Biodiv Sci ›› 2008, Vol. 16 ›› Issue (5): 437-445. DOI: 10.3724/SP.J.1003.2008.08119
Special Issue: 物种形成与系统进化
• Reviews • Previous Articles Next Articles
Qiang Zhang, Renyi Ma, Mingfei Ji, Jianming Deng*()
Received:
2008-05-21
Accepted:
2008-08-08
Online:
2008-09-20
Published:
2008-09-20
Contact:
Jianming Deng
Qiang Zhang, Renyi Ma, Mingfei Ji, Jianming Deng. Advances of species richness regulated by the metabolic rate[J]. Biodiv Sci, 2008, 16(5): 437-445.
[1] | Algar AC, Kerr JT, Currie DJ (2007) A test of metabolic theory as the mechanism underlying broad-scale species richness gradients. Global Ecology and Biogeography, 16,170-178. |
[2] |
Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297,1545-1548.
DOI URL PMID |
[3] |
Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecology Letters, 9,947-954.
DOI URL PMID |
[4] | Allen AP, Gillooly JF, Brown JH (2003) Response to comment on “Global biodiversity, biochemical kinetics and the energetic-equivalence rule”. Science, 299,346c. |
[5] | Allen AP, Gillooly JF, Brown JH (2007) Recasting the Species-Energy Hypothesis: the Different Roles of Kinetic and Potential Energy in Regulating Biodiversity. Scaling biodiversity (eds Storch D, Marquet PA, Brown JH), pp. 283-299. Cambridge University Press, Cambridge, UK. |
[6] | Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences,USA, 103,9130-9135. |
[7] | Anderson DR, Burnham KP (1994) AIC model selection in overdispersed capture-recapture data. Ecology, 75,1780-1793. |
[8] | Bai YF, Wu JG, Pan QM, Huang JH, Wang QB, Li FS, Buyantuyev A, Han XG (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian steppe. Journal of Applied Ecology, 44,1023-1034. |
[9] |
Barraclough TG, Savolainen V (2001) Evolutionary rates and species diversity in flowering plants. Evolution, 55,677-683.
URL PMID |
[10] | Brayard A, Escarguel G, Bucher H (2005) Latitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects? Journal of Zoological Systematics and Evolutionary Research, 43,178-188. |
[11] |
Bromham L, Cardillo M (2003) Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. Journal of Evolutionary Biology, 16,200-207.
DOI URL PMID |
[12] | Brown JH, Allen AP, Gillooly JF (2003) Heat and biodiversity: response. Science, 299,512-513. |
[13] | Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85,1771-1789. |
[14] | Brunsdon C, Fotheringham AS, Charlton M (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28,281-298. |
[15] | Carnicer J, Brotons L, Sol D, Jordano P (2007) Community-based processes behind species richness gradients: contrasting abundance-extinction dynamics and sampling effects in areas of low and high productivity. Global Ecology and Biogeography, 16,709-719. |
[16] | Cassemiro FAS, Barreto BS, Rangel TFLVB, Diniz-Filho JAF (2007) Non-stationarity, diversity gradients and the metabolic theory of ecology. Global Ecology and Biogeography, 16,820-822. |
[17] |
Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 15,70-76.
URL PMID |
[18] | Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163,e1-e23. |
[19] | Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdoeff T, O′Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7,1121-1134. |
[20] | Deng JM, Li T, Wang GX, Liu J, Yu ZL, Zhao CM, Ji MF, Zhang Q, Liu JQ (2008) Trade-offs between the metabolic rate and population density of plants. PLoS One, 3,e1799. |
[21] | Deng JM, Wang GX, Morris EC, Wei XP, Li DX, Chen BM, Zhao CM, Liu J, Wang Y (2006) Plant mass-density relationship along a moisture gradient in north-west China. Journal of Ecology, 94,953-958. |
[22] | Deng JM (邓建明), Wang GX (王根轩), Wei XP (魏小平) (2006) The advance of metabolic regulation studies for macroscopical ecology processes. Acta Ecologica Sinica (生态学报), 26,3413-3423. (in Chinese with English abstract) |
[23] | Dunn RR, McCain CM, Sanders NJ (2007) When does diversity fit null model predictions? Scale and range size mediate the mid-domain effect. Global Ecology and Biogeography, 16,305-312. |
[24] | Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences,USA, 97,9115-9120. |
[25] | Ellison AM (2007) Metabolic theory and patterns of species richness. Ecology, 88,1889. |
[26] |
Emerson BC, Colm M (2005) Species diversity can drive speciation. Nature, 434,1015-1017.
URL PMID |
[27] | Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature, 395,163-165. |
[28] | Escarguel G, Brayard A, Bucher H (2008) Evolution rates do not drive latitudinal diversity gradients. Journal of Zoological Systematics and Evolutionary Research, 46,82-86. |
[29] | Evans KL, Gaston KJ (2005) Can the evolutionary-rates hypothesis explain species-energy relationships? Functional Ecology, 19,899-915. |
[30] |
Evans KL, Warren PH, Gaston KJ (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews, 80,1-25.
DOI URL PMID |
[31] | Farrell BD, Mitter C, Futuyma DJ (1992) Diversification at the insect-plant interface. BioScience, 42,34-42. |
[32] | Fedorov AA (1966) The structure of tropical rain forest and speciation in the humid tropics. Journal of Ecology, 54,1-11. |
[33] | Feng JM (冯建孟), Wang XP (王襄平), Li J (李晶), Fang JY (方精云) (2006) Effects of area and mid-domain effect on altitudinal pattern of seed plants richness in Lijiang, Yunnan, China. Biodiversity Science (生物多样性), 14,107-113. (in Chinese with English abstract) |
[34] | Foody GM (2004) Spatial non-stationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and Biogeography, 13,315-320. |
[35] | Foody GM (2005) Clarifications on local and global data analysis. Global Ecology and Biogeography, 14,99-100. |
[36] |
Gaston KJ (2000) Global patterns in biodiversity. Nature, 405,220-227.
URL PMID |
[37] |
Gillman LN, Wright SD (2006) The influence of productivity on the species richness of plants: a critical assessment. Ecology, 87,1234-1243.
URL PMID |
[38] |
Gillooly JF, Allen AP (2007) Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 88,1890-1894.
DOI URL PMID |
[39] | Gillooly JF, Allen AP, West GB, Brown JH (2005a) The rate of DNA evolution:effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences,USA, 102,140-145. |
[40] | Gillooly JF, Allen AP, Savage VM, West GB, Brown JH (2005b) Response to Clarke and Fraser:effects of temperature on metabolic rate. Functional Ecology, 20,400-404. |
[41] | Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science, 293,2248-2251. |
[42] | Han WX (韩文轩), Fang JY (方精云) (2003) Allometry and its application in ecological scaling. Acta Scientiarum Naturalium Universitatis Pekinensis (北京大学学报), 39,583-593. (in Chinese with English abstract) |
[43] | Han WX (韩文轩), Fang JY (方精云) (2008) Review on the mechanism models of allometric scaling laws: 3/4 vs.2/3 power. Journal of Plant Ecology (Chinese version)(植物生态学报), 32,951-960. (in Chinese with English abstract) |
[44] | Harrison S, Grace JB (2007) Biogeographic affinity helps explain productivity-richness relationships at regional and local scales. The American Naturalist, 170,S5-S15. |
[45] |
Hawkins BA, Albuquerque FS, Araújo MB, Beck J, Bini LM, Cabrero-Sańudo FJ, Castro-Parga I, Diniz-Filho JAF, Ferrer-Castán D, Field R, Gómez JF, Hortal J, Kerr JT, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Moreno CJ, Olalla-tárraga MÁ, Pausas JG, Qian H, Rahbek C, Rodríguez MÁ, Sanders NJ, Williams P (2007a) A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology, 88,1877-1888.
DOI URL PMID |
[46] |
Hawkins BA, Diniz-Filho JAF, Bini LM, Araújo MB, Field R, Hortal J, Kerr JT, Rahbek C, Rodríguez MÁ, Sanders NJ (2007b) Metabolic theory and diversity gradients: where do we go from here? Ecology, 88,1898-1902.
URL PMID |
[47] | Hawkins BA, Diniz-Filho JAF, Weis AE (2005) The mid-domain effect and diversity gradients: is there anything to learn? The American Naturalist, 166,e140-e143. |
[48] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press,Princeton,New Jersey. |
[49] | Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the National Academy of Sciences,USA, 98,5661-5666. |
[50] | Jetz W, Rahbek C, Lichstein JW (2005) Local and global approaches to spatial data analysis in ecology. Global Ecology and Biogeography, 14,97-98. |
[51] |
Kaspari M, O′Donnell S, Kercher JR (2000) Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. The American Naturalist, 155,280-293.
DOI URL PMID |
[52] | Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385,252-254. |
[53] | Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press,Cambridge. |
[54] | Laanisto L, Urbas P, Pärtel M (2008) Why does the unimodal species richness-productivity relationship not apply to woody species: a lack of clonality or a legacy of tropical evolutionary history? Global Ecology and Biogeography, 17,320-327. |
[55] | Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proceedings of the National Academy of Sciences,USA, 104,15388-15393. |
[56] |
Latimer AM (2007) Geography and resource limitation complicate metabolism-based predictions of species richness. Ecology, 88,1895-1898.
DOI URL PMID |
[57] | Ma WH (马文红), Fang JY (方精云) (2006) The relationship between species richness and productivity in four typical grasslands of northern China. Biodiversity Science (生物多样性), 14,21-28. (in Chinese with English abstract) |
[58] | McClain CR, White EP, Hurlbert AH (2007) Challenges in the application of geometric constraint models. Global Ecology and Biogeography, 16,257-264. |
[59] | Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessio HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10,315-331. |
[60] | Mittelbach GG, Steiner CF, Steiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology, 82,2381-2396. |
[61] |
Pärtel M, Laanisto L, Zobel M (2007) Contrasting plant productivity-diversity relationships across latitude: the role of evolutionary history. Ecology, 88,1091-1097.
URL PMID |
[62] | Pärtel M, Zobel M (2007) Dispersal limitation may result in the unimodal productivity-diversity relationship: a new explanation for a general pattern. Journal of Ecology, 95,90-94. |
[63] | Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7,1-15. |
[64] | Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65,514-527. |
[65] | Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge,UK. |
[66] | Roy K, Goldberg EE (2007) Origination, extinction, and dispersal: integrative models for understanding present-day diversity gradients. The American Naturalist, 170,S71-S85. |
[67] | Sanders NS, Lessard JP, Fitzpatrick MC, Dunn R. (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16,640-649. |
[68] | Savage V M, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and temperature on population growth. The American Naturalist, 163,429-441. |
[69] | Scheiner SM, Willig MR (2005) Developing unified theories in ecology as exemplified with diversity gradients. The American Naturalist, 166,458-469. |
[70] |
Srivastava DS, Lawton JH (1998) Why more productive sites have more species: experimental test of theory using tree-hole communities. The American Naturalist, 152,510-529.
DOI URL PMID |
[71] | Stephens PR, Wiens JJ (2003) Explaining species richness from continents to communities: the time for speciation effect in emydid turtles. The American Naturalist, 161,112-128. |
[72] | Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 30,257-300. |
[73] | Wang Q, Ni J, Tenhunen J (2005) Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography, 14,379-393. |
[74] | West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science, 276,122-126. |
[75] | West GB, Brown JH, Enquist BJ (1999) A general model for the structure, function, and allometry of plant vascular systems. Nature, 400,664-667. |
[76] |
Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19,639-644.
DOI URL PMID |
[77] | Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology,Evolution, and Systematics, 34,273-309. |
[78] | Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos, 41,496-506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn