Biodiv Sci ›› 2021, Vol. 29 ›› Issue (1): 53-64. DOI: 10.17520/biods.2020137
Special Issue: 土壤生物与土壤健康; 青藏高原生物多样性与生态安全
• Original Papers: Microbial Diversity • Previous Articles Next Articles
Shixiong Li1,2,3, Yanlong Wang1,2,3, Yuqin Wang1, Yali Yin1,3,*()
Received:
2020-04-03
Accepted:
2020-08-11
Online:
2021-01-20
Published:
2020-09-30
Contact:
Yali Yin
Shixiong Li, Yanlong Wang, Yuqin Wang, Yali Yin. Response of soil bacterial community characteristics to alpine meadow degradation[J]. Biodiv Sci, 2021, 29(1): 53-64.
土层深度 Soil depth | 退化程度 Degradation degree | 多样性指数 Diversity index | ||
---|---|---|---|---|
Chao1 | Shannon-Wiener index | Simpson index | ||
0‒10 cm | 未退化 Non-degradation | 8,828.18 ± 363.61a | 10.31 ± 0.15c | 0.997 ± 0.001bc |
轻度退化 Light-degradation | 9,015.26 ± 2,567.38a | 10.54 ± 0.13ab | 0.998 ± 0.000a | |
中度退化 Moderate-degradation | 9,904.47 ± 490.73a | 10.32 ± 0.05bc | 0.997 ± 0.000abc | |
重度退化 Severe-degradation | 11,054.59 ± 1,330.52a | 10.63 ± 0.07a | 0.997 ± 0.000ab | |
极重度退化 Extreme-degradation | 9,517.00 ± 1,023.90a | 10.52 ± 0.18abc | 0.996 ± 0.001c | |
10‒20 cm | 未退化 Non-degradation | 7,686.14 ± 636.88a | 9.95 ± 0.19cd | 0.996 ± 0.000c |
轻度退化 Light-degradation | 8,022.41 ± 1,254.05a | 10.19 ± 0.15bc | 0.997 ± 0.000b | |
中度退化 Moderate-degradation | 7,251.09 ± 706.01a | 9.91 ± 0.05d | 0.996 ± 0.000c | |
重度退化 Severe-degradation | 8,891.85 ± 1,224.30a | 10.48 ± 0.11a | 0.998 ± 0.000a | |
极重度退化 Extreme-degradation | 8,756.00 ± 1,594.71a | 10.29 ± 0.22ab | 0.997 ± 0.000b |
Table 1 Soil bacterial α-diversity in different degraded alpine meadows
土层深度 Soil depth | 退化程度 Degradation degree | 多样性指数 Diversity index | ||
---|---|---|---|---|
Chao1 | Shannon-Wiener index | Simpson index | ||
0‒10 cm | 未退化 Non-degradation | 8,828.18 ± 363.61a | 10.31 ± 0.15c | 0.997 ± 0.001bc |
轻度退化 Light-degradation | 9,015.26 ± 2,567.38a | 10.54 ± 0.13ab | 0.998 ± 0.000a | |
中度退化 Moderate-degradation | 9,904.47 ± 490.73a | 10.32 ± 0.05bc | 0.997 ± 0.000abc | |
重度退化 Severe-degradation | 11,054.59 ± 1,330.52a | 10.63 ± 0.07a | 0.997 ± 0.000ab | |
极重度退化 Extreme-degradation | 9,517.00 ± 1,023.90a | 10.52 ± 0.18abc | 0.996 ± 0.001c | |
10‒20 cm | 未退化 Non-degradation | 7,686.14 ± 636.88a | 9.95 ± 0.19cd | 0.996 ± 0.000c |
轻度退化 Light-degradation | 8,022.41 ± 1,254.05a | 10.19 ± 0.15bc | 0.997 ± 0.000b | |
中度退化 Moderate-degradation | 7,251.09 ± 706.01a | 9.91 ± 0.05d | 0.996 ± 0.000c | |
重度退化 Severe-degradation | 8,891.85 ± 1,224.30a | 10.48 ± 0.11a | 0.998 ± 0.000a | |
极重度退化 Extreme-degradation | 8,756.00 ± 1,594.71a | 10.29 ± 0.22ab | 0.997 ± 0.000b |
Fig. 1 Soil bacterial relative abundance at the phylum level in different degraded alpine meadows. Numbers 1 and 2 in the figure represent 0‒10 cm and 10‒20 cm soil layer, respectively.
Fig. 4 Ecological functiona diversity of soil bacterial community in different degraded alpine meadows. Numbers 1 and 2 in the figure represent 0‒10 cm and 10‒20 cm soil layer, respectively. *P < 0.05.
指标 Item | 细菌群落结构 Bacterial community composition | Faprotax生态功能结构 Faprotax ecological functional structure | ||
---|---|---|---|---|
r | P | r | P | |
植物Shannon-Wiener指数 Shannon-Wiener index | -0.01 | 0.52 | 0.07 | 0.23 |
物种丰富度 Species richness | 0.12 | 0.12 | 0.02 | 0.39 |
植被盖度 Coverage | 0.02 | 0.38 | 0.08 | 0.23 |
地上生物量 Above-ground biomass | 0.04 | 0.32 | 0.12 | 0.14 |
地下生物量 Below-ground biomass | -0.04 | 0.62 | ‒0.08 | 0.09 |
土壤含水量 SWC | 0.17 | 0.02 | 0.18 | 0.02 |
土壤酸碱度 pH | 0.19 | 0.02 | 0.18 | 0.04 |
总有机碳 TOC | 0.17 | 0.03 | 0.21 | 0.02 |
全氮 TN | 0.17 | 0.03 | 0.17 | 0.03 |
铵态氮 NH4+-N | 0.05 | 0.22 | 0.23 | 0.008 |
硝态氮 NO3--N | 0.11 | 0.09 | 0.14 | 0.06 |
全磷 TP | 0.10 | 0.11 | 0.15 | 0.09 |
速效磷 AP | 0.09 | 0.17 | 0.10 | 0.20 |
全钾 TK | 0.22 | 0.006 | 0.21 | 0.02 |
速效钾 AK | 0.07 | 0.19 | ﹣0.04 | 0.61 |
土壤有效氮磷比AN/AP | 0.15 | 0.048 | 0.20 | 0.03 |
土壤碳氮比 C/N | 0.18 | 0.05 | 0.09 | 0.22 |
Table 2 Mantel test analysis of plant community characters, soil properties and soil bacterial community composition in an alpine meadow
指标 Item | 细菌群落结构 Bacterial community composition | Faprotax生态功能结构 Faprotax ecological functional structure | ||
---|---|---|---|---|
r | P | r | P | |
植物Shannon-Wiener指数 Shannon-Wiener index | -0.01 | 0.52 | 0.07 | 0.23 |
物种丰富度 Species richness | 0.12 | 0.12 | 0.02 | 0.39 |
植被盖度 Coverage | 0.02 | 0.38 | 0.08 | 0.23 |
地上生物量 Above-ground biomass | 0.04 | 0.32 | 0.12 | 0.14 |
地下生物量 Below-ground biomass | -0.04 | 0.62 | ‒0.08 | 0.09 |
土壤含水量 SWC | 0.17 | 0.02 | 0.18 | 0.02 |
土壤酸碱度 pH | 0.19 | 0.02 | 0.18 | 0.04 |
总有机碳 TOC | 0.17 | 0.03 | 0.21 | 0.02 |
全氮 TN | 0.17 | 0.03 | 0.17 | 0.03 |
铵态氮 NH4+-N | 0.05 | 0.22 | 0.23 | 0.008 |
硝态氮 NO3--N | 0.11 | 0.09 | 0.14 | 0.06 |
全磷 TP | 0.10 | 0.11 | 0.15 | 0.09 |
速效磷 AP | 0.09 | 0.17 | 0.10 | 0.20 |
全钾 TK | 0.22 | 0.006 | 0.21 | 0.02 |
速效钾 AK | 0.07 | 0.19 | ﹣0.04 | 0.61 |
土壤有效氮磷比AN/AP | 0.15 | 0.048 | 0.20 | 0.03 |
土壤碳氮比 C/N | 0.18 | 0.05 | 0.09 | 0.22 |
Fig. 6 Redundancy analysis of soil and vegetation environmental factors to soil bacterial community in an alpine meadow. The circles show the variation explained by each factor alone. The number in the ellipse represents interactions of the two factors.
[1] | Bao M, He HX, Ma XL, Wang ZH, Qiu WH (2018) Effects of chemical nitrogen fertilizer and green manure on diversity and functions of soil bacteria in wheat field. Acta Pedologica Sinica, 55, 734-743. (in Chinese with English abstract) |
[ 包明, 何红霞, 马小龙, 王朝辉, 邱炜红 (2018) 化学氮肥与绿肥对麦田土壤细菌多样性和功能的影响. 土壤学报, 55, 734-743.] | |
[2] |
Cao H, Li YG, Zhou CR, Ning LF, Yang HQ (2016) Effect of carbonized apple branches on bacterial and fungal diversities in apple root-zone soil. Scientia Agricultura Sinica, 49, 3413-3424. (in Chinese with English abstract)
DOI URL |
[ 曹辉, 李燕歌, 周春然, 宁留芳, 杨洪强 (2016) 炭化苹果枝对苹果根区土壤细菌和真菌多样性的影响. 中国农业科学, 49, 3413-3424.] | |
[3] | Che RX, Wang YF, Li KX, Xu ZH, Hu JM, Wang F, Rui YC, Li LF, Pang Z, Cui XY (2019) Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil and Tillage Research, 195, 104426. |
[4] |
Chen YL, Deng Y, Ding JZ, Hu HW, Xu TL, Li F, Yang GB, Yang YH (2017) Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Molecular Ecology, 26, 6608-6620.
DOI URL PMID |
[5] | Chu HY (2013) Microbial communities in high latitudes and high altitudes ecosystems. Microbiology China, 40, 123-136. (in Chinese with English abstract) |
[ 褚海燕 (2013) 高寒生态系统微生物群落研究进展. 微生物学通报, 40, 123-136.] | |
[6] | Cui YX, Bing HJ, Fang LC, Wu YH, Yu JL, Shen GT, Jiang M, Wang X, Zhang XC (2019) Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 338, 118-127. |
[7] | Dai YT, Yan ZJ, Xie JH, Wu HX, Xu LB, Hou XY, Gao L, Cui YW (2017) Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing. Acta Pedologica Sinica, 54, 735-748. (in Chinese with English abstract) |
[ 戴雅婷, 闫志坚, 解继红, 吴洪新, 徐林波, 侯向阳, 高丽, 崔艳伟 (2017) 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究. 土壤学报, 54, 735-748.] | |
[8] | Escalas A, Hale L, Voordeckers JW, Yang YF, Firestone MK, Alvarez-Cohen L, Zhou JZ (2019) Microbial functional diversity: From concepts to applications. Ecology and Evolution, 9, 12000-12016. |
[9] | He D, Xiang XJ, He JS, Wang C, Cao GM, Adams J, Chu HY (2016) Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 52, 1059-1072. |
[10] | Hu YJ, Veresoglou SD, Tedersoo L, Xu TL, Ge TD, Liu L, Chen YL, Hao ZP, Su YR, Rillig MC, Chen BD (2019) Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems. Soil Biology and Biochemistry, 131, 100-110. |
[11] | Li F, Liu ZH, Jia TH, Li SS, Bai YF, Guo CC, Wang WW, Kong M, Zhang T, Iqbal A, Zhou HK, Jia Y, Shang ZH (2018) Functional diversity of soil microbial community carbon metabolism with the degradation and restoration of alpine wetlands and meadows. Acta Ecologica Sinica, 38, 6006-6015. (in Chinese with English abstract) |
[ 李飞, 刘振恒, 贾甜华, 李珊珊, 白彦福, 郭灿灿, 王惟惟, 孔猛, 张涛, Iqbal A, 周华坤, 贾宇, 尚占环 (2018) 高寒湿地和草甸退化及恢复对土壤微生物碳代谢功能多样性的影响. 生态学报, 38, 6006-6015.] | |
[12] |
Li M, Zhang XZ, He YT, Niu B, Wu JS (2020) Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau. PeerJ, 8, e8513.
URL PMID |
[13] | Li YM, Wang SP, Jiang LL, Zhang LR, Cui SJ, Meng FD, Wang Q, Li XE, Zhou Y (2016) Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213-222. |
[14] | Liu AR, Yang T, Xu W, Shangguan ZJ, Wang JZ, Liu HY, Shi Y, Chu HY, He JS (2018) Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland. Biodiversity Science, 26, 972-987. (in Chinese with English abstract) |
[ 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生 (2018) 青藏高原高寒草地地下生物多样性: 进展、问题与展望. 生物多样性, 26, 972-987.] | |
[15] | Liu Y, Chen JS, Liu Q, Chen LW (2006) Advances in studies of soil nitrification and denitrification and controlling factors. Journal of Sichuan Forestry Science and Technology, 27(2), 36-41. (in Chinese with English abstract) |
[ 刘义, 陈劲松, 刘庆, 陈林武 (2006) 土壤硝化和反硝化作用及影响因素研究进展. 四川林业科技, 27(2), 36-41.] | |
[16] | Liu YH, Yang YW, Zhang Y (2018) Redundancy analysis of the relationship between plant functional groups and soil factors in the degraded alpine meadow. Journal of Ecology and Rural Environment, 34, 1112-1121. (in Chinese with English abstract) |
[ 刘育红, 杨元武, 张英 (2018) 退化高寒草甸植物功能群与土壤因子关系的冗余分析. 生态与农村环境学报, 34, 1112-1121.] | |
[17] | Long RJ (2007) Functions of ecosystem in the Tibetan grassland. Science & Technology Review, 25(9), 26-28. (in Chinese with English abstract) |
[ 龙瑞军 (2007) 青藏高原草地生态系统之服务功能. 科技导报, 25(9), 26-28.] | |
[18] | Luo ZM, Liu JX, Jia T, Chai BF, Wu TH (2020) Soil bacterial community response and nitrogen cycling variations associated with subalpine meadow degradation on the Loess Plateau, China. Applied and Environmental Microbiology, 86, e00180-20. |
[19] |
Ma XY, Zhang QT, Zheng MM, Gao Y, Yuan T, Hale L, van Nostrand JD, Zhou JZ, Wan SQ, Yang YF (2019) Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing. The ISME Journal, 13, 1370-1373.
URL PMID |
[20] | Ma YS, Lang BN, Li QY, Shi JJ, Dong QM (2002) Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow River source region. Pratacultural Science, 19(9), 1-5. (in Chinese with English abstract) |
[ 马玉寿, 郎百宁, 李青云, 施建军, 董全民 (2002) 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 19(9), 1-5.] | |
[21] | Mganga KZ, Razavi BS, Kuzyakov Y (2016) Land use affects soil biochemical properties in Mt. Kilimanjaro region. Catena, 141, 22-29. |
[22] |
Nixon SL, Daly RA, Borton MA, Solden LM, Welch SA, Cole DR, Mouser PJ, Wilkins MJ, Wrighton KC (2019) Genome-resolved metagenomics extends the environmental distribution of the verrucomicrobia phylum to the deep terrestrial subsurface. mSphere, 4, e00613-19.
DOI URL PMID |
[23] |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596.
DOI URL PMID |
[24] | Robertson K, Klemedtsson L (1996) Assessment of denitrification in organogenic forest soil by regulating factors. Plant and Soil, 178, 49-57. |
[25] | Sørensen LI, Mikola J, Kytöviita MM, Olofsson J (2009) Trampling and spatial heterogeneity explain decomposer abundances in a sub-arctic grassland subjected to simulated reindeer grazing. Ecosystems, 12, 830-842. |
[26] | Wang F, Ren LL, An TT, Liu LZ (2020) Effect of long-term fertilization and seasonal variation on abundance and population diversity of soil ammonia oxidizing bacteria. Journal of Huazhong Agricultural University, 39, 86-94. (in Chinese with English abstract) |
[ 王丰, 任灵玲, 安婷婷, 刘灵芝 (2020) 长期施肥对土壤中氨氧化细菌丰度和种群多样性的影响. 华中农业大学学报, 39, 86-94.] | |
[27] |
Wang LW, Li F, Zhan Y, Zhu LZ (2016) Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon- contaminated soil. Environmental Science and Pollution Research, 23, 14451-14461.
URL PMID |
[28] | Wang N, Gao J, Wei J, Liu Y, Zhuang XL, Zhuang GQ (2019) Effects of wetland reclamation on soil microbial community structure in the Sanjiang plain. Environmental Science, 40, 2375-2381. (in Chinese with English abstract) |
[ 王娜, 高婕, 魏静, 刘颖, 庄绪亮, 庄国强 (2019) 三江平原湿地开垦对土壤微生物群落结构的影响. 环境科学, 40, 2375-2381.] | |
[29] | Wang XP, Yang X, Yang N, Xin XJ, Qu YB, Zhao NX, Gao YB (2019) Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community. Acta Ecologica Sinica, 39, 6264-6272. (in Chinese with English abstract) |
[ 王小平, 杨雪, 杨楠, 辛晓静, 曲耀冰, 赵念席, 高玉葆 (2019) 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响. 生态学报, 39, 6264-6272.] | |
[30] | Wang YB, Wang GX, Shen YP, Wang YL (2005) Degradation of the eco-environmental system in alpine meadow on the Tibetan Plateau. Journal of Glaciology and Geocryology, 27, 633-640. (in Chinese with English abstract) |
[ 王一博, 王根绪, 沈永平, 王彦莉 (2005) 青藏高原高寒区草地生态环境系统退化研究. 冰川冻土, 27, 633-640.] | |
[31] | Wang YQ, Yin YL, Li SX (2019) Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees. Ecology and Environmental Sciences, 28, 1108-1116. (in Chinese with English abstract) |
[ 王玉琴, 尹亚丽, 李世雄 (2019) 不同退化程度高寒草甸土壤理化性质及酶活性分析. 生态环境学报, 28, 1108-1116.] | |
[32] | Xiu SY (1993) Microbial geochemistry of sulfur and its implication to geololgy. Geology of Chemical Minerals, 15, 101-106. (in Chinese with English abstract) |
[ 修世荫 (1993) 硫元素微生物地球化学研究及其地质意义. 化工地质, 15, 101-106.] | |
[33] | Yang H, Zhang GZ, Yang XN, Wu FP, Zhao W, Zhang HW, Zhang X (2017) Microbial community structure and diversity in cellar water by 16S rRNA high-throughput sequencing. Environmental Science, 38, 1704-1716. (in Chinese with English abstract) |
[ 杨浩, 张国珍, 杨晓妮, 武福平, 赵炜, 张洪伟, 张翔 (2017) 16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性. 环境科学, 38, 1704-1716.] | |
[34] | Yang YD, Wang ZM, Hu YG, Zeng ZH (2017) Irrigation frequency alters the abundance and community structure of ammonia-oxidizing archaea and bacteria in a northern Chinese upland soil. European Journal of Soil Biology, 83, 34-42. |
[35] | Yang YD, Zhang MC, Hu JW, Zhang K, Hu YG, Zeng ZH (2017) Effects of nitrogen fertilizer application on abundance and community structure of ammonia oxidizing bacteria and Archaea in a North China agricultural soil. Acta Ecologica Sinica, 37, 3636-3646. (in Chinese with English abstract) |
[ 杨亚东, 张明才, 胡君蔚, 张凯, 胡跃高, 曾昭海 (2017) 施氮肥对华北平原土壤氨氧化细菌和古菌数量及群落结构的影响. 生态学报, 37, 3636-3646.] | |
[36] |
Yang YF, Wu LW, Lin QY, Yuan MT, Xu DP, Yu H, Hu YG, Duan JC, Li XZ, He ZL, Xue K, van Nostrand J, Wang SP, Zhou JZ (2013) Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 19, 637-648.
URL PMID |
[37] | Yang YS, Li HQ, Zhang L, Zhu JB, He HD, Wei YX, Li YN (2016) Characteristics of soil water percolation and dissolved organic carbon leaching and their response to long-term fencing in an alpine meadow on the Tibetan Plateau. Environmental Earth Sciences, 75, 1471. |
[38] | Yang YW, Li XL, Zhou XH, Qi YJ, Shi YY, Li CY, Zhou HK (2016) Study on relationship between plant community degradation and soil environment in an alpine meadow. Acta Agrestia Sinica, 24, 1211-1217. (in Chinese with English abstract) |
[ 杨元武, 李希来, 周旭辉, 祁银姐, 师月英, 李成一, 周华坤 (2016) 高寒草甸植物群落退化与土壤环境特征的关系研究. 草地学报, 24, 1211-1217.] | |
[39] |
Yin YL, Wang YQ, Bao GS, Wang HS, Li SX, Song ML, Shao BL, Wen YC (2017) Characteristics of soil microbes and enzyme activities in different degraded alpine meadows. Chinese Journal of Applied Ecology, 28, 3881-3890. (in Chinese with English abstract)
URL PMID |
[ 尹亚丽, 王玉琴, 鲍根生, 王宏生, 李世雄, 宋梅玲, 邵宝莲, 温玉存 (2017) 退化高寒草甸土壤微生物及酶活性特征. 应用生态学报, 28, 3881-3890.] | |
[40] | Yin YL, Wang YQ, Li SX, Liu Y, Zhao W, Ma YS, Bao GS (2021) Soil microbial character response to plant community variation after grazing prohibition for 10 years in a Qinghai-Tibetan alpine meadow. Plant Soil, 458, 175-189. |
[41] | Zhang Y, Cao CY, Peng M, Xu XJ, Zhang P, Yu QJ, Sun T (2014) Diversity of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria in biological soil crusts of a revegetation area in Horqin Sandy Land, Northeast China. Ecological Engineering, 71, 71-79. |
[42] | Zhang ZH, Zhou HK, Zhao XQ, Yao BQ, Ma Z, Dong QM, Zhang ZH, Wang WY, Yang YW (2018) Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau. Biodiversity Science, 26, 111-129. (in Chinese with English abstract) |
[ 张中华, 周华坤, 赵新全, 姚步青, 马真, 董全民, 张振华, 王文颖, 杨元武 (2018) 青藏高原高寒草地生物多样性与生态系统功能的关系. 生物多样性, 26, 111-129.] | |
[43] | Zhao XQ, Zhou HK (2005) Eco-environmental degradation vegetation regeneration and sustainable development in the headwaters of three rivers on Tibetan Plateau. Bulletin of the Chinese Academy of Sciences, 20, 471-476. (in Chinese with English abstract) |
[ 赵新全, 周华坤 (2005) 三江源区生态环境退化、恢复治理及其可持续发展. 中国科学院院刊, 20, 471-476.] | |
[44] | Zhou H, Zhang DG, Jiang ZH, Sun P, Xiao HL, Wu YX, Chen JG (2019) Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 651, 2281-2291. |
[45] | Zhu JS, Zhang H, Ma LJ, Liao DX, Yang XY, Wang LC, Wang DY (2018). Diversity of the microbial community in rice paddy soil with biogas slurry irrigation analyzed by illumine sequencing technology. Environmental Science, 39, 2400-2411. (in Chinese with English abstract) |
[ 朱金山, 张慧, 马连杰, 廖敦秀, 杨星勇, 王龙昌, 王定勇 (2018) 不同沼灌年限稻田土壤微生物群落分析. 环境科学, 39, 2400-2411.] |
[1] | Yujin Cui, Wanying Li, Qingqing Zhou, Heng Zhao, Fang Wu, Yuan Yuan. Diversity and community composition of epiphytic fungi in the phyllosphere of Pinus tabuliformis and Euonymus japonicus in Beijing, northern China [J]. Biodiv Sci, 2024, 32(7): 23498-. |
[2] | Yixin Sun, Chunyu Hou, Lei Zhou, Xue Wei, Jinhao Ma, Juan Xue, Xiaohan Li, Pengfei Wu. Effects of annual and perennial potted legume forages on soil nematode communities in the Qinghai-Xizang Plateau [J]. Biodiv Sci, 2024, 32(7): 24040-. |
[3] | Yanli Wang, Ying Zhang, Chunlin Qi, Changda Zhang, Youhai Shi, Yanjun Du, Qiong Ding. Identifying biodiversity hotspots and conservation gaps in Hainan Tropical Rainforest National Park based on macrofungi and plants perspectives [J]. Biodiv Sci, 2024, 32(7): 24081-. |
[4] | Yiyun Gu, Jiaqi Xue, Jinhui Gao, Xinyi Xie, Ming Wei, Jinyu Lei, Cheng Wen. A public science data-based regional bird diversity assessment method [J]. Biodiv Sci, 2024, 32(7): 24080-. |
[5] | Hua Ma, Changqing Li, Pinfeng Yu, Jie Chen, Tianyao He, Kehong Wang. Distribution patterns and impact factors of soil macrofauna communities in the riparian zone of the Pengxi River [J]. Biodiv Sci, 2024, 32(7): 24117-. |
[6] | Xue Bai, Zhengfei Li, Yang Liu, Junqian Zhang, Duopeng Zhang, Xin Luo, Jiali Yang, Lina Du, Xuankong Jiang, Ruiwen Wu, Zhicai Xie. Species diversity and maintenance mechanisms of benthic macroinvertebrate assemblages in the Xijiang River [J]. Biodiv Sci, 2024, 32(7): 23499-. |
[7] | Zuopeng Zhang, Chenyang Yao, Ling Wu, Zunlan Luo, Guang Sun, Zongyong Guo, Xiaosi Li, Feng Lin, Xiaoyong Chen. Fish diversity and threat factors in the Yunnan section of the Nujiang River [J]. Biodiv Sci, 2024, 32(7): 24076-. |
[8] | Jia Xu, Xiaojuan Cui, Yifei Zhang, Chang Wu, Yuandong Sun. Fish diversity and distribution in the Nanling region [J]. Biodiv Sci, 2024, 32(7): 23482-. |
[9] | Yongqiang Shi, Qingshan Luan, Xiujuan Shan, Chao Wei, Yongsong Zhao, Cece Sun, Xianshi Jin. Annual changes in zooplankton biodiversity in the southern waters of Changdao [J]. Biodiv Sci, 2024, 32(7): 23428-. |
[10] | Fen Song, Yunyun Zhou, Taifu Huang, Cuncun Yang, Guiqing Yu, Shurong Tian, Zuofu Xiang. PAE coding and diversity analysis of Moschus berezovskii behavior based on infrared camera technology [J]. Biodiv Sci, 2024, 32(6): 24042-. |
[11] | Teng Wang, Chunhou Li, Guanghua Wang, Jinfa Zhao, Juan Shi, Hongyu Xie, Yong Liu, Yu Liu. Species composition and succession of coral reef fishes on Qilianyu Island, Xisha Islands [J]. Biodiv Sci, 2024, 32(6): 23481-. |
[12] | Yu Tian, Junsheng Li. Analysis of the connotation and implementation path for the 30 by 30 target in the Kunming-Montreal Global Biodiversity Framework [J]. Biodiv Sci, 2024, 32(6): 24086-. |
[13] | Yihui Jiang, Yue Liu, Xu Zeng, Zheying Lin, Nan Wang, Jihao Peng, Ling Cao, Cong Zeng. Fish diversity and connectivity in six national marine protected areas in the East China Sea [J]. Biodiv Sci, 2024, 32(6): 24128-. |
[14] | Jiali Lian, Jing Chen, Xueqin Yang, Ying Zhao, Xu Luo, Cui Han, Yaxin Zhao, Jianping Li. Responses of desert steppe plant diversity and microbial diversity to precipitation change [J]. Biodiv Sci, 2024, 32(6): 24044-. |
[15] | Fuwei Zhao, Yingshuo Li, Hui Chen. Reflections on biodiversity legislation in China’s new era [J]. Biodiv Sci, 2024, 32(5): 24027-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn