Biodiv Sci ›› 2023, Vol. 31 ›› Issue (11): 23276. DOI: 10.17520/biods.2023276
• Original Papers: Ecosystem Diversity • Previous Articles Next Articles
Jinhua Liu1,2, Feng Li1,2, Tao Tian1,2, Haifeng Xiao1,2,*()
Received:
2023-07-31
Accepted:
2023-10-09
Online:
2023-11-20
Published:
2023-11-09
Contact:
* E-mail: Jinhua Liu, Feng Li, Tao Tian, Haifeng Xiao. Response of soil bacteria and nematodes to litter identity and diversity of dominant plants in a tropical rainforest[J]. Biodiv Sci, 2023, 31(11): 23276.
处理 Treatments | 凋落物种 Species of litter | 总有机碳 Total organic carbon (g/kg) | 总氮 Total nitrogen (g/kg) | 碳氮比 C/N ratio (%) | 总磷 Total phosphorus (g/kg) | 总钾 Total potassium (g/kg) |
---|---|---|---|---|---|---|
1 | 望天树 PC | 480.54 ± 6.47a | 24.68 ± 2.97a | 19.45 ± 2.83a | 1.51 ± 0.13a | 11.11 ± 0.58a |
2 | 绒毛猴欢喜 ST | 469.75 ± 3.85a | 20.41 ± 2.89a | 23.02 ± 2.59a | 1.49 ± 0.21a | 10.57 ± 0.63a |
3 | 华马钱 SC | 471.41 ± 3.74a | 21.68 ± 1.56a | 21.74 ± 2.41a | 1.53 ± 0.12a | 11.24 ± 0.66a |
4 | 蚁花 OL | 476.57 ± 2.12a | 21.17 ± 2.11a | 22.51 ± 2.23a | 1.54 ± 0.09a | 10.39 ± 0.45a |
5 | 番龙眼 PP | 470.12 ± 3.88a | 21.31 ± 2.45a | 22.06 ± 1.99a | 1.49 ± 0.18a | 9.87 ± 0.79a |
6 | 黄葛树 FV | 467.71 ± 5.09a | 20.97 ± 2.63a | 22.30 ± 2.72a | 1.48 ± 0.14a | 9.51 ± 0.91a |
7 | 羊乳榕 FS | 468.23 ± 6.67a | 20.58 ± 2.39a | 22.75 ± 2.16a | 1.52 ± 0.07a | 10.71 ± 0.53a |
8 | 印度锥 CI | 470.74 ± 4.98a | 20.78 ± 2.17a | 22.65 ± 2.07a | 1.48 ± 0.11a | 9.59 ± 0.86a |
1种 1 species | ST | |||||
2种 2 species | ST + SC | |||||
4种 4 species | ST + SC+ OL + PP | |||||
7种 7 species | ST + SC + OL + PP + FV+ FS + CI | |||||
对照 CK | 不添加凋落物 Without litter |
Table 1 Litter treatments, and initial nutrient concentrations of each treatment used
处理 Treatments | 凋落物种 Species of litter | 总有机碳 Total organic carbon (g/kg) | 总氮 Total nitrogen (g/kg) | 碳氮比 C/N ratio (%) | 总磷 Total phosphorus (g/kg) | 总钾 Total potassium (g/kg) |
---|---|---|---|---|---|---|
1 | 望天树 PC | 480.54 ± 6.47a | 24.68 ± 2.97a | 19.45 ± 2.83a | 1.51 ± 0.13a | 11.11 ± 0.58a |
2 | 绒毛猴欢喜 ST | 469.75 ± 3.85a | 20.41 ± 2.89a | 23.02 ± 2.59a | 1.49 ± 0.21a | 10.57 ± 0.63a |
3 | 华马钱 SC | 471.41 ± 3.74a | 21.68 ± 1.56a | 21.74 ± 2.41a | 1.53 ± 0.12a | 11.24 ± 0.66a |
4 | 蚁花 OL | 476.57 ± 2.12a | 21.17 ± 2.11a | 22.51 ± 2.23a | 1.54 ± 0.09a | 10.39 ± 0.45a |
5 | 番龙眼 PP | 470.12 ± 3.88a | 21.31 ± 2.45a | 22.06 ± 1.99a | 1.49 ± 0.18a | 9.87 ± 0.79a |
6 | 黄葛树 FV | 467.71 ± 5.09a | 20.97 ± 2.63a | 22.30 ± 2.72a | 1.48 ± 0.14a | 9.51 ± 0.91a |
7 | 羊乳榕 FS | 468.23 ± 6.67a | 20.58 ± 2.39a | 22.75 ± 2.16a | 1.52 ± 0.07a | 10.71 ± 0.53a |
8 | 印度锥 CI | 470.74 ± 4.98a | 20.78 ± 2.17a | 22.65 ± 2.07a | 1.48 ± 0.11a | 9.59 ± 0.86a |
1种 1 species | ST | |||||
2种 2 species | ST + SC | |||||
4种 4 species | ST + SC+ OL + PP | |||||
7种 7 species | ST + SC + OL + PP + FV+ FS + CI | |||||
对照 CK | 不添加凋落物 Without litter |
处理 Treatments | 凋落物种 Species of litter | 总有机碳 Total organic carbon (g/kg) | 总氮 Total nitrogen (g/kg) | 有效磷 Available phosphorus (mg/kg) | 有效钾 Available potassium (mg/kg) | 土壤pH值 Soil pH |
---|---|---|---|---|---|---|
1 | 对照 CK | 19.04 ± 0.03b | 2.15 ± 0.03c | 1.32 ± 0.07b | 41.35 ± 0.56c | 4.89 ± 0.03c |
2 | 望天树 PC | 27.71 ± 1.19a | 2.68 ± 0.15ab | 1.45 ± 0.08a | 42.49 ± 0.81bc | 5.19 ± 0.03a |
3 | 绒毛猴欢喜 ST | 26.69 ± 0.91a | 2.76 ± 0.07ab | 1.49 ± 0.05a | 43.15 ± 2.31abc | 5.15 ± 0.13ab |
4 | 华马钱 SC | 27.34 ± 1.34a | 2.78 ± 0.11a | 1.42 ± 0.09a | 44.49 ± 1.82a | 5.03 ± 0.10bc |
5 | 蚁花 OL | 27.65 ± 1.90a | 2.65 ± 0.13b | 1.48 ± 0.06a | 42.76 ± 2.14abc | 5.21 ± 0.11a |
6 | 番龙眼 PP | 28.02 ± 1.64a | 2.67 ± 0.06ab | 1.46 ± 0.07a | 42.93 ± 1.35abc | 5.03 ± 0.25bc |
7 | 黄葛树 FV | 27.05 ± 1.54a | 2.69 ± 0.04ab | 1.47 ± 0.08a | 44.52 ± 2.02a | 5.09 ± 0.21ab |
8 | 羊乳榕 FS | 26.69 ± 1.45a | 2.65 ± 0.12b | 1.47 ± 0.06a | 44.21 ± 2.07ab | 5.18 ± 0.04ab |
9 | 印度锥 CI | 27.88 ± 1.43a | 2.65 ± 0.13b | 1.44 ± 0.04a | 43.09 ± 1.63abc | 5.15 ± 0.15ab |
Table 2 Effect of litter identity on soil nutrients
处理 Treatments | 凋落物种 Species of litter | 总有机碳 Total organic carbon (g/kg) | 总氮 Total nitrogen (g/kg) | 有效磷 Available phosphorus (mg/kg) | 有效钾 Available potassium (mg/kg) | 土壤pH值 Soil pH |
---|---|---|---|---|---|---|
1 | 对照 CK | 19.04 ± 0.03b | 2.15 ± 0.03c | 1.32 ± 0.07b | 41.35 ± 0.56c | 4.89 ± 0.03c |
2 | 望天树 PC | 27.71 ± 1.19a | 2.68 ± 0.15ab | 1.45 ± 0.08a | 42.49 ± 0.81bc | 5.19 ± 0.03a |
3 | 绒毛猴欢喜 ST | 26.69 ± 0.91a | 2.76 ± 0.07ab | 1.49 ± 0.05a | 43.15 ± 2.31abc | 5.15 ± 0.13ab |
4 | 华马钱 SC | 27.34 ± 1.34a | 2.78 ± 0.11a | 1.42 ± 0.09a | 44.49 ± 1.82a | 5.03 ± 0.10bc |
5 | 蚁花 OL | 27.65 ± 1.90a | 2.65 ± 0.13b | 1.48 ± 0.06a | 42.76 ± 2.14abc | 5.21 ± 0.11a |
6 | 番龙眼 PP | 28.02 ± 1.64a | 2.67 ± 0.06ab | 1.46 ± 0.07a | 42.93 ± 1.35abc | 5.03 ± 0.25bc |
7 | 黄葛树 FV | 27.05 ± 1.54a | 2.69 ± 0.04ab | 1.47 ± 0.08a | 44.52 ± 2.02a | 5.09 ± 0.21ab |
8 | 羊乳榕 FS | 26.69 ± 1.45a | 2.65 ± 0.12b | 1.47 ± 0.06a | 44.21 ± 2.07ab | 5.18 ± 0.04ab |
9 | 印度锥 CI | 27.88 ± 1.43a | 2.65 ± 0.13b | 1.44 ± 0.04a | 43.09 ± 1.63abc | 5.15 ± 0.15ab |
处理 Treatments | 凋落物多样性 Litter diversity | 总有机碳 Total organic carbon (g/kg) | 总氮 Total nitrogen (g/kg) | 有效磷 Available phosphorus (mg/kg) | 有效钾 Available potassium (mg/kg) | 土壤pH值 Soil pH |
---|---|---|---|---|---|---|
1 | CK | 19.02 ± 0.13b | 2.07 ± 0.07c | 1.39 ± 0.08b | 41.32 ± 1.61b | 4.92 ± 0.08c |
2 | ST | 27.72 ± 1.22a | 2.78 ± 0.15a | 1.45 ± 0.09ab | 43.34 ± 1.49a | 5.25 ± 0.09a |
3 | ST + SC | 27.46 ± 1.42a | 2.66 ± 0.09b | 1.50 ± 0.09a | 42.71 ± 1.16a | 5.07 ± 0.11b |
4 | ST + SC + OL + PP | 27.31 ± 0.94a | 2.81 ± 0.15a | 1.51 ± 0.13a | 43.59 ± 0.85a | 5.25 ± 0.10a |
5 | ST + SC + OL + PP + FV + FS + CI | 27.22 ± 1.10a | 2.78 ± 0.09a | 1.47 ± 0.08ab | 42.88 ± 2.23a | 5.18 ± 0.06a |
Table 3 Effect of litter diversity on soil nutrients
处理 Treatments | 凋落物多样性 Litter diversity | 总有机碳 Total organic carbon (g/kg) | 总氮 Total nitrogen (g/kg) | 有效磷 Available phosphorus (mg/kg) | 有效钾 Available potassium (mg/kg) | 土壤pH值 Soil pH |
---|---|---|---|---|---|---|
1 | CK | 19.02 ± 0.13b | 2.07 ± 0.07c | 1.39 ± 0.08b | 41.32 ± 1.61b | 4.92 ± 0.08c |
2 | ST | 27.72 ± 1.22a | 2.78 ± 0.15a | 1.45 ± 0.09ab | 43.34 ± 1.49a | 5.25 ± 0.09a |
3 | ST + SC | 27.46 ± 1.42a | 2.66 ± 0.09b | 1.50 ± 0.09a | 42.71 ± 1.16a | 5.07 ± 0.11b |
4 | ST + SC + OL + PP | 27.31 ± 0.94a | 2.81 ± 0.15a | 1.51 ± 0.13a | 43.59 ± 0.85a | 5.25 ± 0.10a |
5 | ST + SC + OL + PP + FV + FS + CI | 27.22 ± 1.10a | 2.78 ± 0.09a | 1.47 ± 0.08ab | 42.88 ± 2.23a | 5.18 ± 0.06a |
Fig. 1 Response of bacterial (A) and nematode (B) alpha diversity (Shannon index) to the litter addition of different plant species. Error bar indicate standard deviation (n = 8), and different lowercase letters indicate significant differences between treatments (P < 0.05, Duncan’s test). CK: Control treatment; PC, Parashorea chinensis; ST, Sloanea tomentosa; SC, Strychnos cathayensis; OL, Orophea laui; PP, Pometia pinnata; FV, Ficus virens; FS, F. sagittata; CI, Castanopsis indica.
Fig. 2 PcoA analysis of the bacterial and nematode communities in response to the addition of different plant litter. CK, Control treatment; PC, Parashorea chinensis; ST, Sloanea tomentosa; SC, Strychnos cathayensis; OL, Orophea laui; PP, Pometia pinnata; FV, Ficus virens; FS, F. sagittata; CI, Castanopsis indica.
Fig. 3 Response of bacterial (A) and nematode (B) alpha diversity (Shannon index) to the litter diversity. Error bar indicate standard deviation (n = 10), and different lowercase letters indicate significant differences between treatments (P < 0.05, Duncan’s test). CK, Control treatment; 1Species, The addition of Sloanea tomentosa; 2Species, The addition of Sloanea tomentosa and Strychnos cathayensis; 4Species, The addition of Sloanea tomentosa, Strychnos cathayensis, Orophea laui and Pometia pinnata; 7Species, The addition of Sloanea tomentosa, Strychnos cathayensis, Orophea laui, Pometia pinnata, Ficus virens, F. sagittata and Castanopsis indica.
Fig. 4 PcoA analysis of bacterial (A) and nematode (B) communities in response to litter diversity. CK, Control treatment; 1Species, The addition of Sloanea tomentosa; 2Species, The addition of Sloanea tomentosa and Strychnos cathayensis; 4Species, The addition of Sloanea tomentosa, Strychnos cathayensis, Orophea laui and Pometia pinnata; 7Species, The addition of Sloanea tomentosa, Strychnos cathayensis, Orophea laui, Pometia pinnata, Ficus virens, F. sagittata and Castanopsis indica.
[1] | Agathokleous E, Feng ZZ, Oksanen E, Sicard P, Wang Q, Saitanis CJ, Araminiene V, Blande JD, Hayes F, Calatayud V, Domingos M, Veresoglou SD, Peñuelas J, Wardle DA, De Marco A, Li ZZ, Harmens H, Yuan XY, Vitale M, Paoletti E (2020) Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Science Advances, 6, eabc1176. |
[2] |
Ai L, Wu FZ, Fan XB, Yang Y, Zhang Y, Zheng XP, Zhu JJ, Ni XY (2023) Different effects of litter and root inputs on soil enzyme activities in terrestrial ecosystems. Applied Soil Ecology, 183, 104764.
DOI URL |
[3] |
Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI |
[4] |
Bhatnagar JM, Peay KG, Treseder KK (2018) Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecological Monographs, 88, 429-444.
DOI URL |
[5] |
Cao M, Zhou XM, Warren M, Zhu H (2006) Tropical forests of Xishuangbanna, China. Biotropica, 38, 306-309.
DOI URL |
[6] | Chao L, Li ZG, Yang DX, Wang AH, Zhang JB, Hu BQ, Liu YY (2022) Comparison of chemical traits between drought-dead and natural litter leaves. Journal of Tropical and Subtropical Botany, 30, 79-87. (in Chinese with English abstract) |
[巢林, 李忠国, 杨大新, 王爱华, 张建兵, 胡宝清, 刘艳艳 (2022) 干旱死亡叶片与自然凋落叶化学性质对比研究. 热带亚热带植物学报, 30, 79-87.] | |
[7] |
Chen Y, Ma S, Jiang H, Hu Y, Lu X (2020) Influences of litter diversity and soil moisture on soil microbial communities in decomposing mixed litter of alpine steppe species. Geoderma, 377, 114577.
DOI URL |
[8] | Diallo MD, Guisse A, Sall SN, Dick RP, Assigbetse KB, Dieng AL, Chotte JL (2015) Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria. Biotechnology, Agronomy, Society and Environment, 19, 173-183. |
[9] |
Du XF, Li YB, Han X, Ahmad W, Li Q (2020) Using high throughput sequencing quantitatively to investigate soil nematode community composition in a steppe-forest ecotone. Applied Soil Ecology, 152, 103562.
DOI URL |
[10] |
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.
DOI PMID |
[11] |
Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food-web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[12] | Gawol D, Nichvolodoff T, Floyd R (2022) Carbon to nitrogen ratios influence microbial diversity in the soil of interior Douglas-fir forests in British Columbia. Undergraduate Journal of Experimental Microbiology and Immunology, 27, 1-12. |
[13] |
Geisen S, Snoek LB ten Hooven FC, Duyts H, Kostenko O, Bloem J, Martens H, Quist CW, Helder JA, van der Putten WH (2018) Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution, 9, 1366-1378.
DOI URL |
[14] |
Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science, 307, 550-555.
DOI PMID |
[15] |
Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218.
DOI URL |
[16] | Hu YL, Wang SL, Huang Y, Yu XJ (2005) Effects of litter chemistry on soil biological property and enzymatic activity. Acta Ecologica Sinica, 25, 2662-2668. (in Chinese with English abstract) |
[胡亚林, 汪思龙, 黄宇, 于小军 (2005) 凋落物化学组成对土壤微生物学性状及土壤酶活性的影响. 生态学报, 25, 2662-2668.] | |
[17] | IUSS Working Group WRB (2006) World Reference Base for Soil Resources: World Soil Resources Reports No. 103. UN Food and Agriculture Organization, Rome. |
[18] | Jin X, Wang ZL, Wu FZ, Li XG, Zhou XG (2022) Litter mixing alters microbial decomposer community to accelerate tomato root litter decomposition. Microbiology Spectrum, 10, e0018622. |
[19] |
Kouser Y, Shah AA, Rasmann S (2021) The functional role and diversity of soil nematodes are stronger at high elevation in the lesser Himalayan Mountain ranges. Ecology and Evolution, 11, 13793-13804.
DOI PMID |
[20] |
Liu JY, Ding CJ, Zhang WX, Wei YW, Zhou YB, Zhu WX (2022) Litter mixing promoted decomposition rate through increasing diversities of phyllosphere microbial communities. Frontiers in Microbiology, 13, 1009091.
DOI URL |
[21] | Liu L, Zhu K, Wurzburger N, Zhang J (2020) Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere, 11, e02999. |
[22] |
McSorley R, Frederick JJ (2004) Effect of extraction method on perceived composition of the soil nematode community. Applied Soil Ecology, 27, 55-63.
DOI URL |
[23] |
Mod HK, Buri A, Yashiro E, Guex N, Malard L, Pinto-Figueroa E, Pagni M, Niculita-Hirzel H, van der Meer JR, Guisan A (2021) Predicting spatial patterns of soil bacteria under current and future environmental conditions. The ISME Journal, 15, 2547-2560.
DOI URL |
[24] |
Muneer MA, Hou W, Li J, Huang XM, Rehman Kayani M, Cai YY, Yang WH, Wu LQ, Ji BM, Zheng CY (2022) Soil pH: A key edaphic factor regulating distribution and functions of bacterial community along vertical soil profiles in red soil of pomelo orchard. BMC Microbiology, 22, 38.
DOI PMID |
[25] | Neina D (2019) The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019, 5794869. |
[26] |
Ping YM, Pan X, Li W, Wang JZ, Cui LJ (2019) The soil bacterial and fungal diversity were determined by the stoichiometric ratios of litter inputs: Evidence from a constructed wetland. Scientific Reports, 9, 13813.
DOI PMID |
[27] | Porazinska DL, Giblin-Davis RM, Powers TO, Thomas WK (2012) Nematode spatial and ecological patterns from tropical and temperate rainforests. PLoS ONE, 7, e44641. |
[28] |
Santonja M, Rancon A, Fromin N, Baldy V, Hättenschwiler S, Fernandez C, Montès N, Mirleau P (2017) Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biology and Biochemistry, 111, 124-134.
DOI URL |
[29] | She T, Tian Y (2020) Effects of litter diversity on decomposition process and soil microbial characteristics in forest ecosystems. Ecological Science, 39, 213-223. (in Chinese with English abstract) |
[佘婷, 田野 (2020) 森林生态系统凋落物多样性对分解过程和土壤微生物特性影响研究进展. 生态科学, 39, 213-223.] | |
[30] |
Song YP, Yu YH, Li YT, Du MF (2023) Leaf litter chemistry and its effects on soil microorganisms in different ages of Zanthoxylun planishinum var. dintanensis. BMC Plant Biology, 23, 262.
DOI |
[31] |
Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
DOI PMID |
[32] |
van der Putten WH (2017) Belowground drivers of plant diversity. Science, 355, 134-135.
DOI PMID |
[33] | Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R (2016) Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems, 1, e00009-15. |
[34] | Wang XP, Yang X, Yang N, Xin XJ, Qu YB, Zhao NX, Gao YB (2019) Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community. Acta Ecologica Sinica, 39, 6264-6272. (in Chinese with English abstract) |
[王小平, 杨雪, 杨楠, 辛晓静, 曲耀冰, 赵念席, 高玉葆 (2019) 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响. 生态学报, 39, 6264-6272.] | |
[35] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[36] |
Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry, 35, 827-835.
DOI URL |
[37] |
Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature, 435, 806-810.
DOI |
[38] |
Xia SW, Chen J, Schaefer D, Detto M (2015) Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant and Soil, 391, 51-61.
DOI URL |
[39] |
Xia SW, Chen J, Schaefer D, Goodale UM (2016) Effect of topography and litterfall input on fine-scale patch consistency of soil chemical properties in a tropical rainforest. Plant and Soil, 404, 385-398.
DOI URL |
[40] |
Yang HL, Li YL, Zhan J, Bao C, Luo YQ (2022) Effects of litter chemical traits and species richness on soil carbon cycling changed over time. Frontiers in Environmental Science, 10, 1023831.
DOI URL |
[41] |
Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[42] | Zhang BB, Wan XH, Yang JQ, Wang T, Huang ZQ (2021) Effects of litters different in quality on soil microbial community structure in Cunninghamia lanceolata plantation. Acta Pedologica Sinica, 58, 1040-1049. (in Chinese with English abstract) |
[张冰冰, 万晓华, 杨军钱, 王涛, 黄志群 (2021) 不同凋落物质量对杉木人工林土壤微生物群落结构的影响. 土壤学报, 58, 1040-1049.] | |
[43] |
Zhang LL, Li JW, Wang ZL, Zhang DH, Liu H, Wang J, Wu FZ, Wang X, Zhou XG (2023) Litter mixing promoted decomposition and altered microbial community in common bean root litter. BMC Microbiology, 23, 148.
DOI PMID |
[44] |
Zhang P, Li B, Wu JH, Hu SJ (2019) Invasive plants differentially affect soil biota through litter and rhizosphere pathways: A meta-analysis. Ecology Letters, 22, 200-210.
DOI PMID |
[45] |
Zhang YK, Peng S, Chen XL, Chen HYH (2022) Plant diversity increases the abundance and diversity of soil fauna: A meta-analysis. Geoderma, 411, 115694.
DOI URL |
[46] |
Zhu HQ, Gong L, Luo Y, Tang JH, Ding ZL, Li XC (2022) Effects of litter and root manipulations on soil bacterial and fungal community structure and function in a Schrenk’s spruce (Picea schrenkiana) forest. Frontiers in Plant Science, 13, 849483.
DOI URL |
[1] | Zhu Yao, Xue Wei, Jinhao Ma, Xiao Ren, Yuying Wang, Lei Hu, Pengfei Wu. Short-term effects of warming and wetting on the soil nematode communities in the alpine meadow [J]. Biodiv Sci, 2024, 32(5): 23483-. |
[2] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[3] | Shuhan Yang, He Wang, Lei Chen, Yingfei Liao, Guang Yan, Yining Wu, Hongfei Zou. Effects of heterogeneous habitat on soil nematode community characteristics in the Songnen Plain [J]. Biodiv Sci, 2024, 32(1): 23295-. |
[4] | Xinyang Zhou, Yutao Wang, Jianping Li. Response of plant community composition to precipitation changes in typical grasslands in the Loess Plateau [J]. Biodiv Sci, 2023, 31(3): 22118-. |
[5] | Wang Chaoya, Li Jintao, Liu Chang, Wang Bo, Miao Baige, Peng Yanqiong. Interannual stability in butterfly diversity and the larvae-plant interaction network structure at Xishuangbanna Tropical Botanical Garden [J]. Biodiv Sci, 2023, 31(12): 23305-. |
[6] | Chao Zhang, Juan Li, Haiyun Cheng, Jiachong Duan, Zhao Pan. Patterns and environmental drivers of the butterfly diversity in the western region of Qinling Mountains [J]. Biodiv Sci, 2023, 31(1): 22272-. |
[7] | Yixin Sun, Yingbin Li, Yuhui Li, Bing Li, Xiaofang Du, Qi Li. Application of high-throughput sequencing technique in the study of nematode diversity [J]. Biodiv Sci, 2022, 30(12): 22266-. |
[8] | Yushan Xiao, Changrao Yang, Guo Zheng, Pengfeng Wu, Shixiu Zhang, Shuyan Cui. Effects of precipitation regime on the structure of soil micro-food web in the grassland of northern China [J]. Biodiv Sci, 2022, 30(12): 22208-. |
[9] | Wenjia Wu, Ye Yuan, Jing Zhang, Lixia Zhou, Jun Wang, Hai Ren, Zhanfeng Liu. Dynamics of soil nematode community during the succession of forests in southern subtropical China [J]. Biodiv Sci, 2022, 30(12): 22205-. |
[10] | Huiling Hu, Zhiyuan Yao, Shibin Gao, Bo Zhu. Nematode response to long-term fertilization in purple soil [J]. Biodiv Sci, 2022, 30(12): 22189-. |
[11] | Xiaotong Liu, Yijia Tian, Hanwen Liu, Cuiying Liang, Siwei Jiang, Wenju Liang, Xiaoke Zhang. Seasonal variation in cropland soil nematode community composition in the lower reaches of Liaohe Plain [J]. Biodiv Sci, 2022, 30(12): 22222-. |
[12] | Yu Ren, Shengli Tao, Tianyu Hu, Haitao Yang, Hongcan Guan, Yanjun Su, Kai Cheng, Mengxi Chen, Huawei Wan, Qinghua Guo. The outlook and system construction for monitoring Essential Biodiversity Variables based on remote sensing: The case of China [J]. Biodiv Sci, 2022, 30(10): 22530-. |
[13] | Zusheng Yi, Yuanjun Huang, Hui Yi, Xinwang Zhang, Wenjun Li. Biodiversity of macrozoobenthos in the Chebaling National Nature Reserve, Guangdong Province [J]. Biodiv Sci, 2021, 29(5): 680-687. |
[14] | Nan Wang, Jinghua Huang, Na Huo, Panpan Yang, Xinyue Zhang, Shiwei Zhao. Characteristics of soil nematode community under different vegetation restoration approaches in the mountainous region of southern Ningxia: A comparative study based on morphological identification and high-throughput sequencing methods [J]. Biodiv Sci, 2021, 29(11): 1513-1529. |
[15] | Shixiong Li, Yanlong Wang, Yuqin Wang, Yali Yin. Response of soil bacterial community characteristics to alpine meadow degradation [J]. Biodiv Sci, 2021, 29(1): 53-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn