Biodiv Sci ›› 2022, Vol. 30 ›› Issue (12): 22189. DOI: 10.17520/biods.2022189
Special Issue: 土壤生物与土壤健康
• Original Papers • Previous Articles Next Articles
Huiling Hu1, Zhiyuan Yao2, Shibin Gao1,*(), Bo Zhu2
Received:
2022-04-14
Accepted:
2022-06-27
Online:
2022-12-20
Published:
2022-09-29
Contact:
*E-mail: shibingao@163.com
Huiling Hu, Zhiyuan Yao, Shibin Gao, Bo Zhu. Nematode response to long-term fertilization in purple soil[J]. Biodiv Sci, 2022, 30(12): 22189.
营养类群 Trophic group | 线虫类群 Nematode group | CK (%) | NPK (%) | BCNPK (%) | OMNPK (%) | RSDNPK (%) | c-p值 c-p value |
---|---|---|---|---|---|---|---|
食细菌线虫 Bacterivores (BA) | 丽突属 Acrobeles | 0.1 | 0.9 | 0.7 | 1.1 | 0.3 | 2 |
头叶科 Cephalobidae | 0.0 | 0.4 | 0.1 | 0.4 | 0.5 | 2 | |
头叶属 Cephalobus | 0.8 | 1.0 | 0.6 | 0.8 | 0.8 | 2 | |
板唇属 Chiloplacus | 44.9 | 45.6 | 41.3 | 41.1 | 25.2 | 2 | |
真头叶属 Eucephalobus | 0.1 | 0.2 | 0.6 | 0.2 | 0.1 | 2 | |
中杆属 Mesorhabditis | 1.8 | 0.3 | 3.9 | 0.6 | 4.0 | 1 | |
Oscheius | 1.8 | 7.2 | 1.7 | 11.5 | 10.5 | 1 | |
盆咽属 Panagrolaimus | 0.5 | 0.2 | 0.8 | 2.3 | 6.0 | 1 | |
食真菌线虫 Fungivores (FU) | 滑刃属 Aphelenchoides | 0.7 | 1.7 | 1.3 | 1.1 | 6.4 | 2 |
茎属 Ditylenchus | 1.0 | 3.8 | 5.8 | 0.7 | 0.5 | 2 | |
丝尾垫刃属 Filenchus | 1.0 | 1.3 | 0.8 | 2.0 | 3.6 | 2 | |
拟滑刃属 Paraphelenchus | 4.6 | 4.3 | 6.5 | 4.2 | 4.3 | 2 | |
植食线虫 Plant parasites (PP) | 矮化属 Tylenchorhynchus | 2.0 | 6.3 | 4.9 | 5.9 | 4.7 | 3 |
伊朗垫刃属 Irantylenchus | 0.2 | 0.2 | 0.1 | 0.4 | 0.8 | 2 | |
新平滑垫刃属 Neopsilenchus | 2.8 | 2.6 | 6.0 | 1.7 | 0.7 | 2 | |
短体属 Pratylenchus | 0.4 | 1.8 | 6.6 | 2.3 | 1.0 | 3 | |
根结属 Meloidogyne | 2.6 | 3.0 | 5.4 | 3.3 | 1.3 | 3 | |
杂食/捕食线虫 Omnivores/predators (OP) | 异色矛属 Achromadora | 1.5 | 1.0 | 2.4 | 1.2 | 0.5 | 3 |
大茅属 Enchodelus | 0.0 | 0.1 | 0.1 | 0.9 | 0.2 | 4 | |
挫齿属 Mylonchulus | 0.2 | 0.6 | 0.9 | 1.7 | 0.4 | 4 | |
丝尾属 Oxydirus | 19.1 | 0.3 | 0.6 | 2.4 | 0.7 | 5 | |
Pristionchus | 2.9 | 7.5 | 2.5 | 2.0 | 12.9 | 1 | |
小三孔属 Tripylina | 10.5 | 9.5 | 5.1 | 11.0 | 14.2 | 3 | |
三裂体属 Trischistoma | 0.5 | 0.5 | 1.2 | 0.9 | 0.4 | 3 |
Table 1 Relative abundance of soil nematodes under different fertilization treatments. CK, No fertilizer; NPK, Chemical fertilizer alone; BCNPK, Biochar + chemical fertilizer; OMNPK, Commercial pig manure + chemical fertilizer; RSDNPK, Straw + chemical fertilizer.
营养类群 Trophic group | 线虫类群 Nematode group | CK (%) | NPK (%) | BCNPK (%) | OMNPK (%) | RSDNPK (%) | c-p值 c-p value |
---|---|---|---|---|---|---|---|
食细菌线虫 Bacterivores (BA) | 丽突属 Acrobeles | 0.1 | 0.9 | 0.7 | 1.1 | 0.3 | 2 |
头叶科 Cephalobidae | 0.0 | 0.4 | 0.1 | 0.4 | 0.5 | 2 | |
头叶属 Cephalobus | 0.8 | 1.0 | 0.6 | 0.8 | 0.8 | 2 | |
板唇属 Chiloplacus | 44.9 | 45.6 | 41.3 | 41.1 | 25.2 | 2 | |
真头叶属 Eucephalobus | 0.1 | 0.2 | 0.6 | 0.2 | 0.1 | 2 | |
中杆属 Mesorhabditis | 1.8 | 0.3 | 3.9 | 0.6 | 4.0 | 1 | |
Oscheius | 1.8 | 7.2 | 1.7 | 11.5 | 10.5 | 1 | |
盆咽属 Panagrolaimus | 0.5 | 0.2 | 0.8 | 2.3 | 6.0 | 1 | |
食真菌线虫 Fungivores (FU) | 滑刃属 Aphelenchoides | 0.7 | 1.7 | 1.3 | 1.1 | 6.4 | 2 |
茎属 Ditylenchus | 1.0 | 3.8 | 5.8 | 0.7 | 0.5 | 2 | |
丝尾垫刃属 Filenchus | 1.0 | 1.3 | 0.8 | 2.0 | 3.6 | 2 | |
拟滑刃属 Paraphelenchus | 4.6 | 4.3 | 6.5 | 4.2 | 4.3 | 2 | |
植食线虫 Plant parasites (PP) | 矮化属 Tylenchorhynchus | 2.0 | 6.3 | 4.9 | 5.9 | 4.7 | 3 |
伊朗垫刃属 Irantylenchus | 0.2 | 0.2 | 0.1 | 0.4 | 0.8 | 2 | |
新平滑垫刃属 Neopsilenchus | 2.8 | 2.6 | 6.0 | 1.7 | 0.7 | 2 | |
短体属 Pratylenchus | 0.4 | 1.8 | 6.6 | 2.3 | 1.0 | 3 | |
根结属 Meloidogyne | 2.6 | 3.0 | 5.4 | 3.3 | 1.3 | 3 | |
杂食/捕食线虫 Omnivores/predators (OP) | 异色矛属 Achromadora | 1.5 | 1.0 | 2.4 | 1.2 | 0.5 | 3 |
大茅属 Enchodelus | 0.0 | 0.1 | 0.1 | 0.9 | 0.2 | 4 | |
挫齿属 Mylonchulus | 0.2 | 0.6 | 0.9 | 1.7 | 0.4 | 4 | |
丝尾属 Oxydirus | 19.1 | 0.3 | 0.6 | 2.4 | 0.7 | 5 | |
Pristionchus | 2.9 | 7.5 | 2.5 | 2.0 | 12.9 | 1 | |
小三孔属 Tripylina | 10.5 | 9.5 | 5.1 | 11.0 | 14.2 | 3 | |
三裂体属 Trischistoma | 0.5 | 0.5 | 1.2 | 0.9 | 0.4 | 3 |
Fig. 1 Abundance of soil nematodes within aggregates in different fertilization treatments (mean ± SE). Different capital letters represented significant differences in nematode abundance under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
Fig. 2 Principal coordinate analysis of nematode community structure. Eclipses indicate the confidence interval of mean ± standard deviation; Adonis R2 indicates the variance can be explained by fertilization regimes. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
Fig. 3 Relative abundance of soil nematode trophic groups within aggregates in different fertilization treatments. Different capital letters represent significant differences in relative abundance of nematode trophic groups under different fertilization treatments (P < 0.05). Different lowercase letters represent significant differences in relative abundance of nematode trophic groups within aggregates under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK, PP, OP, FU, BA see Table 1.
Fig. 4 Shannon-Wiener diversity index of soil nematode communities within aggregates in different fertilization treatments (mean ± SE). Different capital letters represent significant differences in Shannon-Wiener diversity index under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
处理 Fertilization treatment | 不同粒径团聚体 Aggregates class | 丰富度指数 Margalef index (SR) | 均匀度指数 Pielou index (J) | 优势度指数 Simpson index (λ) | 营养多样性 Trophic diversity (TD) |
---|---|---|---|---|---|
CK | BS | 2.67 ± 0.29Ca | 0.48 ± 0.06Ca | 0.17 ± 0.04Aa | 2.30 ± 0.23Aa |
LA | 2.56 ± 0.18Ca | 0.48 ± 0.04Ca | 0.12 ± 0.03Aa | 2.44 ± 0.11Aa | |
SA | 2.51 ± 0.19Ca | 0.46 ± 0.07Ca | 0.11 ± 0.02Aa | 2.29 ± 0.13Ab | |
NPK | BS | 3.14 ± 0.09Aa | 0.46 ± 0.06Ca | 0.18 ± 0.03Aa | 2.52 ± 0.12Aa |
LA | 3.22 ± 0.04Aa | 0.48 ± 0.03Ca | 0.09 ± 0.02Aa | 2.98 ± 0.18Aa | |
SA | 3.30 ± 0.17Aa | 0.45 ± 0.02Ca | 0.24 ± 0.02Aa | 1.79 ± 0.07Ab | |
BCNPK | BS | 3.08 ± 0.21Ba | 0.51 ± 0.03Ba | 0.09 ± 0.02Aa | 3.04 ± 0.09Aa |
LA | 2.92 ± 0.10Ba | 0.54 ± 0.01Ba | 0.09 ± 0.01Aa | 3.09 ± 0.17Aa | |
SA | 2.89 ± 0.03Ba | 0.49 ± 0.02Ba | 0.13 ± 0.03Aa | 2.45 ± 0.22Ab | |
OMNPK | BS | 3.02 ± 0.09Aa | 0.48 ± 0.02Ca | 0.11 ± 0.02Aa | 2.62 ± 0.01Aa |
LA | 3.20 ± 0.12Aa | 0.48 ± 0.03Ca | 0.09 ± 0.03Aa | 2.83 ± 0.27Aa | |
SA | 3.06 ± 0.04Aa | 0.49 ± 0.05Ca | 0.18 ± 0.03Aa | 1.87 ± 0.25Ab | |
RSDNPK | BS | 2.96 ± 0.07Aa | 0.60 ± 0.01Aa | 0.10 ± 0.02Aa | 2.56 ± 0.29Aa |
LA | 3.07 ± 0.11Aa | 0.55 ± 0.03Aa | 0.12 ± 0.05Aa | 2.90 ± 0.28Aa | |
SA | 3.02 ± 0.11Aa | 0.62 ± 0.01Aa | 0.10 ± 0.01Aa | 2.62 ± 0.08Ab |
Table 2 Diversity indices of soil nematode communities within aggregates in different fertilization treatments (mean ± SE). Different capital letters indicate that there are significant differences in nematode community diversity indices under different fertilization treatments (P < 0.05), and different lowercase letters indicate that there are significant differences in nematode community diversity indices within aggregates under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
处理 Fertilization treatment | 不同粒径团聚体 Aggregates class | 丰富度指数 Margalef index (SR) | 均匀度指数 Pielou index (J) | 优势度指数 Simpson index (λ) | 营养多样性 Trophic diversity (TD) |
---|---|---|---|---|---|
CK | BS | 2.67 ± 0.29Ca | 0.48 ± 0.06Ca | 0.17 ± 0.04Aa | 2.30 ± 0.23Aa |
LA | 2.56 ± 0.18Ca | 0.48 ± 0.04Ca | 0.12 ± 0.03Aa | 2.44 ± 0.11Aa | |
SA | 2.51 ± 0.19Ca | 0.46 ± 0.07Ca | 0.11 ± 0.02Aa | 2.29 ± 0.13Ab | |
NPK | BS | 3.14 ± 0.09Aa | 0.46 ± 0.06Ca | 0.18 ± 0.03Aa | 2.52 ± 0.12Aa |
LA | 3.22 ± 0.04Aa | 0.48 ± 0.03Ca | 0.09 ± 0.02Aa | 2.98 ± 0.18Aa | |
SA | 3.30 ± 0.17Aa | 0.45 ± 0.02Ca | 0.24 ± 0.02Aa | 1.79 ± 0.07Ab | |
BCNPK | BS | 3.08 ± 0.21Ba | 0.51 ± 0.03Ba | 0.09 ± 0.02Aa | 3.04 ± 0.09Aa |
LA | 2.92 ± 0.10Ba | 0.54 ± 0.01Ba | 0.09 ± 0.01Aa | 3.09 ± 0.17Aa | |
SA | 2.89 ± 0.03Ba | 0.49 ± 0.02Ba | 0.13 ± 0.03Aa | 2.45 ± 0.22Ab | |
OMNPK | BS | 3.02 ± 0.09Aa | 0.48 ± 0.02Ca | 0.11 ± 0.02Aa | 2.62 ± 0.01Aa |
LA | 3.20 ± 0.12Aa | 0.48 ± 0.03Ca | 0.09 ± 0.03Aa | 2.83 ± 0.27Aa | |
SA | 3.06 ± 0.04Aa | 0.49 ± 0.05Ca | 0.18 ± 0.03Aa | 1.87 ± 0.25Ab | |
RSDNPK | BS | 2.96 ± 0.07Aa | 0.60 ± 0.01Aa | 0.10 ± 0.02Aa | 2.56 ± 0.29Aa |
LA | 3.07 ± 0.11Aa | 0.55 ± 0.03Aa | 0.12 ± 0.05Aa | 2.90 ± 0.28Aa | |
SA | 3.02 ± 0.11Aa | 0.62 ± 0.01Aa | 0.10 ± 0.01Aa | 2.62 ± 0.08Ab |
Fig. 5 Nematode faunal analysis of within aggregates in different fertilization treatments (mean ± SE). Different capital letters indicate that there are significant differences in nematode functional guild indices under different fertilization treatments (P < 0.05). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
Fig. 6 Total soil nematode metabolic footprint within aggregates in different fertilization treatments. There are no significant differences in total nematode metabolic footprint between fertilization treatments and within aggregates. BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
Fig. 7 The faunal analysis of soil nematodes within aggregates in different fertilization treatments (Based on nematode metabolic footprint). BS, Bulk soil; LA, Large aggregate; SA, Small aggregate. CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1. The solid line represents the mean and the dotted line represents the standard deviation. A, Quadrant A; B, Quadrant B; C, Quadrant C; D, Quadrant D.
Fig. 8 Wheat yield in different fertilization treatments (mean ± SE). Different lowercase letters represent significant difference under different fertilization treatments (P < 0.05). CK, NPK, BCNPK, OMNPK, RSDNPK see Table 1.
[1] |
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581-583.
DOI PMID |
[2] | Chen YF, Han XM, Li YF, Hu C (2014) Approach of nematode fauna analysis indicate the structure and function of soil food web. Acta Ecologica Sinica, 34, 1072-1084. (in Chinese with English abstract) |
[ 陈云峰, 韩雪梅, 李钰飞, 胡诚 (2014) 线虫区系分析指示土壤食物网结构和功能研究进展. 生态学报, 34, 1072-1084.] | |
[3] |
Ferris H (2010) Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46, 97-104.
DOI URL |
[4] |
Ferris H, Bongers T, de Goede RGM(2001) A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[5] | Ferris H, Sánchez-Moreno S, Brennan EB (2012) Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology, 61, 16-25. |
[6] |
Forge TA, Bittman S, Kowalenko CG (2005) Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry, 37, 1751-1762.
DOI URL |
[7] |
Gagic V, Kleijn D, Báldi A, Boros G, Jørgensen HB, Elek Z, Garratt MPD, de Groot GA, Hedlund K, Kovács-Hostyánszki A, Marini L, Martin E, Pevere I, Potts SG, Redlich S, Senapathi D, Steffan-Dewenter I, Świtek S, Smith HG, Takács V, Tryjanowski P, van der Putten WH, van Gils S, Bommarco R (2017) Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 20, 1427-1436.
DOI PMID |
[8] |
Garcı́a-Álvarez A, Arias M, Dı́ez-Rojo MA, Bello A (2004) Effect of agricultural management on soil nematode trophic structure in a Mediterranean cereal system. Applied Soil Ecology, 27, 197-210.
DOI URL |
[9] |
Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerová H, Kubát J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza, 16, 159-166.
DOI PMID |
[10] |
Herrera CM (1976) A trophic diversity index for presence-absence food data. Oecologia, 25, 187-191.
DOI PMID |
[11] |
Jiang YJ, Zhou H, Chen LJ, Yuan Y, Fang H, Luan L, Chen Y, Wang XY, Liu MQ, Li HX, Peng XH, Sun B (2018) Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Frontiers in Microbiology, 9, 2803.
DOI PMID |
[12] | Li Q, Jiang Y, Liang WJ, Lou YL, Zhang EP, Liang CH (2010) Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology, 46, 111-118. |
[13] |
Li Q, Liang WJ, Jiang Y (2007) Present situation and prospect of soil nematode diversity in farmland ecosystems, Biodiversity Science, 15, 134-141. (in Chinese with English abstract)
DOI |
[ 李琪, 梁文举, 姜勇 (2007) 农田土壤线虫多样性研究现状及展望. 生物多样性, 15, 134-141.]
DOI |
|
[14] |
Li JM, Wang DC, Fan W, He RC, Yao YY, Sun L, Zhao XY, Wu JG (2018) Comparative effects of different organic materials on nematode community in continuous soybean monoculture soil. Applied Soil Ecology, 125, 12-17.
DOI URL |
[15] | Liang SW, Kou XC, Li YB, Lü XT, Wang JK, Li Q (2020) Soil nematode community composition and stability under different nitrogen additions in a semiarid grassland. Global Ecology and Conservation, 22, e00965.. |
[16] |
Liang WJ, Lou YL, Li Q, Zhong S, Zhang XK, Wang JK (2009) Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41, 883-890.
DOI URL |
[17] |
Liu T, Chen XY, Hu F, Ran W, Shen QR, Li HX, Whalen JK (2016) Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agriculture, Ecosystems & Environment, 232, 199-207.
DOI URL |
[18] |
Liu T, Hu F, Li HX (2019) Spatial ecology of soil nematodes: Perspectives from global to micro scales. Soil Biology and Biochemistry, 137, 107565.
DOI URL |
[19] |
Luan L, Jiang YJ, Cheng MH, Dini-Andreote F, Sui YY, Xu QS, Geisen S, Sun B (2020) Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, 11, 6406.
DOI PMID |
[20] |
Nahar MS, Grewal PS, Miller SA, Stinner D, Stinner BR, Kleinhenz MD, Wszelaki A, Doohan D (2006) Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Applied Soil Ecology, 34, 140-151.
DOI URL |
[21] | Oksanen Jari, Guillaume BF, Friendly M, Kindt R, Legendre P, DanMcGlinn, Minchin RB, O’Hara, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R version 2.5-7. |
[22] |
Pan F, McLaughlin NB, Yu Q, Xue AG, Xu Y, Han X, Li C, Zhao D (2010) Responses of soil nematode community structure to different long-term fertilizer strategies in the soybean phase of a soybean-wheat-corn rotation. European Journal of Soil Biology, 46, 105-111.
DOI URL |
[23] |
Porazinska DL, Giblin-Davis RM, Faller L, Farmerie W, Thomas WK (2009) Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources, 9, 1439-1450.
DOI PMID |
[24] | R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. |
[25] |
Sieriebriennikov B, Ferris H,de Goede RGM (2014) NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90-93.
DOI URL |
[26] |
Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155-176.
DOI URL |
[27] | Sánchez-Moreno S (2018) Biodiversity and soil health: The role of the soil food web in soil fertility and suppressiveness to soil-borne diseases. Acta Horticulturae, 1196, 95-104. |
[28] |
Sun CX, Chen X, Cao MM, Li MQ, Zhang YL (2017) Growth and metabolic responses of maize roots to straw biochar application at different rates. Plant and Soil, 416, 487-502.
DOI URL |
[29] |
Viglierchio DR, Schmitt RV (1983) On the methodology of nematode extraction from field samples: Density flotation techniques. Journal of Nematology, 15, 438-444.
PMID |
[30] | Wang XL, Ma K, Fu YZ, Wang ZQ, An YY (2020) Effects of no-tillage, mulching, and organic fertilization on soil fungal community composition and diversity. Chinese Journal of Applied Ecology, 31, 890-898. (in Chinese with English abstract) |
[ 王小玲, 马琨, 伏云珍, 汪志琴, 安嫄嫄 (2020) 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响. 应用生态学报, 31, 890-898.]
DOI |
|
[31] |
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen T, Miller E, Bache S, Müller K, Ooms J, Robinson D, Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome to the tidyverse. Journal of Open Source Software, 4, 1686.
DOI URL |
[32] |
Wu JH, Song CY, Chen JK (2007) Effect of microbivorous nematodes on plant growth and soil nutrient cycling: A review. Biodiversity Science, 15, 124-133. (in Chinese with English abstract)
DOI URL |
[ 吴纪华, 宋慈玉, 陈家宽 (2007) 食微线虫对植物生长及土壤养分循环的影响. 生物多样性, 15, 124-133.]
DOI |
|
[33] |
Zhang SX, Li Q, Lü Y, Zhang XP, Liang WJ (2013) Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biology and Biochemistry, 62, 147-156.
DOI URL |
[34] |
Zhang XK, Ferris H, Mitchell J, Liang WJ (2017) Ecosystem services of the soil food web after long-term application of agricultural management practices. Soil Biology and Biochemistry, 111, 36-43.
DOI URL |
[35] |
Zhang XK, Liang WJ, Li Q (2018) Recent progress and future directions of soil nematode ecology in China. Biodiversity Science, 26, 1060-1073. (in Chinese with English abstract)
DOI |
[ 张晓珂, 梁文举, 李琪 (2018) 我国土壤线虫生态学研究进展和展望. 生物多样性, 26, 1060-1073.]
DOI |
|
[36] |
Zhang ZY, Zhang XK, Mahamood M, Zhang SQ, Huang SM, Liang WJ (2016a) Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates. Scientific Reports, 6, 31118.
DOI URL |
[37] |
Zhang ZY, Zhang XK, Xu MG, Zhang SQ, Huang SM, Liang WJ (2016b) Responses of soil micro-food web to long-term fertilization in a wheat-maize rotation system. Applied Soil Ecology, 98, 56-64.
DOI URL |
[38] | Zhu B, Chen S, You X, Peng K, Zhang XW (2002) Soil fertility restoration on degraded upland of purple soil. Acta Pedologica Sinica, 39, 743-749. (in Chinese with English abstract) |
[ 朱波, 陈实, 游祥, 彭奎, 张先婉 (2002) 紫色土退化旱地的肥力恢复与重建. 土壤学报, 39, 743-749.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn