Biodiv Sci ›› 2025, Vol. 33 ›› Issue (3): 24305. DOI: 10.17520/biods.2024305 cstr: 32101.14.biods.2024305
• Original Papers:Ecosystem Diversity • Previous Articles Next Articles
Liu Shuqi1,2,3, Cui Dong1,2,*(), Jiang Zhicheng1,2, Liu Jianghui1,2, Yan Jiangchao1,2
Received:
2024-07-09
Accepted:
2024-09-20
Online:
2025-03-20
Published:
2025-03-27
Contact:
*E-mail: cuidongw@126.com
Supported by:
Liu Shuqi, Cui Dong, Jiang Zhicheng, Liu Jianghui, Yan Jiangchao. Short-term nitrogen addition, watering, and mowing weakened the relationship between soil biodiversity and ecosystem multifunctionality in degraded Sophora alopecuroides grassland[J]. Biodiv Sci, 2025, 33(3): 24305.
Fig. 1 Location of the study area. A-C, Sophora alopecuroides communities at different growth stages (seedling stage, flowering stage, and seed setting stage); D-E, Root system of Sophora alopecuroides.
处理 Treatments | 优势种 Dominant species | 其他物种 Other species | 物种数 Species number | 生物量 Biomass (g/m2) |
---|---|---|---|---|
对照CK | 苦豆子、扁穗雀麦、多枝柽柳 Sophora alopecuroides, Bromus catharticus, Tamarix ramosissima | 狗牙根、狗尾草、旱茅、大翅蓟、冷蒿、小蓬草、野莴苣、苍耳、欧夏至草 Cynodon dactylon, Setaria viridis, Schizachyrium delavayi, Onopordum acanthium, Artemisia frigida, Erigeron canadensis, Lactuca serriola, Xanthium strumarium, Marrubium vulgare | 10 | 393.57 |
氮添加N | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 多枝柽柳、狗牙根、旱茅、大翅蓟、冷蒿、猪毛蒿、小蓬草、欧夏至草、薄荷、猪毛菜、薹草 Tamarix ramosissima, Cynodon dactylon, Schizachyrium delavayi, Onopordum acanthium, Artemisia frigida, A. scoparia, Erigeron canadensis, Marrubium vulgare, Mentha canadensis, Kali collinum, Carex spp. | 13 | 517.52 |
水添加W | 苦豆子、扁穗雀麦、多枝柽柳 Sophora alopecuroides, Bromus catharticus, Tamarix ramosissima | 狗牙根、旱茅、大翅蓟、冷蒿、猪毛蒿、小蓬草、欧夏至草 Cynodon dactylon, Schizachyrium delavayi, Onopordum acanthium, Artemisia frigida, A. scoparia, Erigeron canadensis, Marrubium vulgare | 10 | 397.52 |
刈割M | 苦豆子、扁穗雀麦、狗尾草 Sophora alopecuroides, Bromus catharticus, Setaria viridis | 多枝柽柳、苜蓿、大翅蓟、猪毛蒿、小蓬草、野莴苣、欧夏至草、角果藜 Tamarix ramosissima, Medicago sativa, Onopordum acanthium, Artemisia scoparia, Erigeron canadensis, Lactuca serriola, Marrubium vulgare, Ceratocarpus arenarius | 11 | 132.02 |
氮添加 + 水添加 NW | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 多枝柽柳、狗牙根、旱茅、狗尾草、大翅蓟、猪毛蒿、小蓬草、薹草 Tamarix ramosissima, Cynodon dactylon, Schizachyrium delavayi, Setaria viridis, Onopordum acanthium, Artemisia scoparia, Erigeron canadensis, Carex spp. | 10 | 492.86 |
氮添加 + 刈割 NM | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 多枝柽柳、狗牙根、旱茅、羊草、狗尾草、大翅蓟、野莴苣、欧夏至草 Tamarix ramosissima, Cynodon dactylon, Schizachyrium delavayi, Leymus chinensis, Setaria viridis, Onopordum acanthium, Lactuca serriola, Marrubium vulgare | 10 | 168.98 |
水添加 + 刈割WM | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 多枝柽柳、狗牙根、旱茅、大翅蓟、冷蒿、猪毛蒿、乳苣、小蓬草、野莴苣、欧夏至草 Tamarix ramosissima, Cynodon dactylon, Schizachyrium delavayi, Onopordum acanthium, Artemisia frigida, A. scoparia, Lactuca tatarica, Erigeron canadensis, Lactuca serriola, Marrubium vulgare | 12 | 141.30 |
氮添加 + 水添加 + 刈割NWM | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 旱茅、羊草、大翅蓟、小蓬草、苍耳 Schizachyrium delavayi, Leymus chinensis, Onopordum acanthium, Erigeron canadensis, Xanthium strumarium | 7 | 134.36 |
Table 1 Distribution of vegetation communities in different treatments
处理 Treatments | 优势种 Dominant species | 其他物种 Other species | 物种数 Species number | 生物量 Biomass (g/m2) |
---|---|---|---|---|
对照CK | 苦豆子、扁穗雀麦、多枝柽柳 Sophora alopecuroides, Bromus catharticus, Tamarix ramosissima | 狗牙根、狗尾草、旱茅、大翅蓟、冷蒿、小蓬草、野莴苣、苍耳、欧夏至草 Cynodon dactylon, Setaria viridis, Schizachyrium delavayi, Onopordum acanthium, Artemisia frigida, Erigeron canadensis, Lactuca serriola, Xanthium strumarium, Marrubium vulgare | 10 | 393.57 |
氮添加N | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 多枝柽柳、狗牙根、旱茅、大翅蓟、冷蒿、猪毛蒿、小蓬草、欧夏至草、薄荷、猪毛菜、薹草 Tamarix ramosissima, Cynodon dactylon, Schizachyrium delavayi, Onopordum acanthium, Artemisia frigida, A. scoparia, Erigeron canadensis, Marrubium vulgare, Mentha canadensis, Kali collinum, Carex spp. | 13 | 517.52 |
水添加W | 苦豆子、扁穗雀麦、多枝柽柳 Sophora alopecuroides, Bromus catharticus, Tamarix ramosissima | 狗牙根、旱茅、大翅蓟、冷蒿、猪毛蒿、小蓬草、欧夏至草 Cynodon dactylon, Schizachyrium delavayi, Onopordum acanthium, Artemisia frigida, A. scoparia, Erigeron canadensis, Marrubium vulgare | 10 | 397.52 |
刈割M | 苦豆子、扁穗雀麦、狗尾草 Sophora alopecuroides, Bromus catharticus, Setaria viridis | 多枝柽柳、苜蓿、大翅蓟、猪毛蒿、小蓬草、野莴苣、欧夏至草、角果藜 Tamarix ramosissima, Medicago sativa, Onopordum acanthium, Artemisia scoparia, Erigeron canadensis, Lactuca serriola, Marrubium vulgare, Ceratocarpus arenarius | 11 | 132.02 |
氮添加 + 水添加 NW | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 多枝柽柳、狗牙根、旱茅、狗尾草、大翅蓟、猪毛蒿、小蓬草、薹草 Tamarix ramosissima, Cynodon dactylon, Schizachyrium delavayi, Setaria viridis, Onopordum acanthium, Artemisia scoparia, Erigeron canadensis, Carex spp. | 10 | 492.86 |
氮添加 + 刈割 NM | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 多枝柽柳、狗牙根、旱茅、羊草、狗尾草、大翅蓟、野莴苣、欧夏至草 Tamarix ramosissima, Cynodon dactylon, Schizachyrium delavayi, Leymus chinensis, Setaria viridis, Onopordum acanthium, Lactuca serriola, Marrubium vulgare | 10 | 168.98 |
水添加 + 刈割WM | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 多枝柽柳、狗牙根、旱茅、大翅蓟、冷蒿、猪毛蒿、乳苣、小蓬草、野莴苣、欧夏至草 Tamarix ramosissima, Cynodon dactylon, Schizachyrium delavayi, Onopordum acanthium, Artemisia frigida, A. scoparia, Lactuca tatarica, Erigeron canadensis, Lactuca serriola, Marrubium vulgare | 12 | 141.30 |
氮添加 + 水添加 + 刈割NWM | 苦豆子、扁穗雀麦 Sophora alopecuroides, Bromus catharticus | 旱茅、羊草、大翅蓟、小蓬草、苍耳 Schizachyrium delavayi, Leymus chinensis, Onopordum acanthium, Erigeron canadensis, Xanthium strumarium | 7 | 134.36 |
Fig. 2 Effects of different treatments on soil biodiversity. The meanings of treatment abbreviation are shown in Table 1. Data in the figure are means ± SE, and different lowercase letters indicate significant differences among treatments (P < 0.05). PP, Plant parasites; Ba, Bacterivores; Fu, Fungivores; OP, Omnivores/Predators.
Fig. 3 Visualized ecological network of soil organisms (bacteria, fungi, nematodes, arthropods) under different treatments. The meanings of treatment abbreviation are shown in Table 1. Bacteria and fungi were used from amplicon sequence variant (ASV) data with abundances greater than 0.1% and frequency of occurrence greater than 5; nematode (on the genus level) and arthropod (on the family level) taxa were less frequent and all taxa data were used. The node (degree) size was proportional to the abundance of bacteria, fungi, nematodes and arthropods.
Fig. 4 Proportion of co-occurrence networks nodes (a) and proportion of positive and negative connections (b) of soil organisms under different treatments. The meanings of treatment abbreviation are shown in Table 1.
Fig. 5 Relationship between soil biodiversity and environmental factors. (a) Pearson correlation; (b) Linear correlation. PP, Plant parasites; Ba, Bacterivores; Fu, Fungivores; OP, Omnivores/Predators.
Fig. 6 Relationships between soil physicochemical properties and ecosystem multifunctionality. The meanings of treatment abbreviation are shown in Table 1.
Fig. 7 The fitted linear relationships between soil multidiversity and ecosystem multifunctionality under different treatments. The meanings of treatment abbreviation are shown in Table 1.
Fig. 8 Partial least squares path modeling describing direct and indirect effects of nitrogen addition, watering, and mowing on ecosystem multifunctionality. Red line indicates positive correlation, blue line indicates negative correlation, and grey indicates no correlation. ns, P > 0.05, * P < 0.05, ** P < 0.01. PP, Plant parasites; Ba, Bacterivores; Fu, Fungivores; OP, Omnivores/Predators.
[1] |
Banerjee S, Schlaeppi K,van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16, 567-576.
DOI PMID |
[2] | Bao SD(2000) Soil Agrochemical Analysis. China Agriculture Press, Beijing. (in Chinese) |
[ 鲍士旦 (2000) 土壤农化分析. 中国农业出版社, 北京.] | |
[3] | Bardgett RD,van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511. |
[4] | Binder S, Isbell F, Polasky S, Catford JA, Tilman D(2018) Grassland biodiversity can pay. Proceedings of the National Academy of Sciences, USA, 115, 3876-3881. |
[5] | Bongers T(1994) De Nematoden van Nederland. Vormgeving en technische realisatie: Uitgenerij, Pirola, Schoorl, Netherland. |
[6] | Chen YF, Cao ZP(2008) The soil food web: Structure, energy flux and stability. Acta Ecologica Sinica, 28, 5055-5064. (in Chinese with English abstract) |
[ 陈云峰, 曹志平 (2008) 土壤食物网: 结构、能流及稳定性. 生态学报, 28, 5055-5064.] | |
[7] |
Chen YN, Li Y, Qiu TY, He HR, Liu J, Duan CJ, Cui YX, Huang M, Wu CY, Fang LC(2024) High nitrogen fertilizer input enhanced the microbial network complexity in the paddy soil. Soil Ecology Letters, 6, 230205.
DOI |
[8] |
Coyte KZ, Schluter J, Foster KR(2015) The ecology of the microbiome: Networks, competition, and stability. Science, 350, 663-666.
DOI PMID |
[9] | Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N, Byun C, Catford JA, Cerabolini BEL, Cornelissen JHC, Craine JM, De Luca E, Ebeling A, Griffin JN, Hector A, Hines J, Jentsch A, Kattge J, Kreyling J, Lanta V, Lemoine N, Meyer ST, Minden V, Onipchenko V, Polley HW, Reich PB, van Ruijven J, Schamp B, Smith MD, Soudzilovskaia NA, Tilman D, Weigelt A, Wilsey B, Manning P(2018) Multiple facets of biodiversity drive the diversity-stability relationship. Nature Ecology & Evolution, 2, 1579-1587. |
[10] | Cui SY, Han X, Xiao YS, Wu PF, Zhang SX, Abid A, Zheng G(2022) Increase in rainfall intensity promotes soil nematode diversity but offset by nitrogen addition in a temperate grassland. Science of the Total Environment, 825, 154039. |
[11] | de Gea AB, Hautier Y, Geisen S(2023) Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Global Change Biology, 29, 296-307. |
[12] | de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Gera Hol WH, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD(2013) Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, USA, 110, 14296-14301. |
[13] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK(2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.
DOI PMID |
[14] | Duan L, Hao JM, Xie SD, Zhou ZP(2002) Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method. Chinese Journal of Environmental Science, 23(2), 7-12. (in Chinese with English abstract) |
[ 段雷, 郝吉明, 谢绍东, 周中平 (2002) 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷. 环境科学, 23(2), 7-12.] | |
[15] |
Dun SS, Cao JR, Jia X, Pang S(2017) Effects of grazing and mowing on extractable carbon and nitrogen in typical grassland of Inner Mongolia, China. Chinese Journal of Applied Ecology, 28, 3235-3242. (in Chinese with English abstract)
DOI |
[ 顿沙沙, 曹继容, 贾秀, 庞爽 (2017) 放牧和刈割对内蒙古典型草原土壤可提取碳和氮的影响. 应用生态学报, 28, 3235-3242.]
DOI |
|
[16] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO(2000) Climate extremes: Observations, modeling, and impacts. Science, 289, 2068-2074.
DOI PMID |
[17] | FAO, ITPS, GSBI, SCBD, EC (2020) State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities. Rome, FAO. |
[18] |
García-Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, Sylvain ZA, de Tomasel CM, Wall DH(2015) Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Global Change Biology, 21, 1590-1600.
DOI PMID |
[19] | Geisen S, Wall DH,van der Putten WH (2019) Challenges and opportunities for soil biodiversity in the Anthropocene. Current Biology, 29, R1036-R1044. |
[20] | Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD(2005) Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Change Biology, 11, 322-334. |
[21] | Hautier Y, Seabloom EW, Borer ET, Adler PB, Stanley Harpole W, Hillebrand H, Lind EM, MacDougall AS, Stevens CJ, Bakker JD, Buckley YM, Chu CJ, Collins SL, Daleo P, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Jin VL, Klein JA, Knops JMH, La Pierre KJ, Li W, McCulley RL, Melbourne BA, Moore JL, O’Halloran LR, Prober SM, Risch AC, Sankaran M, Martin Schuetz M, Hector A(2014) Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508, 521-525. |
[22] | He SL, Ye H, Li J, Zhang YL, De HS, Hong M(2024) Effects of nitrogen deposition and precipitation changes in different time spans on community structure and diversity of soil meso- and micro-fauna in Stipa breviflora desert steppe. Acta Prataculturae Sinica, 33(9), 140-154. (in Chinese with English abstract) |
[ 贺世龙, 叶贺, 李静, 张雅玲, 德海山, 红梅 (2024) 不同时限氮沉降和降水变化对荒漠草原中小型土壤节肢动物群落结构与多样性的影响. 草业学报, 33(9), 140-154.]
DOI |
|
[23] | Hooper DU, Carol Adair E, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Emmett Duffy J, Gamfeldt L, O’Connor MI(2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-108. |
[24] | Hu J, Chen GR, Hassan WM, Chen H, Li JY, Du GZ(2017) Fertilization influences the nematode community through changing the plant community in the Tibetan Plateau. European Journal of Soil Biology, 78, 7-16. |
[25] |
Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, Li XW, Xiong JL, Xia R, Wei MH, Zhao DM, Zhang YH, Li JH, Yang HX, Wang XT, Deng Y, Sun Y, Li HL, Zhang L, Chu QP, Li XW, Aqeel M, Manan A, Akram MA, Liu XH, Li R, Li F, Hou C, Liu JQ, He JS, An LZ, Bardgett RD, Schmid B, Deng JM(2021) Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350.
DOI PMID |
[26] | Hu ZK, Delgado-Baquerizo M, Fanin N, Chen XY, Zhou Y, Du GZ, Hu F, Jiang L, Hu SJ, Liu MQ(2024) Nutrient-induced acidification modulates soil biodiversity- function relationships. Nature Communications, 15, 2858. |
[27] | Huang RJ, Zhang CY, Wen YT, Wu CC, Lu H, Zhao BY(2022) Predicting the habitats of Achnatherum inebrians in China under current (1970-2000) and future climate conditions. Acta Agrestia Sinica, 30, 2712-2720. (in Chinese with English abstract) |
[ 黄睿杰, 张春艳, 温雨婷, 吴晨晨, 路浩, 赵宝玉 (2022) 当前(1970-2000) 与未来气候变化情境下中国醉马芨芨草潜在分布预测. 草地学报, 30, 2712-2720.] | |
[28] | Ilmarinen K, Mikola J, Nissinen K, Vestberg M(2009) Role of soil organisms in the maintenance of species-rich seminatural grasslands through mowing. Restoration Ecology, 17, 78-88. |
[29] | Jenkins WR(1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Journal of Plant Diseases and Protection, 48, 692-692. |
[30] | Lei L, Sun WG, He L, Jiang HF, Zhang MJ, He WJ, Hu ZX, Gu Y, Song HP, Zhang YH(2019) Cardiotoxicity of Consolida rugulosa, a poisonous weed in Western China. Ecotoxicology and Environmental Safety, 170, 141-147. |
[31] | Li YH, Han X, Li B, Li YB, Du XF, Sun YX, Li Q,Martijn Bezemer T (2023) Soil addition improves multifunctionality of degraded grasslands through increasing fungal richness and network complexity. Geoderma, 437, 116607. |
[32] |
Liu Y, Du JQ, Ma LY, Yang G, Tian JQ(2025) Diversity and distribution of methanogen communities in the riparian wetlands of the Nam Co basin. Biodiversity Science, 33, 24247. (in Chinese with English abstract)
DOI |
[ 刘源, 杜剑卿, 马丽媛, 杨刚, 田建卿 (2025) 纳木措流域岸边带湿地产甲烷古菌群落多样性与分布特征. 生物多样性, 33, 24247.
DOI |
|
[33] |
Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA(2001) Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294, 804-808.
DOI PMID |
[34] | Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M(2018) Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436. |
[35] | Mao ZX, Yue M, Wang YC, Li LJ, Li Y(2024) Soil microorganisms mediated the responses of the plant-soil systems of Neotrinia splendens to nitrogen addition and warming in a desert ecosystem. Agronomy, 14, 132. |
[36] | Mitri S, Clarke E, Foster KR(2016) Resource limitation drives spatial organization in microbial groups. ISME Journal, 10, 1471-1482. |
[37] | Pan GX, Smith P, Pan WN(2009) The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment, 129, 344-348. |
[38] |
Peng Y, Peñuelas J, Vesterdal L, Yue K, Peguero G, Fornara DA, Heděnec P, Steffens C, Wu FZ(2022) Responses of soil fauna communities to the individual and combined effects of multiple global change factors. Ecology Letters, 25, 1961-1973.
DOI PMID |
[39] | Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, Fronhofer EA, Ganesanandamoorthy P, Garnier A, Griffiths JI, Greene S, Horgan K, Massie TM, Mächler E, Palamara GM, Seymour M, Petchey OL(2018) Biodiversity increases and decreases ecosystem stability. Nature, 563, 109-112. |
[40] | Potapov AM(2022) Multifunctionality of belowground food webs: Resource, size and spatial energy channels. Biological Reviews, 97, 1691-1711. |
[41] | Ren YL(2012) Effects of precipitation change on inorganic nitrogen and net nitrogen mineralization rate at a plantation of Mongolian pine. Acta Scientiarum Naturalium Universitatis Pekinensis, 48, 925-932. (in Chinese with English abstract) |
[ 任艳林 (2012) 降水变化对樟子松人工林土壤无机氮和净氮矿化速率的影响. 北京大学学报(自然科学版), 48, 925-932.] | |
[42] | Saleem M, Hu J, Jousset A(2019) More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annual Review of Ecology, Evolution, and Systematics, 50, 145-168. |
[43] | Sardans J, Peñuelas J(2015) Potassium: A neglected nutrient in global change. Global Ecology and Biogeography, 24, 261-275. |
[44] | Shannon CE(1950) The mathematical theory of communication. Bell Labs Technical Journal, 3, 31-32. |
[45] | Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC, Alt F, Arndt H, Baumgartner V, Binkenstein J, Birkhofer K, Blaser S, Blüthgen N, Boch S, Böhm S, Börschig C, Buscot F, Diekötter T, Heinze J, Hölzel N, Jung K, Klaus VH, Kleinebecker T, Klemmer S, Krauss J, Lange M, Kathryn Morris E, Müller J, Oelmann Y, Overmann J, Pašalić E, Rillig MC, Martin Schaefer H, Schloter M, Schmitt B, Schöning I, Schrumpf M, Sikorski J, Socher SA, Solly EF, Sonnemann I, Sorkau E, Steckel J, Steffan-Dewenter I, Stempfhuber B, Tschapka M, Türke M, Venter PC, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Wolters V, Wubet T, Wurst S, Fischer M, Allan E(2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536, 456-459. |
[46] | Sun YF, Shen JP, Zhang CJ, Zhang LM, Bai WM, Fang Y, He JZ(2018) Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. Journal of Soils and Sediments, 18, 762-774. |
[47] | Sünnemann M, Alt C, Kostin JE, Lochner A, Reitz T, Siebert J, Schädler M, Eisenhauer N(2021) Low-intensity land-use enhances soil microbial activity, biomass and fungal-to-bacterial ratio in current and future climates. Journal of Applied Ecology, 58, 2614-2625. |
[48] |
Thakur MP, Geisen S(2019) Trophic regulations of the soil microbiome. Trends in Microbiology, 27, 771-780.
DOI PMID |
[49] |
Topalović O, Geisen S(2023) Nematodes as suppressors and facilitators of plant performance. New Phytologist, 238, 2305-2312.
DOI PMID |
[50] | Wang JL(2020) Research on Species Diversity and Integrated Control Technology of Poisonous Weeds in Xinjiang Grazing Grassland. PhD dissertation, Yangzhou University, Yangzhou, Jiangsu. (in Chinese with English abstract) |
[ 王军亮 (2020) 新疆放牧草地毒害草种属多样性与综合防控措施研究. 博士学位论文, 扬州大学, 江苏扬州.] | |
[51] | Wang YT(2023) Impacts of Precipitation Change and Nitrogen Deposition on Ecosystem Multifunctionality of Typical Steppe in the Loess Plateau. PhD dissertation, Ningxia University, Yinchuan. (in Chinese with English abstract) |
[ 王誉陶 (2023) 降水变化与氮沉降对黄土高原典型草原生态系统多功能性的影响. 博士学位论文, 宁夏大学, 银川.] | |
[52] |
Wu LJ, Chen HS, Chen DM, Wang SP, Wu Y, Wang B, Liu SG, Yue LY, Yu J, Bai YF(2023) Soil biota diversity and plant diversity both contributed to ecosystem stability in grasslands. Ecology Letters, 26, 858-868.
DOI PMID |
[53] |
Xiao YS, Yang CR, Zheng G, Wu PF, Zhang SX, Cui SY(2022) Effects of precipitation regime on the structure of soil micro-food web in the grassland of northern China. Biodiversity Science, 30, 22208. (in Chinese with English abstract)
DOI |
[ 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳 (2022) 降水格局对北方温带草原土壤微食物网结构的影响. 生物多样性, 30, 22208.]
DOI |
|
[54] | Xu ZF(2009) General Entomology. Science Press, Beijing. (in Chinese) |
[ 许再福 (2009) 普通昆虫学. 科学出版社, 北京.] | |
[55] |
Yang HJ, Jiang L, Li LH, Li A, Wu MY, Wan SQ(2012) Diversity-dependent stability under mowing and nutrient addition: Evidence from a 7-year grassland experiment. Ecology Letters, 15, 619-626.
DOI PMID |
[56] | Yang S, Li XB, Wang RZ, Cai JP, Xu ZW, Zhang YG, Li H, Jiang Y(2015) Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in northern China. Chinese Journal of Applied Ecology, 26, 739-746. (in Chinese with English abstract) |
[ 杨山, 李小彬, 王汝振, 蔡江平, 徐柱文, 张玉革, 李慧, 姜勇 (2015) 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响. 应用生态学报, 26, 739-746.] | |
[57] |
Yin R, Qin WK, Wang XD, Xie D, Wang H, Zhao HY, Zhang ZH, He JS, Schädler M, Kardol P, Eisenhauer N, Zhu B(2023) Experimental warming causes mismatches in alpine plant-microbe-fauna phenology. Nature Communications, 14, 2159.
DOI PMID |
[58] | Yin WY(2000) Pictorial Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英 (2000) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[59] | Zhai CC, Han LL, Xiong C, Ge AH, Yue XJ, Li Y, Zhou ZX, Feng JY, Ru JY, Song J, Jiang L, Yang YF, Zhang LM, Wan SQ(2024) Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. Science of the Total Environment, 906, 167217. |
[60] | Zhang CJ, Yang ZL, Shen JP, Sun YF, Wang JT, Han HY, Wan SQ, Zhang LM, He JZ(2018) Impacts of long-term nitrogen addition, watering and mowing on ammonia oxidizers, denitrifiers and plant communities in a temperate steppe. Applied Soil Ecology, 130, 241-250. |
[61] | Zhang XK, Liang WJ, Li Q(2013) Forest Soil Nematodes in Changbai Mountain. China Agriculture Press, Beijing. (in Chinese) |
[ 张晓珂, 梁文举, 李琪 (2013) 长白山森林土壤线虫. 中国农业出版社, 北京.] | |
[62] | Zhao FC, Chen HF, Wang YH, Dong KH, Wang CH, Chen XP(2022) Response of rhizosphere soil properties to changed precipitation and nitrogen addition in a salinized grassland. Acta Agrestia Sinica, 30, 2430-2437. (in Chinese with English abstract) |
[ 赵芳草, 陈鸿飞, 王一昊, 董宽虎, 王常慧, 陈晓鹏 (2022) 盐渍化草地根际土壤理化性质对降水改变和氮添加的响应. 草地学报, 30, 2430-2437.]
DOI |
|
[63] | Zhou W, Yang H, Huang L, Chen C, Lin XS, Hu ZJ, Li JL(2017) Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 83, 303-313. |
[64] | Zhu ZK, Fang YY, Liang YQ, Li YH, Liu SL, Li YF, Li BZ, Gao W, Yuan HZ, Kuzyakov Y, Wu JS, Richter A, Ge TD(2022) Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biology and Biochemistry, 169, 108669. |
[1] | Jiachen Wang, Tangjun Xu, Wei Xu, Gaoji Zhang, Yijin You, Honghua Ruan, Hongyi Liu. Impact of urban landscape pattern on the genetic structure of Thereuopoda clunifera population in Nanjing, China [J]. Biodiv Sci, 2025, 33(1): 24251-. |
[2] | Nan Chen, Quan-Guo Zhang. The experimental evolution approach [J]. Biodiv Sci, 2024, 32(9): 24171-. |
[3] | Yunwei Dong, Menghuan Bao, Jiao Cheng, Yiyong Chen, Jianguo Du, Yangchun Gao, Lisha Hu, Xincheng Li, Chunlong Liu, Geng Qin, Jin Sun, Xin Wang, Guang Yang, Chongliang Zhang, Xiong Zhang, Yuyang Zhang, Zhixin Zhang, Aibin Zhan, Qiang He, Jun Sun, Bin Chen, Zhongli Sha, Qiang Lin. Advances of marine biogeography in China: Species distribution model and its applications [J]. Biodiv Sci, 2024, 32(5): 23453-. |
[4] | Dangjun Wang, Wuyang Xie, Xiaoyuan Lin, Xiujuan Qiao, Yaozhan Xu, Qiuxiang Tian, Feng Liu, Yani Zhang, Zhun Mao, Juan Zuo, Mingxi Jiang. Relationships between soil fauna, leaf economics spectrum, and litter decomposition rates in a subtropical forest of Badagongshan [J]. Biodiv Sci, 2024, 32(12): 24261-. |
[5] | Lixia Han, Yongjian Wang, Xuan Liu. Comparisons between non-native species invasion and native species range expansion [J]. Biodiv Sci, 2024, 32(1): 23396-. |
[6] | Yongjie Niu, Quanhui Ma, Yu Zhu, Hairong Liu, Jiale Lü, Yuanchun Zou, Ming Jiang. Research progress on the impact of nitrogen deposition on grassland insect diversity [J]. Biodiv Sci, 2023, 31(9): 23130-. |
[7] | Liang Song, Yi Wu, Haixia Hu, Wenyao Liu, Akihiro Nakamura, Yajun Chen, Keping Ma. Research progress and prospects of forest canopy science based on canopy cranes [J]. Biodiv Sci, 2023, 31(12): 23363-. |
[8] | Wenda Cheng, Shuang Xing, Yang Liu. Wallace’s contributions and inspirations to contemporary research on the evolution of animal body color [J]. Biodiv Sci, 2023, 31(12): 23434-. |
[9] | Yunyun Wang, Zhanqing Hao. Angiosperm sexual systems-Concepts, evolution, ecology, and future directions [J]. Biodiv Sci, 2022, 30(7): 22065-. |
[10] | Shijia Peng, Yuan Luo, Hongyu Cai, Xiaoling Zhang, Zhiheng Wang. A new list of threatened woody species in China under future global change scenarios [J]. Biodiv Sci, 2022, 30(5): 21459-. |
[11] | Yushan Xiao, Changrao Yang, Guo Zheng, Pengfeng Wu, Shixiu Zhang, Shuyan Cui. Effects of precipitation regime on the structure of soil micro-food web in the grassland of northern China [J]. Biodiv Sci, 2022, 30(12): 22208-. |
[12] | Fan Li, Dangjun Wang, Xiaoyuan Lin, Kang Ji, Luping Ye, Chao Huang, Yong Zheng, Mao Zhun, Juan Zuo. Community characteristics of macroinvertebrates in woody debris in a subtropical forest in Badagongshan, China [J]. Biodiv Sci, 2022, 30(12): 21476-. |
[13] | Siyao Liu, Zhu Li, Xin Ke, Lina Sun, Longhua Wu, Jiejie Zhao. Community characteristics of soil collembola around a typical mercury-thallium mining area in Guizhou Province [J]. Biodiv Sci, 2022, 30(12): 22265-. |
[14] | Haifeng Yao, Saichao Zhang, Huayuan Shangguan, Zhipeng Li, Xin Sun. Effects of urbanization on soil fauna community structure and diversity [J]. Biodiv Sci, 2022, 30(12): 22547-. |
[15] | Jianwei Cheng, Yadong Wang, Yanan Wang, Ying Li, Ying Guo, Zheng Bai, Xinmin Liu, Frank Yonghong Li. Effects of soil macro- and meso-fauna on the decomposition of cattle and horse dung pats in a semi-arid steppe [J]. Biodiv Sci, 2022, 30(12): 22575-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn