Biodiv Sci ›› 2024, Vol. 32 ›› Issue (12): 24261. DOI: 10.17520/biods.2024261 cstr: 32101.14.biods.2024261
• Original Papers • Previous Articles Next Articles
Dangjun Wang1,2,3,5, Wuyang Xie2,3, Xiaoyuan Lin2,3, Xiujuan Qiao2, Yaozhan Xu2, Qiuxiang Tian2, Feng Liu2, Yani Zhang4, Zhun Mao5, Juan Zuo2,*(), Mingxi Jiang2
Received:
2024-06-26
Accepted:
2024-12-17
Online:
2024-12-20
Published:
2025-01-19
Contact:
E-mail: Supported by:
Dangjun Wang, Wuyang Xie, Xiaoyuan Lin, Xiujuan Qiao, Yaozhan Xu, Qiuxiang Tian, Feng Liu, Yani Zhang, Zhun Mao, Juan Zuo, Mingxi Jiang. Relationships between soil fauna, leaf economics spectrum, and litter decomposition rates in a subtropical forest of Badagongshan[J]. Biodiv Sci, 2024, 32(12): 24261.
物种名称 Species name | 简写 Abbreviation | 孔径 Mesh size | ||
---|---|---|---|---|
0.07 mm | 2 mm | 5 mm | ||
七叶树 Aesculus chinensis | AECH | 0.21 ± 0.01Ce | 0.26 ± 0.01Be | 0.36 ± 0.02Ajk |
华榛 Corylus chinensis | COCH | 1.40 ± 0.19Bb | 2.18 ± 0.37ABb | 2.27 ± 0.14Ade |
灯台树 Cornus controversa | COCO | 1.39 ± 0.11Bb | 2.39 ± 0.45Ab | 2.52 ± 0.21Acd |
藏刺榛 Corylus ferox | COFE | 1.19 ± 0.05Abc | 1.30 ± 0.25Ac | 1.49 ± 0.13Af |
柳杉 Cryptomeria japonica | CRJA | 0.24 ± 0.04Cef | 0.39 ± 0.03Bef | 0.54 ± 0.03Aijk |
珙桐 Davidia involucrata | DAIN | 2.02 ± 0.46Ba | 3.51 ± 0.35Aa | 3.81 ± 0.16Aa |
亮叶水青冈 Fagus lucida | FALU | 0.21 ± 0.01Be | 0.35 ± 0.04Ade | 0.32 ± 0.04Ak |
鹅掌楸 Liriodendron chinense | LICH | 1.01 ± 0.04Bbcd | 1.96 ± 0.24Ab | 2.08 ± 0.11Ae |
红柴枝 Meliosma oldhamii | MEOL | 0.32 ± 0.01Be | 0.43 ± 0.05Ade | 0.47 ± 0.01Ajk |
水杉 Metasequoia glyptostroboides | MEGL | 0.99 ± 0.02Bef | 1.24 ± 0.31Bef | 1.56 ± 0.05Ajk |
蓝果树 Nyssa sinensis | NYSI | 0.76 ± 0.05Bcde | 1.10 ± 0.14Acd | 1.31 ± 0.06Afg |
灰叶稠李 Prunus grayana | PRGR | 1.15 ± 0.11Bbc | 2.35 ± 0.43Ab | 2.81 ± 0.07Abc |
大叶杨 Populus lasiocarpa | POLA | 0.49 ± 0.08Bde | 0.81 ± 0.15ABcde | 1.05 ± 0.12Agh |
湖北枫杨 Pterocarya hupehensis | PTHU | 0.72 ± 0.13Bcde | 0.79 ± 0.09Bcde | 1.25 ± 0.09Afg |
白辛树 Pterostyrax psilophyllus | PTPS | 0.51 ± 0.04Bde | 0.92 ± 0.06Acde | 1.05 ± 0.01Agh |
瑶山梭罗 Reevesia glaucophylla | REGL | 0.47 ± 0.04Bde | 0.57 ± 0.02Bcde | 0.82 ± 0.03Ahi |
檫木 Sassafras tzumu | SATZ | 0.19 ± 0.01Be | 0.35 ± 0.03Ade | 0.41 ± 0.03Ajk |
瘿椒树 Tapiscia sinensis | TASI | 2.28 ± 0.49Ba | 3.06 ± 0.30ABa | 3.91 ± 0.19Aa |
粉椴 Tilia oliveri | TIOL | 1.26 ± 0.17Cbc | 2.23 ± 0.13Bb | 2.85 ± 0.12Ab |
香椿 Toona sinensis | TOSI | 0.22 ± 0.02Be | 0.51 ± 0.11Ade | 0.66 ± 0.02Aij |
F | 12.24*** | 20.23*** | 121.71*** |
Table 1 Effect of tree species and soil fauna on leaf litter decomposition rate (mean ± SE)
物种名称 Species name | 简写 Abbreviation | 孔径 Mesh size | ||
---|---|---|---|---|
0.07 mm | 2 mm | 5 mm | ||
七叶树 Aesculus chinensis | AECH | 0.21 ± 0.01Ce | 0.26 ± 0.01Be | 0.36 ± 0.02Ajk |
华榛 Corylus chinensis | COCH | 1.40 ± 0.19Bb | 2.18 ± 0.37ABb | 2.27 ± 0.14Ade |
灯台树 Cornus controversa | COCO | 1.39 ± 0.11Bb | 2.39 ± 0.45Ab | 2.52 ± 0.21Acd |
藏刺榛 Corylus ferox | COFE | 1.19 ± 0.05Abc | 1.30 ± 0.25Ac | 1.49 ± 0.13Af |
柳杉 Cryptomeria japonica | CRJA | 0.24 ± 0.04Cef | 0.39 ± 0.03Bef | 0.54 ± 0.03Aijk |
珙桐 Davidia involucrata | DAIN | 2.02 ± 0.46Ba | 3.51 ± 0.35Aa | 3.81 ± 0.16Aa |
亮叶水青冈 Fagus lucida | FALU | 0.21 ± 0.01Be | 0.35 ± 0.04Ade | 0.32 ± 0.04Ak |
鹅掌楸 Liriodendron chinense | LICH | 1.01 ± 0.04Bbcd | 1.96 ± 0.24Ab | 2.08 ± 0.11Ae |
红柴枝 Meliosma oldhamii | MEOL | 0.32 ± 0.01Be | 0.43 ± 0.05Ade | 0.47 ± 0.01Ajk |
水杉 Metasequoia glyptostroboides | MEGL | 0.99 ± 0.02Bef | 1.24 ± 0.31Bef | 1.56 ± 0.05Ajk |
蓝果树 Nyssa sinensis | NYSI | 0.76 ± 0.05Bcde | 1.10 ± 0.14Acd | 1.31 ± 0.06Afg |
灰叶稠李 Prunus grayana | PRGR | 1.15 ± 0.11Bbc | 2.35 ± 0.43Ab | 2.81 ± 0.07Abc |
大叶杨 Populus lasiocarpa | POLA | 0.49 ± 0.08Bde | 0.81 ± 0.15ABcde | 1.05 ± 0.12Agh |
湖北枫杨 Pterocarya hupehensis | PTHU | 0.72 ± 0.13Bcde | 0.79 ± 0.09Bcde | 1.25 ± 0.09Afg |
白辛树 Pterostyrax psilophyllus | PTPS | 0.51 ± 0.04Bde | 0.92 ± 0.06Acde | 1.05 ± 0.01Agh |
瑶山梭罗 Reevesia glaucophylla | REGL | 0.47 ± 0.04Bde | 0.57 ± 0.02Bcde | 0.82 ± 0.03Ahi |
檫木 Sassafras tzumu | SATZ | 0.19 ± 0.01Be | 0.35 ± 0.03Ade | 0.41 ± 0.03Ajk |
瘿椒树 Tapiscia sinensis | TASI | 2.28 ± 0.49Ba | 3.06 ± 0.30ABa | 3.91 ± 0.19Aa |
粉椴 Tilia oliveri | TIOL | 1.26 ± 0.17Cbc | 2.23 ± 0.13Bb | 2.85 ± 0.12Ab |
香椿 Toona sinensis | TOSI | 0.22 ± 0.02Be | 0.51 ± 0.11Ade | 0.66 ± 0.02Aij |
F | 12.24*** | 20.23*** | 121.71*** |
统计检验 Statistical tests | 凋落物种类 Litter species | 网袋孔径 Mesh size | 凋落物种类 × 网袋孔径 Litter species × mesh size | ||
---|---|---|---|---|---|
凋落物分解速率 Litter decomposition rate | F | 93.863 | 43.130 | 1.450 | |
P | < 0.001 | < 0.001 | 0.043 | ||
土壤动物密度 Soil fauna density | F | 2.411 | 1.348 | 0.625 | |
P | 0.002 | 0.248 | 0.881 | ||
丰富度 Richness | F | 2.289 | 0.205 | 0.847 | |
P | 0.004 | 0.651 | 0.647 | ||
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | F | 1.130 | 5.029 | 1.359 | |
P | 0.331 | 0.027 | 0.161 | ||
Gini-Simpson指数 Gini-Simpson index | F | 1.143 | 7.399 | 1.520 | |
P | 0.319 | 0.008 | 0.091 | ||
Pielou均匀度指数 Pielou evenness index | F | 1.469 | 7.857 | 1.874 | |
P | 0.109 | 0.006 | 0.022 |
Table 2 Effect of litter species and mesh size on indicators of soil fauna community and decomposition rate
统计检验 Statistical tests | 凋落物种类 Litter species | 网袋孔径 Mesh size | 凋落物种类 × 网袋孔径 Litter species × mesh size | ||
---|---|---|---|---|---|
凋落物分解速率 Litter decomposition rate | F | 93.863 | 43.130 | 1.450 | |
P | < 0.001 | < 0.001 | 0.043 | ||
土壤动物密度 Soil fauna density | F | 2.411 | 1.348 | 0.625 | |
P | 0.002 | 0.248 | 0.881 | ||
丰富度 Richness | F | 2.289 | 0.205 | 0.847 | |
P | 0.004 | 0.651 | 0.647 | ||
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | F | 1.130 | 5.029 | 1.359 | |
P | 0.331 | 0.027 | 0.161 | ||
Gini-Simpson指数 Gini-Simpson index | F | 1.143 | 7.399 | 1.520 | |
P | 0.319 | 0.008 | 0.091 | ||
Pielou均匀度指数 Pielou evenness index | F | 1.469 | 7.857 | 1.874 | |
P | 0.109 | 0.006 | 0.022 |
物种 Species | t0.5 (年 year) | t0.95 (年 year) | ||||
---|---|---|---|---|---|---|
0.07 mm | 2 mm | 5 mm | 0.07 mm | 2 mm | 5 mm | |
七叶树 AECH | 3.25 | 2.63 | 1.92 | 14.06 | 11.37 | 8.30 |
华榛 COCH | 0.49 | 0.32 | 0.30 | 2.13 | 1.37 | 1.32 |
灯台树 COCO | 0.50 | 0.29 | 0.27 | 2.16 | 1.25 | 1.19 |
藏刺榛 COFE | 0.58 | 0.53 | 0.47 | 2.52 | 2.30 | 2.02 |
柳杉 CRJA | 2.93 | 1.78 | 1.29 | 12.67 | 7.71 | 5.57 |
珙桐 DAIN | 0.34 | 0.20 | 0.18 | 1.48 | 0.85 | 0.79 |
亮叶水青冈 FALU | 3.33 | 2.01 | 2.15 | 14.37 | 8.67 | 9.28 |
鹅掌楸 LICH | 0.69 | 0.35 | 0.33 | 2.97 | 1.53 | 1.44 |
红柴枝 MEOL | 2.17 | 1.61 | 1.47 | 9.38 | 6.95 | 6.36 |
水杉 MEGL | 0.70 | 0.56 | 0.44 | 3.04 | 2.42 | 1.92 |
蓝果树 NYSI | 0.92 | 0.63 | 0.53 | 3.96 | 2.73 | 2.30 |
灰叶稠李 PRGR | 0.60 | 0.30 | 0.19 | 2.61 | 1.28 | 0.83 |
大叶杨 POLA | 1.42 | 0.86 | 0.66 | 6.14 | 3.72 | 2.86 |
湖北枫杨 PTHU | 0.96 | 0.88 | 0.55 | 4.13 | 3.79 | 2.40 |
白辛树 PTPS | 1.36 | 0.75 | 0.66 | 5.89 | 3.25 | 2.85 |
瑶山梭罗 REGL | 1.47 | 1.22 | 0.85 | 6.35 | 5.28 | 3.67 |
檫木 SATZ | 3.70 | 2.01 | 1.69 | 16.00 | 8.68 | 7.32 |
瘿椒树 TASI | 0.30 | 0.23 | 0.18 | 1.32 | 0.98 | 0.77 |
粉椴 TIOL | 0.55 | 0.31 | 0.24 | 2.38 | 1.34 | 1.05 |
香椿 TOSI | 3.21 | 1.35 | 1.05 | 13.88 | 5.83 | 4.53 |
Table 3 Predicts of the time required to decompose 50% and 95% of the litter using the Olson model
物种 Species | t0.5 (年 year) | t0.95 (年 year) | ||||
---|---|---|---|---|---|---|
0.07 mm | 2 mm | 5 mm | 0.07 mm | 2 mm | 5 mm | |
七叶树 AECH | 3.25 | 2.63 | 1.92 | 14.06 | 11.37 | 8.30 |
华榛 COCH | 0.49 | 0.32 | 0.30 | 2.13 | 1.37 | 1.32 |
灯台树 COCO | 0.50 | 0.29 | 0.27 | 2.16 | 1.25 | 1.19 |
藏刺榛 COFE | 0.58 | 0.53 | 0.47 | 2.52 | 2.30 | 2.02 |
柳杉 CRJA | 2.93 | 1.78 | 1.29 | 12.67 | 7.71 | 5.57 |
珙桐 DAIN | 0.34 | 0.20 | 0.18 | 1.48 | 0.85 | 0.79 |
亮叶水青冈 FALU | 3.33 | 2.01 | 2.15 | 14.37 | 8.67 | 9.28 |
鹅掌楸 LICH | 0.69 | 0.35 | 0.33 | 2.97 | 1.53 | 1.44 |
红柴枝 MEOL | 2.17 | 1.61 | 1.47 | 9.38 | 6.95 | 6.36 |
水杉 MEGL | 0.70 | 0.56 | 0.44 | 3.04 | 2.42 | 1.92 |
蓝果树 NYSI | 0.92 | 0.63 | 0.53 | 3.96 | 2.73 | 2.30 |
灰叶稠李 PRGR | 0.60 | 0.30 | 0.19 | 2.61 | 1.28 | 0.83 |
大叶杨 POLA | 1.42 | 0.86 | 0.66 | 6.14 | 3.72 | 2.86 |
湖北枫杨 PTHU | 0.96 | 0.88 | 0.55 | 4.13 | 3.79 | 2.40 |
白辛树 PTPS | 1.36 | 0.75 | 0.66 | 5.89 | 3.25 | 2.85 |
瑶山梭罗 REGL | 1.47 | 1.22 | 0.85 | 6.35 | 5.28 | 3.67 |
檫木 SATZ | 3.70 | 2.01 | 1.69 | 16.00 | 8.68 | 7.32 |
瘿椒树 TASI | 0.30 | 0.23 | 0.18 | 1.32 | 0.98 | 0.77 |
粉椴 TIOL | 0.55 | 0.31 | 0.24 | 2.38 | 1.34 | 1.05 |
香椿 TOSI | 3.21 | 1.35 | 1.05 | 13.88 | 5.83 | 4.53 |
Fig. 3 Contribution of soil fauna to litter decomposition rate. Gray and black bars represent the contributions of macrofauna, and micro- and mesofauna to litter decomposition rate, respectively. Error bars represent the standard errors of soil fauna contribution. Species abbreviations are shown in Table 1.
Fig. 4 Effect of the leaf economics spectrum on soil fauna density and diversity. Panels represent the relationships between the leaf economics spectrum and different indicators of soil fauna community, including soil fauna density (a), richness (b), the Shannon-Wiener diversity index (c) and Gini-Simpson index (d).
Fig. 5 Relationship between indicators of soil fauna community and litter decomposition rate. The left panels show the relationship between litter decomposition rate and the soil fauna density (a), richness (c), the Shannon-Wiener diversity index (e) and Gini-Simpson index (g) in 2 mm mesh size bags; the right panels show the relationship between litter decomposition rate and the soil fauna density (b), richness (d), the Shannon-Wiener diversity index (f) and Gini-Simpson index (h) in 5 mm mesh size bags.
[1] | Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25, 473-483. |
[2] | Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biology and Biochemistry, 31, 1007-1014. |
[3] | Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE (2002) Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 99, 317-323. |
[4] | de la Riva EG, Prieto I, Villar R (2019) The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant and Soil, 435, 353-366. |
[5] | Dias ATC, Cornelissen JHC, Berg MP (2017) Litter for life: Assessing the multifunctional legacy of plant traits. Journal of Ecology, 105, 1163-1168. |
[6] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature, 529, 167-171. |
[7] | Felsenstein J (1985) Phylogenies and the comparative method. The American Naturalist, 125, 1-15. |
[8] | Freschet GT, Cornelissen JHC, Van Logtestijn RSP, Aerts R (2010) Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98, 362-373. |
[9] |
Fu SL (2018) Strengthening the research on soil fauna diversity and their ecological functions using novel technology and field experimental facility. Biodiversity Science, 26, 1031-1033. (in Chinese)
DOI |
[傅声雷 (2018) 利用新方法和野外实验平台加强土壤动物多样性及其生态功能的研究. 生物多样性, 26, 1031-1033.]
DOI |
|
[10] | Fujii S, Berg MP, Cornelissen JHC (2020) Living litter: Dynamic trait spectra predict fauna composition. Trends in Ecology & Evolution, 35, 886-896. |
[11] | Gan M (2023) Effects of Soil Fauna on Litter Decomposition in Loess Area of Northern Shaanxi. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. (in Chinese with English abstract) |
[甘淼 (2023) 土壤动物对陕北黄土区枯落物分解的影响研究. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[12] |
García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16, 1045-1053.
DOI PMID |
[13] | García-Palacios P, McKie BG, Handa IT, Frainer A, Hättenschwiler S (2016) The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30, 819-829. |
[14] | Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218-221. |
[15] | Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218. |
[16] | Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott ET, Moore JC, Rose SL, Reid CPP, Morley CR (1987) The detrital food web in a shortgrass prairie. Biology and Fertility of Soils, 3, 57-68. |
[17] | Jia BR (2019) Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 43, 648-657. (in Chinese with English abstract) |
[贾丙瑞 (2019) 凋落物分解及其影响机制. 植物生态学报, 43, 648-657.]
DOI |
|
[18] | Jiang YF (2013) Litter Decomposition and Functional Role of Soil Fauna in Decomposition in a Pinus koraiensis Mixed Broad-leaved Forest of Changbai Mountains. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract) |
[蒋云峰 (2013) 长白山针阔混交林主要凋落物分解及土壤动物的作用. 博士学位论文, 东北师范大学, 长春.] | |
[19] | Joly FX, Coq S, Coulis M, David JF, Hättenschwiler S, Mueller CW, Prater I, Subke JA (2020) Detritivore conversion of litter into faeces accelerates organic matter turnover. Communications Biology, 3, 660. |
[20] | Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biological Reviews, 84, 375-389. |
[21] | Lin YH, Yang DF, Zhang FD, Wang JX, Bai XL, Wang B (2006) Structure of soil animal community of oakery litter and fluctuation during leaf litter decomposition. Forest Research, 19, 331-336. (in Chinese with English abstract) |
[林英华, 杨德付, 张夫道, 王建修, 白秀兰, 王兵 (2006) 栎林凋落层土壤动物群落结构及其在凋落物分解中的变化. 林业科学研究, 19, 331-336.] | |
[22] | Lu ZJ (2011) Brief introduction of Badagong Mountain National Nature Reserve in Hunan Province. Biodiversity Science, 19, 271. (in Chinese) |
[卢志军 (2011) 湖南八大公山国家级自然保护区简介. 生物多样性, 19, 271.] | |
[23] | Lu ZJ, Bao DC, Guo YL, Lu JM, Wang QG, He D, Zhang KH, Xu YZ, Liu HB, Meng HJ, Huang HD, Wei XZ, Liao JX, Qiao XJ, Jiang MX, Gu ZR, Liao CL (2013) Community composition and structure of Badagongshan (BDGS) forest dynamic plot in a mid-subtropical mountain evergreen and deciduous broad-leaved mixed forest, Central China. Plant Science Journal, 31, 336-344. (in Chinese with English abstract) |
[卢志军, 鲍大川, 郭屹立, 路俊盟, 王庆刚, 何东, 张奎汉, 徐耀粘, 刘海波, 孟红杰, 黄汉东, 魏新增, 廖建雄, 乔秀娟, 江明喜, 谷志容, 廖春林 (2013) 八大公山中亚热带山地常绿落叶阔叶混交林物种组成与结构. 植物科学学报, 31, 336-344.] | |
[24] | Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, Hara R, Solymos P, Stevens M, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De CM, Durand S, Evangelista H, Fitz JR, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, Mcglinn D, Ouellette M, Ribeiro CE, Smith T, Stier A, Ter BC, Weedon J (2022) vegan: Community Ecology Package, R package version 2.6-4. https://CRAN.R-project.org/package=vegan. (accessed on 2024-03-16) |
[25] | Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[26] | Seastedt T (1984) The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29, 25-46. |
[27] | Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015) Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625. (in Chinese with English abstract) |
[邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015) 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.] | |
[28] | Tian XK (2020) Effects of Soil Fauna and Microbe in the Litter Decomposition Process of Four Subtropical Forests. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract) |
[田晓堃 (2020) 亚热带四种森林凋落物分解过程中土壤动物与微生物的影响. 博士学位论文, 中国林业科学研究院, 北京.] | |
[29] | Wang DJ, Xie WY, Lin XY, Li F, Deng CC, Zeng XY, Tan K, Yuan YP, Gu ZR, Jiang MX, Mao Z, Zuo J (2024) Multifaceted leaf litter traits shape soil fauna communities: Evidence from subtropical monocultural plantations. Forest Ecology and Management, 563, 121965. |
[30] | Wang SJ (2009) Effects of Soil Fauna on Leaf Litter Decomposition along an Elevation Gradient in the Wuyi Mountains. PhD dissertation, Nanjing Forestry University, Nanjing. (in Chinese with English abstract) |
[王邵军 (2009) 武夷山不同海拔土壤动物对凋落物分解的影响. 博士学位论文, 南京林业大学, 南京.] | |
[31] | Wardle D, Bonner KI, Barker G (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology, 16, 585-595. |
[32] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI PMID |
[33] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee TL, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[34] | Wu FZ, Tan B (2018) A review on the interactions between soil fauna and forest litter decomposition. Journal of Sichuan Agricultural University, 36, 569-575. (in Chinese with English abstract) |
[吴福忠, 谭波 (2018) 森林凋落物分解过程与土壤动物的相互关系研究进展. 四川农业大学学报, 36, 569-575.] | |
[35] | Xu X (2023) Effects of Soil Fauna on Leaf Litter Decomposition and Soil Respiration in Poplar Plantations. PhD dissertation, Nanjing Forestry University, Nanjing. (in Chinese with English abstract) |
[徐璇 (2023) 土壤动物对杨树人工林凋落叶分解和土壤呼吸的影响. 博士学位论文, 南京林业大学, 南京.] | |
[36] | Yan J, Wu JH (2018) Study advances in plant diversity effects on soil fauna. Soils, 50, 231-238. (in Chinese with English abstract) |
[严珺, 吴纪华 (2018) 植物多样性对土壤动物影响的研究进展. 土壤, 50, 231-238.] | |
[37] | Yang XD, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology and Biochemistry, 41, 910-918. |
[38] | Yin WY (1992) Subtropical Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (1992) 中国亚热带土壤动物. 科学出版社, 北京.] | |
[39] | Yin WY (1998) Pictorial Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[40] |
Yin XQ, Tao Y, Wang HX, Ma C, Kou XC, Xu H, Cui D (2018) Forest soil fauna ecology in Northeast China: Review and prospect. Biodiversity Science, 26, 1083-1090. (in Chinese with English abstract)
DOI |
[殷秀琴, 陶岩, 王海霞, 马辰, 寇新昌, 许还, 崔东 (2018) 我国东北森林土壤动物生态学研究现状与展望. 生物多样性, 26, 1083-1090.]
DOI |
|
[41] | Yue K, García-Palacios P, Parsons SA, Yang WQ, Peng Y, Tan B, Huang CP, Wu FZ (2018) Assessing the temporal dynamics of aquatic and terrestrial litter decomposition in an alpine forest. Functional Ecology, 32, 2464-2475. |
[42] |
Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, Classen AT, Eggleton P, Okada KI, Parr CL, …, Valverde-Barrantes OJ, van den Berg E, Ciska Veen GF, Vogel JG, Wardlaw TJ, Wiehl G, Wirth C, Woods MJ, Zalamea PC (2022) Termite sensitivity to temperature affects global wood decay rates. Science, 377, 1440-1444.
DOI PMID |
[43] | Zuo J, Hefting MM, Berg MP, van Hal J, Goudzwaard L, Liu JC, Sass-Klaassen U, Sterck FJ, Poorter L, Cornelissen JHC (2018) Is there a tree economics spectrum of decomposability? Soil Biology and Biochemistry, 119, 135-142. |
[1] | Jiachen Wang Tangjun Xu Wei Xu Gaoji Zhang Yijin You Honghua Ruan Hongyi Liu. Impact of urban landscape pattern on the genetic structure of Thereuopoda clunifera population in Nanjing, China [J]. Biodiv Sci, 2025, 33(1): 24251-0. |
[2] | Fan Li, Dangjun Wang, Xiaoyuan Lin, Kang Ji, Luping Ye, Chao Huang, Yong Zheng, Mao Zhun, Juan Zuo. Community characteristics of macroinvertebrates in woody debris in a subtropical forest in Badagongshan, China [J]. Biodiv Sci, 2022, 30(12): 21476-. |
[3] | Haifeng Yao, Saichao Zhang, Huayuan Shangguan, Zhipeng Li, Xin Sun. Effects of urbanization on soil fauna community structure and diversity [J]. Biodiv Sci, 2022, 30(12): 22547-. |
[4] | Jianwei Cheng, Yadong Wang, Yanan Wang, Ying Li, Ying Guo, Zheng Bai, Xinmin Liu, Frank Yonghong Li. Effects of soil macro- and meso-fauna on the decomposition of cattle and horse dung pats in a semi-arid steppe [J]. Biodiv Sci, 2022, 30(12): 22575-. |
[5] | Siyao Liu, Zhu Li, Xin Ke, Lina Sun, Longhua Wu, Jiejie Zhao. Community characteristics of soil collembola around a typical mercury-thallium mining area in Guizhou Province [J]. Biodiv Sci, 2022, 30(12): 22265-. |
[6] | Shenglei Fu, Manqiang Liu, Weixin Zhang, Yuanhu Shao. A review of recent advances in the study of geographical distribution and ecological functions of soil fauna diversity [J]. Biodiv Sci, 2022, 30(10): 22435-. |
[7] | Mengke Jia,Yili Guo,Dongxing Li,Bin Wang,Wusheng Xiang,Ailong Wang,Shengyuan Liu,Tao Ding,Fuzhao Huang,Shujun Wen,Shuhua Lu,Xiankun Li. Spatio-temporal dynamics of leaf litter in a karst seasonal rainforest in southwest Guangxi [J]. Biodiv Sci, 2020, 28(4): 455-462. |
[8] | Yu Zhang, Zhenggao Xiao, Linhui Jiang, Lei Qian, Xiaoyun Chen, Fajun Chen, Feng Hu, Manqiang Liu. Nitrogen levels modify earthworm-mediated tomato growth and resistance to pests [J]. Biodiv Sci, 2018, 26(12): 1296-1307. |
[9] | Yining Wu, He Wang, Haixiu Zhong, Nan Xu, Jinbo Li, Jifeng Wang, Hongwei Ni, Hongfei Zou. The response of diverse soil fauna communities to elevated CO2 concentrations in Sanjiang Plain [J]. Biodiv Sci, 2018, 26(10): 1127-1132. |
[10] | Xiuqin Yin, Yan Tao, Haixia Wang, Chen Ma, Xinchang Kou, Huan Xu, Dong Cui. Forest soil fauna ecology in Northeast China: Review and prospect [J]. Biodiv Sci, 2018, 26(10): 1083-1090. |
[11] | Mengru Wang, Shenglei Fu, Haixiang Xu, Meina Wang, Leilei Shi. Ecological functions of millipedes in the terrestrial ecosystem [J]. Biodiv Sci, 2018, 26(10): 1051-1059. |
[12] | Shanshan Li, Zhengwen Wang, Junjie Yang. Changes in soil microbial communities during litter decomposition [J]. Biodiv Sci, 2016, 24(2): 195-204. |
[13] | Zhizhong Yuan, Yang Cui, Shaokui Yan. Effect of leaf litter quantity and type on forest soil fauna and biological quality [J]. Biodiv Sci, 2013, 21(2): 206-213. |
[14] | Yongheng Zhu, Xiaohui Zhang, Fei Shen, Lin Lu. Community structures of soil fauna in reclaimed copper mine tailings and suburb forest land [J]. Biodiv Sci, 2012, 20(6): 725-734. |
[15] | Haifeng Zhuang, Yue Sun, Jiacun Gu, Yang Xu, Zhengquan Wang. Effects of nitrogen addition on soil fauna communities in Larix gmelinii and Fraxinus mandshuricaplantations [J]. Biodiv Sci, 2010, 18(4): 390-397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn