查种数 Species number of transect survey | 35 | 35 | 31 | 48 |
样线调查只次数 Individuals of transect survey | 540 | 831 | 829 | 2,200 |
鸣声数 Number of sounds | 14,479 | 13,760 | 5,795 | 34,034 |
独立事件数 Number of sound-independent events | 3,922 | 3,606 | 2,058 | 9,586 |
总计种数 Total number of species | 57 | 53 | 41 | 70 |
共同物种数 Number of shared species | 21 | 19 | 19 | 27 |
声学监测独有物种数 Number of species unique to acoustic monitoring | 22 | 18 | 10 | 22 |
样线独有物种数 Number of species unique to transect survey | 14 | 16 | 12 | 21 |
Jaccard相似性指数 Jaccard similarity coefficient | 0.37 | 0.36 | 0.46 | 0.39 |
Sørensen相似性指数 Sørensen similarity coefficient | 0.54 | 0.53 | 0.63 | 0.56 |
Fig. 5 Daily rhythms of soundscape indices. ADI, Acoustic diversity index; H, Acoustic entropy index; NDSI, Normalised difference soundscape index; BI, Bioacoustic index.
[1] | Azeem M, Ali G, Amin RU, Babar ZUD (2022) Bird calls identification in soundscape recordings using deep convolutional neural network. In: Big Data Analytics and Computational Intelligence for Cybersecurity (eds Ouaissa M, Boulouard Z, Ouaissa M, Khan IU, Kaosar M), pp. 325-335. Springer, Cham. |
[2] |
Bian Q, Wang C, Cheng H, Han D, Zhao YL, Yin LQ (2023) Exploring the application of acoustic indices in the assessment of bird diversity in urban forests. Biodiversity Science, 31, 22080. (in Chinese with English abstract)
DOI |
[边琦, 王成, 程贺, 韩丹, 赵伊琳, 殷鲁秦 (2023) 声学指数在城市森林鸟类多样性评估中的应用. 生物多样性, 31, 22080.]
DOI |
|
[3] | Bicudo T, Llusia D, Anciães M, Gil D (2023) Poor performance of acoustic indices as proxies for bird diversity in a fragmented Amazonian landscape. Ecological Informatics, 77, 102241. |
[4] | Bino G, Steinfeld C, Kingsford RT (2014) Maximizing colonial waterbirds’ breeding events using identified ecological thresholds and environmental flow management. Ecological Applications, 24, 142-157. |
[5] | Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirschel ANG (2011) Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus. Journal of Applied Ecology, 48, 758-767. |
[6] | Boelman NT, Asner GP, Hart PJ, Martin RE (2007) Multi‐trophic invasion resistance in Hawaii: Bioacoustics, field surveys, and airborne remote sensing. Ecological Applications, 17, 2137-2144. |
[7] | Browning E, Gibb R, Glover-Kapfer P, Jones KE (2017) Passive acoustic monitoring in ecology and conservation. https://www.wwf.org.uk/sites/default/files/2019-04/Acousticmonitoring-WWF-guidelines.pdf. (accessed on 2024-05-16) |
[8] | Budka M, Sokołowska E, Muszyńska A, Staniewicz A (2023) Acoustic indices estimate breeding bird species richness with daily and seasonally variable effectiveness in lowland temperate Białowieża forest. Ecological Indicators, 148, 110027. |
[9] | Catchpole CK, Slater PJB (2003) Bird Song:Biological Themes and Variations. Cambridge University Press, Cambridge. |
[10] | Chung NC, Miasojedow B, Startek M, Gambin A (2019) Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinformatics, 20 (Suppl. 15), 644. |
[11] | Engen S, Grøtan V, Sæther BE (2011) Estimating similarity of communities: A parametric approach to spatio‐temporal analysis of species diversity. Ecography, 34, 220-231. |
[12] | Farina A, Gage SH (2017) Ecoacoustics: The Ecological Role of Sounds. John Wiley & Sons, Hoboken. |
[13] | Farina A, James P, Bobryk C, Pieretti N, Lattanzi E, McWilliam J (2014) Low cost (audio) recording (LCR) for advancing soundscape ecology towards the conservation of sonic complexity and biodiversity in natural and urban landscapes. Urban Ecosystems, 17, 923-944. |
[14] | Gilbert NA, Clare JD, Stenglein JL, Zuckerberg B (2021) Abundance estimation of unmarked animals based on camera‐trap data. Conservation Biology, 35, 88-100. |
[15] | Goyette JL, Howe RW, Wolf AT, Robinson WD (2011) Detecting tropical nocturnal birds using automated audio recordings. Journal of Field Ornithology, 82, 279-287. |
[16] |
Gupta G, Kshirsagar M, Zhong M, Gholami S, Ferres JL (2021) Comparing recurrent convolutional neural networks for large scale bird species classification. Scientific Reports, 11, 17085.
DOI PMID |
[17] | Hao ZZ, Zhang CY, Li L, Gao BT, Wu RC, Pei NC, Liu Y (2024) Anthropogenic noise and habitat structure shaping dominant frequency of bird sounds along urban gradients. iScience, 27, 109056. |
[18] | He XL, Deng Y, Dong AR, Lin LX (2022) The relationship between acoustic indices, vegetation, and topographic characteristics is spatially dependent in a tropical forest in southwestern China. Ecological Indicators, 142, 109229. |
[19] | Kahl S, Wood CM, Eibl M, Klinck H (2021) BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61, 101236. |
[20] | Kasten EP, Gage SH, Fox J, Joo W (2012) The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecological Informatics, 12, 50-67. |
[21] | Kati VI, Sekercioglu CH (2006) Diversity, ecological structure, and conservation of the landbird community of Dadia Reserve, Greece. Diversity and Distributions, 12, 620-629. |
[22] | Klingbeil BT, Willig MR (2015) Bird biodiversity assessments in temperate forest: The value of point count versus acoustic monitoring protocols. PeerJ, 3, e973. |
[23] | Kumar Y, Gupta S, Singh W (2022) A novel deep transfer learning models for recognition of birds sounds in different environment. Soft Computing, 26, 1003-1023. |
[24] | Leach EC, Burwell CJ, Ashton LA, Jones DN, Kitching RL (2016) Comparison of point counts and automated acoustic monitoring: Detecting birds in a rainforest biodiversity survey. Emu, 116, 305-309. |
[25] | Lei FM (1999) A preliminary study of the role of bird songs in the systematic study of birds. Zoological Systematics, 24, 461-466. (in Chinese with English abstract) |
[雷富民 (1999) 鸟类鸣声在鸟类系统学研究中的作用初探. 动物分类学报, 24, 461-466.] | |
[26] | Lin TY, Goyal P, Girshick R, He K, Dollar P (2017) Focal loss for dense object detection. In:Proceedings of the IEEE International Conference on Computer Vision, pp. 2980-2988. IEEE, Honolulu. |
[27] | Linke S, Gifford T, Desjonquères C, Tonolla D, Aubin T, Barclay L, Karaconstantis C, Kennard MJ, Rybak F, Sueur J (2018) Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Frontiers in Ecology and the Environment, 16, 231-238. |
[28] | Meng L, Xu J, Tan X, Wang J, Qin T, Xu B (2021) Mixspeech:Data augmentation for low-resource automatic speech recognition. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021), pp. 7008-7012. ICASSP, Toronto. |
[29] | Neate-Clegg MH, Horns JJ, Adler FR, Kemahlı Aytekin MÇ, Şekercioğlu ÇH (2020) Monitoring the world’s bird populations with community science data. Biological Conservation, 248, 108653. |
[30] | Obrist MK, Pavan G, Sueur J, Riede K, Llusia D, Márquez R (2010) Bioacoustics approaches in biodiversity inventories. ABC Taxa, 8, 68-99. |
[31] | Pérez-Granados C, Traba J (2021) Estimating bird density using passive acoustic monitoring: A review of methods and suggestions for further research. Ibis, 163, 765-783. |
[32] | Ralph CJ, Droege S, Sauer JR (1995) Managing and monitoring birds using point counts: Standards and applications. United States Department of Agriculture (USDA) Forest Service General Technical Report, 49, 161-169. |
[33] | Shamon H, Paraskevopoulou Z, Kitzes J, Card E, Deichmann JL, Boyce AJ, McShea WJ (2021) Using ecoacoustics metrices to track grassland bird richness across landscape gradients. Ecological Indicators, 120, 106928. |
[34] | Slabbekoorn H, Smith TB (2002) Bird song, ecology and speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 493-503. |
[35] | Stephenson PJ (2018) A global effort to improve species monitoring for conservation. Oryx, 52, 412-413. |
[36] |
Stowell D, Wood MD, Pamuła H, Stylianou Y, Glotin H (2019) Automatic acoustic detection of birds through deep learning: The first bird audio detection challenge. Methods in Ecology and Evolution, 10, 368-380.
DOI |
[37] | Sueur J, Pavoine S, Hamerlynck O, Duvail S (2008) Rapid acoustic survey for biodiversity appraisal. PLoS ONE, 3, e4065. |
[38] |
Sugai LSM, Silva TSF, Ribeiro JW, Llusia D (2019) Terrestrial passive acoustic monitoring: Review and perspectives. BioScience, 69, 15-25.
DOI |
[39] | Tan M, Le Q (2021) EfficientNetV2: Smaller Models and Faster Training. https://proceedings.mlr.press/v139/tan21a.html. (accessed on 2024-09-25) |
[40] | Thompson SJ, Handel CM, Mcnew LB (2017) Autonomous acoustic recorders reveal complex patterns in avian detection probability. The Journal of Wildlife Management, 81, 1228-1241. |
[41] | Venier LA, Mazerolle MJ, Rodgers A, McIlwrick KA, Holmes S, Thompson D (2017) Comparison of semiautomated bird song recognition with manual detection of recorded bird song samples. Avian Conservation and Ecology, 12, 120202. |
[42] | Villanueva-Rivera LJ, Pijanowski BC, Doucette J, Pekin B (2011) A primer of acoustic analysis for landscape ecologists. Landscape Ecology, 26, 1233-1246. |
[43] | Wrege PH, Rowland ED, Keen S, Shiu Y (2017) Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods in Ecology and Evolution, 8, 1292-1301. |
[44] | Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2017) mixup: Beyond empirical risk minimization. arXiv preprint, arXiv, 1710.09412. |
[45] | Zheng GM (2012) Ornithology, 2nd edn. Beijing Normal University Publishing Group, Beijing. (in Chinese) |
[郑光美 (2012) 鸟类学(第2版). 北京师范大学出版社, 北京.] | |
[46] | Zuberogoitia I, Martínez JE, González-Oreja JA, de Buitrago CG, Belamendia G, Zabala J, Laso M, Pagaldai N, Jiménez-Franco MV (2020) Maximizing detection probability for effective large-scale nocturnal bird monitoring. Diversity and Distributions, 26, 1034-1050. |
[1] | Fei Duan, Mingzhang Liu, Hongliang Bu, Le Yu, Sheng Li. Effects of urbanization on bird community composition and functional traits: A case study of the Beijing-Tianjin-Hebei region [J]. Biodiv Sci, 2024, 32(8): 23473-. |
[2] | Luqin Yin, Cheng Wang, Wenjing Han. Food source characteristics and diversity of birds based on feeding behavior in residential areas of Beijing [J]. Biodiv Sci, 2023, 31(5): 22473-. |
[3] | Xiaohu Shen, Xiangyu Zhu, Hongfei Shi, Chuanzhi Wang. Research progress of birdsong recognition algorithms based on machine learning [J]. Biodiv Sci, 2023, 31(11): 23272-. |
[4] | Zhishu Xiao, Jianguo Cui, Daiping Wang, Zhitao Wang, Jinhong Luo, Jie Xie. Interdisciplinary development trends of contemporary bioacoustics and the opportunities for China [J]. Biodiv Sci, 2023, 31(1): 22423-. |
[5] | Haigang Ma, Penglai Fan. Application, progress, and future perspective of passive acoustic monitoring in terrestrial mammal research [J]. Biodiv Sci, 2023, 31(1): 22374-. |
[6] | Keyi Wu, Wenda Ruan, Difeng Zhou, Qingchen Chen, Chengyun Zhang, Xinyuan Pan, Shang Yu, Yang Liu, Rongbo Xiao. Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring [J]. Biodiv Sci, 2023, 31(1): 22370-. |
[7] | Qi Bian, Cheng Wang, He Cheng, Dan Han, Yilin Zhao, Luqin Yin. Exploring the application of acoustic indices in the assessment of bird diversity in urban forests [J]. Biodiv Sci, 2023, 31(1): 22080-. |
[8] | Jiaxing Li, Christos Mammides, Liping Zhou, Jiajie Sun, Xiaocai Tan, Aiwu Jiang. Bird diversity in different habitats under agriculturalization in Guangxi, China [J]. Biodiv Sci, 2022, 30(5): 21515-. |
[9] | Xing Ma, Hao Wang, Wei Yu, Yong Du, Jianchao Liang, Huijian Hu, Shengrong Qiu, Lu Liu. Analysis on the hotspot and conservation gaps of bird biodiversity in Guangdong Province based on MaxEnt model [J]. Biodiv Sci, 2021, 29(8): 1097-1107. |
[10] | Kai Huang, Yaqiong Wan, Jiaqi Li, Yujing Zhu, Zhiyu Sun, Wancai Xia, Dayong Li, Baoping Ren. Camera-trapping survey on mammals and birds in Baihe National Nature Reserve, Sichuan Province [J]. Biodiv Sci, 2021, 29(4): 554-559. |
[11] | Enzhu Zhong, Zhenhua Guan, Xingce Zhou, Youjie Zhao, Han Li, Shaobin Tan, Kunrong Hu. Application of passive acoustic monitoring technology in the monitoring of western black crested gibbons [J]. Biodiv Sci, 2021, 29(1): 109-117. |
[12] | Xiongwei Yang, Ankang Wu, Qixian Zou, Guangrong Li, Mingming Zhang, Canshi Hu, Haijun Su. Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2020, 28(2): 219-225. |
[13] | Fei Duan, Sheng Li. The status, distribution patterns, and conservation gap for bird diversity in the Yellow River basin, China [J]. Biodiv Sci, 2020, 28(12): 1459-1468. |
[14] | Jianchao Liang, Zhifeng Ding, Chunlan Zhang, Huijian Hu, Hairui Duo, Hong Tang. Bird diversity spatial distribution patterns and hotspots in Maixiu Area of Sanjiangyuan National Nature Reserve, Qinghai Province [J]. Biodiv Sci, 2017, 25(3): 294-303. |
[15] | YANG LAN, WEN XIANJI, YANG XIAOJUN. The Current Status of Bird Diversity in Yunnan Province [J]. Biodiv Sci, 1996, 04(Suppl.): 44-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn