Biodiv Sci ›› 2024, Vol. 32 ›› Issue (1): 23295. DOI: 10.17520/biods.2023295
• Original Papers: Animal Diversity • Previous Articles Next Articles
Shuhan Yang1(), He Wang1, Lei Chen1, Yingfei Liao1, Guang Yan2, Yining Wu1,*()(), Hongfei Zou1,*()
Received:
2023-08-15
Accepted:
2023-11-21
Online:
2024-01-20
Published:
2024-01-19
Contact:
*E-mail: wuyiningnefu@126.com;Hongfeizou@163.com
Shuhan Yang, He Wang, Lei Chen, Yingfei Liao, Guang Yan, Yining Wu, Hongfei Zou. Effects of heterogeneous habitat on soil nematode community characteristics in the Songnen Plain[J]. Biodiv Sci, 2024, 32(1): 23295.
Fig. 2 Soil physicochemical properties of five habitats in the Songnen Plain. PT, Puccinellia tenuiflora habitat; DA, Deyeuxia angustifolia habitat; CS, Carex schmidtii habitat; LC, Leymus chinensis habitat; AH, Alkali habitat. SOC, Soil organic carbon; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium. Different lowercase letters indicate significant differences between habitat.
Fig. 3 Relative abundance and trophic groups of soil nematodes in various vegetation types in the Songnen Plain. PT, Puccinellia tenuiflora habitat; DA, Deyeuxia angustifolia habitat; CS, Carex schmidtii habitat; LC, Leymus chinensis habitat; AH, Alkali habitat. BF, Bacterivores; FF, Fungivores; PF, Plant-parasites; OP, Omnivores-predators. Different small letters mean significant difference at 0.05 level.
Fig. 4 Ecological index values of soil nematode communities in heterogeneous habitats in the Songnen Plain. PT, Puccinellia tenuiflora habitat; DA, Deyeuxia angustifolia habitat; CS, Carex schmidtii habitat; LC, Leymus chinensis habitat; AH, Alkali habitat. Different lowercase letters mean significant difference at 0.05 level.
Fig. 6 RDA analysis of soil nematode communities in heterogeneous habitat types in Songnen Plain. Acr, Acrobeloides; All, Allodorylaimus; Apo1, Aporcelaimellus; Apo2, Aporcelaimus; Cri, Criconemaides; Dip1, Diphtherophora; Dip2, Diploscapter; Epi, Epidorylaimus; Euc, Eucephalobus; Eud, Eudorylaimus; Lai, Laimydorus; Lep, Leptolaimus; Mac, Macroposthonia; Mes, Mesodorylaimus; Nyg, Nygolaimus; Par, Pararotylenchus; Pra, Pratylenchus; Pro, Proleptonchus; Tho, Thonus; Tri, Tripyla; Tyl1, Tylencholaimus; Tyl2, Tylenchus. SOC, Soil organic carbon; SWC, Soil water content; TP, Total phosphorus; SBD, Soil bulk density; P1, Importance value of hygrophytes; P3, Importance value of swamp plant.
指标 Index | pH | 土壤有机碳 SOC | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|---|
线虫多样性指数 H' | -0.527* | 0.100 | 0.105 | -0.008 | 0.077 | 0.130 | -0.459 | 0.496 |
线虫丰富度指数 SR | -0.616* | 0.157 | 0.170 | -0.015 | 0.066 | 0.114 | -0.644** | 0.642** |
结构指数 SI | -0.607* | 0.506 | 0.528* | 0.697** | -0.548* | 0.502 | -0.513 | 0.068 |
富集指数 EI | -0.446 | 0.801** | 0.813** | 0.686** | -0.870** | 0.783** | -0.200 | -0.070 |
线虫个体数 N | -0.666** | 0.207 | 0.219 | 0.101 | 0.062 | 0.100 | -0.729** | 0.767** |
自由生活线虫成熟度 MI | -0.282 | -0.038 | -0.036 | 0.268 | -0.031 | -0.084 | -0.169 | -0.062 |
植物-寄生线虫指数 PPI | -0.231 | 0.035 | 0.034 | -0.165 | 0.043 | -0.071 | 0.210 | 0.103 |
瓦斯乐斯卡指数 WI | -0.038 | -0.004 | 0.014 | 0.240 | -0.005 | 0.140 | -0.006 | -0.032 |
食细菌线虫多度 BF | -0.169 | 0.206 | 0.230 | -0.131 | -0.015 | 0.229 | -0.354 | 0.551* |
食真菌线虫多度 FF | -0.520* | 0.305 | 0.268 | 0.339 | -0.054 | 0.210 | -0.299 | 0.281 |
植物寄生线虫多度 PF | -0.119 | 0.332 | 0.333 | 0.086 | -0.239 | 0.212 | -0.189 | 0.194 |
捕食-杂食线虫多度 OP | -0.514 | 0.110 | 0.124 | 0.326 | -0.092 | 0.075 | -0.392 | 0.216 |
线虫通道比 NCR | 0.386 | -0.185 | -0.150 | -0.428 | 0.184 | -0.102 | 0.008 | 0.181 |
Table 1 Pearson correlation between nematode abundance, trophic groups, ecological indices and soil physicochemical parameters in the Songnen Plain
指标 Index | pH | 土壤有机碳 SOC | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|---|
线虫多样性指数 H' | -0.527* | 0.100 | 0.105 | -0.008 | 0.077 | 0.130 | -0.459 | 0.496 |
线虫丰富度指数 SR | -0.616* | 0.157 | 0.170 | -0.015 | 0.066 | 0.114 | -0.644** | 0.642** |
结构指数 SI | -0.607* | 0.506 | 0.528* | 0.697** | -0.548* | 0.502 | -0.513 | 0.068 |
富集指数 EI | -0.446 | 0.801** | 0.813** | 0.686** | -0.870** | 0.783** | -0.200 | -0.070 |
线虫个体数 N | -0.666** | 0.207 | 0.219 | 0.101 | 0.062 | 0.100 | -0.729** | 0.767** |
自由生活线虫成熟度 MI | -0.282 | -0.038 | -0.036 | 0.268 | -0.031 | -0.084 | -0.169 | -0.062 |
植物-寄生线虫指数 PPI | -0.231 | 0.035 | 0.034 | -0.165 | 0.043 | -0.071 | 0.210 | 0.103 |
瓦斯乐斯卡指数 WI | -0.038 | -0.004 | 0.014 | 0.240 | -0.005 | 0.140 | -0.006 | -0.032 |
食细菌线虫多度 BF | -0.169 | 0.206 | 0.230 | -0.131 | -0.015 | 0.229 | -0.354 | 0.551* |
食真菌线虫多度 FF | -0.520* | 0.305 | 0.268 | 0.339 | -0.054 | 0.210 | -0.299 | 0.281 |
植物寄生线虫多度 PF | -0.119 | 0.332 | 0.333 | 0.086 | -0.239 | 0.212 | -0.189 | 0.194 |
捕食-杂食线虫多度 OP | -0.514 | 0.110 | 0.124 | 0.326 | -0.092 | 0.075 | -0.392 | 0.216 |
线虫通道比 NCR | 0.386 | -0.185 | -0.150 | -0.428 | 0.184 | -0.102 | 0.008 | 0.181 |
指标 Index | 植物多样性指数 H2' | 平均高度 AH | 平均生物量 AB | 湿生植物重要值 P1 | 中生植物重要值 P2 | 沼生植物重要值 P3 | 植被盖度 Coverage |
---|---|---|---|---|---|---|---|
线虫多样性指数 H' | 0.366 | 0.199 | -0.058 | 0.703** | 0.239 | 0.171 | -0.058 |
线虫丰富度指数 SR | 0.420 | 0.270 | -0.103 | 0.752** | 0.341 | 0.200 | -0.103 |
结构指数 SI | 0.537* | 0.749** | 0.653** | 0.443 | 0.117 | 0.765** | 0.653** |
富集指数 EI | 0.131 | 0.657** | 0.478 | -0.507 | 0.534* | 0.508 | 0.478 |
线虫个体数 N | 0.687** | 0.301 | 0.042 | 0.817** | 0.424 | 0.260 | 0.042 |
自由生活线虫成熟度 MI | 0.314 | 0.232 | 0.200 | 0.599* | -0.325 | 0.311 | 0.200 |
植物-寄生线虫指数 PPI | -0.228 | -0.179 | -0.548* | 0.124 | 0.245 | -0.233 | -0.548* |
瓦斯乐斯卡指数 WI | 0.255 | 0.205 | 0.490 | 0.390 | -0.255 | 0.250 | 0.490 |
食细菌线虫多度 BF | 0.160 | 0.102 | -0.015 | -0.025 | 0.636* | -0.067 | -0.015 |
食真菌线虫多度 FF | 0.613* | 0.211 | 0.186 | 0.447 | -0.051 | 0.295 | 0.186 |
植物寄生线虫多度 PF | 0.070 | 0.124 | -0.031 | -0.394 | 0.447 | 0.028 | -0.031 |
捕食-杂食线虫多度 OP | 0.455 | 0.368 | 0.264 | 0.764** | -0.035 | 0.396 | 0.264 |
线虫通道比 NCR | -0.293 | -0.202 | -0.191 | -0.248 | 0.336 | -0.263 | -0.191 |
Table 2 Correlation coefficients between nematode abundance, trophic group, ecological index and plant physiological indicators in Songnen Plain
指标 Index | 植物多样性指数 H2' | 平均高度 AH | 平均生物量 AB | 湿生植物重要值 P1 | 中生植物重要值 P2 | 沼生植物重要值 P3 | 植被盖度 Coverage |
---|---|---|---|---|---|---|---|
线虫多样性指数 H' | 0.366 | 0.199 | -0.058 | 0.703** | 0.239 | 0.171 | -0.058 |
线虫丰富度指数 SR | 0.420 | 0.270 | -0.103 | 0.752** | 0.341 | 0.200 | -0.103 |
结构指数 SI | 0.537* | 0.749** | 0.653** | 0.443 | 0.117 | 0.765** | 0.653** |
富集指数 EI | 0.131 | 0.657** | 0.478 | -0.507 | 0.534* | 0.508 | 0.478 |
线虫个体数 N | 0.687** | 0.301 | 0.042 | 0.817** | 0.424 | 0.260 | 0.042 |
自由生活线虫成熟度 MI | 0.314 | 0.232 | 0.200 | 0.599* | -0.325 | 0.311 | 0.200 |
植物-寄生线虫指数 PPI | -0.228 | -0.179 | -0.548* | 0.124 | 0.245 | -0.233 | -0.548* |
瓦斯乐斯卡指数 WI | 0.255 | 0.205 | 0.490 | 0.390 | -0.255 | 0.250 | 0.490 |
食细菌线虫多度 BF | 0.160 | 0.102 | -0.015 | -0.025 | 0.636* | -0.067 | -0.015 |
食真菌线虫多度 FF | 0.613* | 0.211 | 0.186 | 0.447 | -0.051 | 0.295 | 0.186 |
植物寄生线虫多度 PF | 0.070 | 0.124 | -0.031 | -0.394 | 0.447 | 0.028 | -0.031 |
捕食-杂食线虫多度 OP | 0.455 | 0.368 | 0.264 | 0.764** | -0.035 | 0.396 | 0.264 |
线虫通道比 NCR | -0.293 | -0.202 | -0.191 | -0.248 | 0.336 | -0.263 | -0.191 |
Fig. 7 Non-metric multidimensional scale analysis (NMDS) and ANOSIM test of soil nematode and nematode communities in five habitats in Songnen Plain. BF, Bacterivores; FF, Fungivores; PF, Plant-parasites; OP, Omnivores-predators.
[1] | Bao SD (2000) Soil Agrochemical Analysis, 3rd edn. China Agriculture Press, Beijing. (in Chinese) |
[鲍士旦 (2000) 土壤农化分析(第三版). 中国农业出版社, 北京.] | |
[2] |
Biederman LA, Boutton TW (2009) Biodiversity and trophic structure of soil nematode communities are altered following woody plant invasion of grassland. Soil Biology and Biochemistry, 41, 1943-1950.
DOI URL |
[3] |
Bongers T (1990) The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
DOI PMID |
[4] | Chen DL, Purbu, Basang, Ma ZX, Chen LY (2014) Characterization of nematode communities in Lhalu wetlands during the summer. Chinese Journal of Zoology, 49, 744-753. (in Chinese with English abstract) |
[陈德来, 普布, 巴桑, 马正学, 陈凌云 (2014) 西藏拉鲁湿地夏季土壤线虫群落特征. 动物学杂志, 49, 744-753.] | |
[5] |
Chen DM, Xing W, Lan ZC, Saleem M, Wu Y, Hu SJ, Bai YF (2019) Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 33, 175-187.
DOI URL |
[6] |
Chen H, Yang L, Zhang FH (2021) Effects of continuous cotton monocropping on soil physicochemical properties and nematode community in Xinjiang, China. Chinese Journal of Applied Ecology, 32, 4263-4271. (in Chinese with English abstract)
DOI |
[陈虹, 杨磊, 张凤华 (2021) 新疆长期棉花连作对土壤理化性状与线虫群落的影响. 应用生态学报, 32, 4263-4271.]
DOI |
|
[7] | Chen L, Xin JN, Su Y, Li YF, Song NP, Wang L, Yang XG, Bian YY, Tian N (2019) Effects of heterogeneous habitats on community composition and niche characteristics of different plant populations in the desert steppe of China. Acta Ecologica Sinica, 39, 6187-6205. (in Chinese with English abstract) |
[陈林, 辛佳宁, 苏莹, 李月飞, 宋乃平, 王磊, 杨新国, 卞莹莹, 田娜 (2019) 异质生境对荒漠草原植物群落组成和种群生态位的影响. 生态学报, 39, 6187-6205.] | |
[8] |
Ferris H (2010) Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46, 97-104.
DOI URL |
[9] |
García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16, 1045-1053.
DOI PMID |
[10] |
Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management, 35, 649-666.
PMID |
[11] |
Hooper DU, Bignell DE, Brown VK, Brussard L, Dangerfield JM, Wall DH, Wardle DA, Coleman DC, Giller KE, Lavelle P, van der Putten WH, De Ruiter PC, Rusek J, Silver WL, Tiedje JM, Wolters V (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. BioScience, 50, 1049-1061.
DOI URL |
[12] |
Huo N, Zhao SW, Huang JH, Geng DZ, Wang N, Yang PP (2021) Seasonal stabilities of soil nematode communities and their relationships with environmental factors in different temperate forest types on the Chinese Loess Plateau. Forests, 12, 246.
DOI URL |
[13] |
Jin YL, Li BC, Geng L, Bu Y (2017) Soil fauna community in different natural vegetation types of Dajinshan Island, Shanghai. Biodiversity Science, 25, 304-311. (in Chinese with English abstract)
DOI |
[靳亚丽, 李必成, 耿龙, 卜云 (2017) 上海大金山岛不同植被类型下土壤动物群落多样性. 生物多样性, 25, 304-311.]
DOI |
|
[14] | Liang DS, Mu CC, Gao X, Lu Y (2023) Environmental gradient distribution patterns of wetland plant community diversity and controlling factors in Songnen Plain. Acta Ecologica Sinica, 43, 339-351. (in Chinese with English abstract) |
[梁道省, 牟长城, 高旭, 鲁艺 (2023) 松嫩平原湿地植物群落多样性的环境梯度分布格局及控制因子. 生态学报, 43, 339-351.] | |
[15] |
Liang WJ, Li Q, Jiang Y, Neher DA (2005) Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea, Northeast China. Applied Soil Ecology, 29, 185-192.
DOI URL |
[16] |
Liu YF, Wang WY, Suo NJ, Zhou HK, Mao XF, Wang SX, Chen Z (2022) Relationship between plant community types and soil nematode communities in Haibei, Qinghai, China. Chinese Journal of Plant Ecology, 46, 27-39. (in Chinese with English abstract)
DOI URL |
[刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲 (2022) 青海海北植物群落类型与土壤线虫群落相互关系. 植物生态学报, 46, 27-39.]
DOI |
|
[17] | Margalef DR (1958) Information theory in ecology. General Systematics, 3, 36-71. |
[18] |
Martin T, Sprunger CD (2022) Soil food web structure and function in annual row-crop systems: How can nematode communities infer soil health? Applied Soil Ecology, 178, 104553.
DOI URL |
[19] |
Mejía-Madrid HH, Panesar TS, Marshall VG, Barclay HJ (2001) Abundance and diversity of soil nematodes in chronosequences of coastal Douglas-fir forests on Vancouver Island, British Columbia. Pedobiologia, 45, 193-212.
DOI URL |
[20] |
Mejía-Madrid HH, Sánchez-Moreno S (2022) Natural ecosystem heterogeneity diversity and functioning of nematode communities in a semi-desert ecosystem in Mexico. Applied Soil Ecology, 176, 104477.
DOI URL |
[21] |
Mulder C, Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Beßler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556.
DOI |
[22] |
Paz-Ferreiro J, Fu SL (2016) Biological indices for soil quality evaluation: Perspectives and limitations. Land Degradation & Development, 27, 14-25.
DOI URL |
[23] |
Polis GA, Strong DR (1996) Food web complexity and community dynamics. The American Naturalist, 147, 813-846.
DOI URL |
[24] | Shannon CE, Weaver W (1963) The Mathematical Theory of Communication. University of Illinois, Urbana, Illinois. |
[25] |
Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annual Review of Phytopathology, 30, 245-270.
DOI URL |
[26] | Sun P, Wei X, Ye WH, Shen H (2022) Differences in leaf functional trait responses to heterogeneous habitats between dominant canopy and understory tree species in a south subtropical evergreen broad-leaved forest. Guihaia, 42, 510-519. (in Chinese with English abstract) |
[孙鹏, 韦霄, 叶万辉, 沈浩 (2022) 南亚热带常绿阔叶林冠层和林下层优势种叶功能性状响应异质生境的差异. 广西植物, 42, 510-519.] | |
[27] |
Tao Y, Wang ZQ, Ma C, He HS, Xu JW, Jin YH, Wang HX, Zheng XX (2019) Vegetation heterogeneity effects on soil macro-arthropods in an alpine tundra of the Changbai Mountains, China. Plants, 8, 418.
DOI URL |
[28] |
Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of n and p in Hawaiian rain forests. Ecology, 82, 946-954.
DOI URL |
[29] |
Viketoft M, Sohlenius B (2011) Soil nematode populations in a grassland plant diversity experiment run for seven years. Applied Soil Ecology, 48, 174-184.
DOI URL |
[30] | Wang JF, Huang QY, Xie LH, Cao HJ, Wang JB, Dong HP, Zeng ZW, Ni HW (2022) Relationship between plant community species diversity and vegetation carbon storage in Songnen grassland. Chinese Journal of Grassland, 44(7), 33-42. (in Chinese with English abstract) |
[王继丰, 黄庆阳, 谢立红, 曹宏杰, 王建波, 董海鹏, 曾昭文, 倪红伟 (2022) 黑龙江松嫩草地植物群落物种多样性与植物碳储量的关系. 中国草地学报, 44(7), 33-42.] | |
[31] |
Wang JQ, Shi XZ, Li LQ, Zhang XH (2021) Changes in soil nematodes in rhizosphere and non-rhizosphere soils following combined elevated CO2 and canopy warming in a winter wheat field. Geoderma, 386, 114907.
DOI URL |
[32] |
Wang YT, Niu KC (2020) Effect of soil environment on functional diversity of soil nematodes in Tibetan alpine meadows. Biodiversity Science, 28, 707-717. (in Chinese with English abstract)
DOI |
[王宇彤, 牛克昌 (2020) 青藏高原高寒草甸土壤环境对线虫功能多样性的影响. 生物多样性, 28, 707-717.
DOI |
|
[33] | Wang ZZ, Zhang YM, Xia WS, Zheng YY, Hu JL, Xing XJ, Yan HM, Guo YC, Lai Q (1996) Effects of organophosphorus pesticide on community structure of soil animals. Acta Ecologica Sinica, 16, 357-366. (in Chinese with English abstract) |
[王振中, 张友梅, 夏卫生, 郑云友, 胡觉莲, 邢协加, 颜亨梅, 郭永灿, 赖勤 (1996) 有机磷农药对土壤动物群落结构的影响研究. 生态学报, 16, 357-366.] | |
[34] |
Wardle DA, Williamson WM, Yeates GW, Bonner KI (2005) Trickle-down effects of aboveground trophic cascades on the soil food web. Oikos, 111, 348-358.
DOI URL |
[35] | Welti E, Helzer C, Joern A (2017) Impacts of plant diversity on arthropod communities and plant-herbivore network architecture. Ecosphere, 8, e01983. |
[36] | Wu DH, Yin WY, Bu ZY (2008a) Changes among soil nematode community characteristics in relation to different vegetation restoration practices in the moderate degraded grasslands of Songnen Plain. Acta Ecologica Sinica, 28, 1-12. (in Chinese with English abstract) |
[吴东辉, 尹文英, 卜照义 (2008a) 松嫩草原中度退化草地不同植被恢复方式下土壤线虫的群落特征. 生态学报, 28, 1-12.] | |
[37] | Wu DH, Yin WY, Yan RQ (2008b) Influence of vegetation reclamation type on the characteristics of soil Collembola community in seriously alkalinized and degraded grasslands of Songnen Plain. China Environmental Science, 28, 466-470. (in Chinese with English abstract) |
[吴东辉, 尹文英, 阎日青 (2008b) 植被恢复方式对重度退化草原土壤跳虫群落的影响. 中国环境科学, 28, 466-470.] | |
[38] |
Wu HY, Li XX, Shi LB, Wang ZH, Ma FY (2008) Distribution of nematodes in wetland soils with difference distance from the Bohai Sea. Plant, Soil and Environment, 54, 359-366.
DOI URL |
[39] |
Wu WJ, Yuan Y, Zhang J, Zhou LX, Wang J, Ren H, Liu ZF (2022) Dynamics of soil nematode community during the succession of forests in southern subtropical China. Biodiversity Science, 30, 22205. (in Chinese with English abstract)
DOI |
[吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋 (2022) 南亚热带森林演替过程中土壤线虫群落结构变化. 生物多样性, 30, 22205.]
DOI |
|
[40] | Wu Y, Chen WJ, Entemake W, Wang J, Liu HF, Zhao ZW, Li YZ, Qiao LL, Yang B, Liu GB, Xue S (2021) Long-term vegetation restoration promotes the stability of the soil micro-food web in the Loess Plateau in North-west China. Catena, 202, 105293. |
[41] |
Xiao H, Wang B, Lu SB, Chen DM, Wu Y, Zhu YH, Hu SJ, Bai YF (2020) Soil acidification reduces the effects of short-term nutrient enrichment on plant and soil biota and their interactions in grasslands. Global Change Biology, 26, 4626-4637.
DOI URL |
[42] |
Xiao YY, Feng W, Qiao YG, Zhang YQ, Qin SG (2023) Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands. Biodiversity Science, 31, 22585. (in Chinese with English abstract)
DOI |
[肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高 (2023) 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响. 生物多样性, 31, 22585.]
DOI |
|
[43] |
Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[44] |
Zhang W, Liu MQ, He YQ, Fan JB, Chen Y (2014) Responses of soil nematode communities to long-term application of inorganic fertilizers in upland red soil. Chinese Journal of Applied Ecology, 25, 2361-2368. (in Chinese with English abstract)
PMID |
[张微, 刘满强, 何园球, 樊剑波, 陈晏 (2014) 长期施用不同无机肥对旱地红壤线虫群落的影响. 应用生态学报, 25, 2361-2368.] | |
[45] |
Zhang XK, Guan PT, Wang YL, Li Q, Zhang SX, Zhang ZY, Bezemer TM, Liang WJ (2015) Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology and Biochemistry, 80, 118-126.
DOI URL |
[46] | Zhao F, Zhang MW, Wang CW, Mei XF, Xie LN, Ma CC (2022) Effects of Caragana shrub encroachment on soil nematode community composition and metabolic footprints in steppe desert region. Acta Ecologica Sinica, 42, 4124-4136. (in Chinese with English abstract) |
[赵芳, 张明伟, 王春雯, 梅续芳, 解李娜, 马成仓 (2022) 锦鸡儿属灌丛化对草原化荒漠区土壤线虫群落组成和代谢足迹的影响. 生态学报, 42, 4124-4136.] | |
[47] |
Zhao J, Wang FM, Li J, Zou B, Wang XL, Li ZA, Fu SL (2014) Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry, 75, 1-10.
DOI URL |
[1] | Zhu Yao, Xue Wei, Jinhao Ma, Xiao Ren, Yuying Wang, Lei Hu, Pengfei Wu. Short-term effects of warming and wetting on the soil nematode communities in the alpine meadow [J]. Biodiv Sci, 2024, 32(5): 23483-. |
[2] | Mengyao Zheng, Yuan Li, Xuerong Wang, Yue Zhang, Tong Jia. Soil protozoa community assembly mechanism in different vegetation types of Luya Mountain [J]. Biodiv Sci, 2024, 32(4): 23419-. |
[3] | Yanmei Ni, Li Chen, Zhiyuan Dong, Debin Sun, Baoquan Li, Xumin Wang, Linlin Chen. Community structure of macrobenthos and ecological health evaluation in the restoration area of the Yellow River Delta wetland [J]. Biodiv Sci, 2024, 32(3): 23303-. |
[4] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[5] | Jiaxin Wei, Zhiguo Jiang, Linsen Yang, Huanhuan Xiong, Jiaojiao Jin, Fanglin Luo, Jiehua Li, Hao Wu, Yaozhan Xu, Xiujuan Qiao, Xinzeng Wei, Hui Yao, Huiliang Yu, Jingyuan Yang, Mingxi Jiang. Community composition and structure in a 25 ha mid-subtropical mountain deciduous broad-leaved forest dynamics plot in Shennongjia, Hubei, China [J]. Biodiv Sci, 2024, 32(3): 23338-. |
[6] | Liu Xiaolin, Wu Yougui, Zhang Minhua, Chen Xiaorong, Zhu Zhicheng, Chen Dingyun, Dong Shu, Li Buhang, Ding Bingyang, Liu Yu. Community composition and structure of a 25-ha forest dynamics plot of subtropical forest in Baishanzu, Zhejiang Province [J]. Biodiv Sci, 2024, 32(2): 23294-. |
[7] | Minghui Wang, Zhaoquan Chen, Shuaifeng Li, Xiaobo Huang, Xuedong Lang, Zihan Hu, Ruiguang Shang, Wande Liu. Spatial pattern of dominant species with different seed dispersal modes in a monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province [J]. Biodiv Sci, 2023, 31(9): 23147-. |
[8] | Duopeng Zhang, Yang Liu, Zhengfei Li, Yihao Ge, Junqian Zhang, Zhicai Xie. Species diversity and recommended rehabilitative strategies of benthic macroinvertebrate in the Chishui River, a tributary of the Upper Yangtze River [J]. Biodiv Sci, 2023, 31(8): 22674-. |
[9] | Cailian Liu, Qing Xu, Linlong Wang, Yankuo Xing, Jiahao Song, Baian Lin, Bin Kang, Min Liu. Nekton diversity, density, and community structure of spring and autumn in coastal waters of eastern Fujian Province [J]. Biodiv Sci, 2023, 31(7): 22635-. |
[10] | Xiaohua Zhu, Cheng Gao, Cong Wang, Peng Zhao. Research progress on the effect of urea on bacterial and fungal diversity in soil [J]. Biodiv Sci, 2023, 31(6): 22636-. |
[11] | Yinger Mao, Xiumei Zhou, Nan Wang, Xiuxiu Li, Yuke You, Shangbin Bai. Impact of Phyllostachys edulis expansion to Chinese fir forest on the soil bacterial community [J]. Biodiv Sci, 2023, 31(6): 22659-. |
[12] | Yanqiu Xie, Hui Huang, Chunxiao Wang, Yaqin He, Yixuan Jiang, Zilin Liu, Chuanyuan Deng, Yushan Zheng. Determinants of species-area relationship and species richness of coastal endemic plants in the Fujian islands [J]. Biodiv Sci, 2023, 31(5): 22345-. |
[13] | Zhehan Chen, Jin Yin, Ji Ye, Dongwei Liu, Zikun Mao, Shuai Fang, Fei Lin, Xugao Wang. Effects of simulated warming on seasonal dynamics of herbaceous diversity in temperate secondary forests in Northeast China [J]. Biodiv Sci, 2023, 31(5): 23059-. |
[14] | Helu Zhang, Meihong Zhao, Shichun Sun, Xiaoshou Liu. Diversity and community characteristics of free-living nematodes in plateau salt lakes in Nagqu City, Tibet [J]. Biodiv Sci, 2023, 31(5): 22533-. |
[15] | Lulu Wei, Tingting Xu, Yuanyuan Li, Zhe Ai, Fei Ma. The common garden environment and genetic differentiation jointly influence the diversity and community structure of nitrogen-fixing bacteria in the rhizosphere soil of three Caragana species [J]. Biodiv Sci, 2023, 31(4): 22477-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn