Biodiv Sci ›› 2023, Vol. 31 ›› Issue (12): 23363. DOI: 10.17520/biods.2023363
• Special Feature: Sino BON Tenth Anniversary • Previous Articles Next Articles
Liang Song1,*(), Yi Wu1, Haixia Hu1,2, Wenyao Liu1, Akihiro Nakamura1, Yajun Chen1, Keping Ma3
Received:
2023-09-26
Accepted:
2023-10-31
Online:
2023-12-20
Published:
2023-11-30
Contact:
E-mail: About author:
First author contact:#Co-first authors
Liang Song, Yi Wu, Haixia Hu, Wenyao Liu, Akihiro Nakamura, Yajun Chen, Keping Ma. Research progress and prospects of forest canopy science based on canopy cranes[J]. Biodiv Sci, 2023, 31(12): 23363.
Fig. 1 Tower crane applied in the study of forest canopies. (A) Panorama view of the rainforest canopy at the crane site in Bubeng in Xishuangbanna, Southwest China; (B) The canopy crane can allow repeatable, safe, non-destructive visit in anywhere of the forest canopy; (C) The staff in the gondola were sampling in the dipterocarp forest canopy.
时间 Time | 林冠访问工具 Tools | 人物 People | 地点 Location | 基本特征 Characteristics | 参考文献 Reference |
---|---|---|---|---|---|
1878 | 望远镜 Telescope | Alfred R. Wallace | 基于地面对林冠的初步认知 Preliminary understanding of forest canopy based on ground observation | Lowman, | |
1926 | 长梯 Spike ladder | W. C. Allee | 巴拿马巴罗科罗拉多岛 Panama Barro Colorado Island (BCI) | 实测林冠垂直梯度的小气候 Measuring vertical gradient microclimate of the forest canopy | Hingston, |
1929 | 抛绳枪 + 观察座椅 Line throwing gun and observation chair | R. W. G. Hingston | 英属圭亚那 British Guyana | 研究林冠昆虫、鸟类及哺乳类生物 Study on canopy insects, birds and mammals | Hingston, |
1958 | 林冠铁塔 High tower | 乌干达Mpanga森林保护区 Uganda Mpanga Forest Reserve | 研究热带雨林内温湿度垂直梯度和昆虫多样性 Study on temperature and humidity and insect diversity along the vertical gradient of tropical rainforests | Haddow et al, | |
1968 | 林冠走廊 Canopy walkway | Ilar Muul | 马来西亚 Malaysia | 研究热带雨林中动物传播疾病及其对军队的影响。截至2009年, 全球有51座林冠走廊 Study of animal-borne diseases in tropical rainforests and their impacts on the military. Until | Muul & Liat, Lowman, Ramlan et al, |
1978 | 单绳攀爬技术 Single rope technique | Donald R. Perry | 哥斯达黎加La Selva生态站 La Selva Biological Station, Costa Rica | 研究散生巨树生态学 Study on the ecology of emergent and canopy trees | Perry, |
1981 | 林冠吊杆 Canopy boom | Peter Ashton | 马来西亚巴索森林保护区 Malaysia Pasoh Forest Reserve | 研究龙脑香植物传粉生物学 Study on pollination biology of dipterocarp plants | Lowman, |
1982 | 林冠喷雾设备 Canopy fogging apparatus | Terry Erwin | 巴拿马巴罗科罗拉多岛 Panama BCI | 研究热带森林的林冠昆虫多样性 Studying canopy insect diversity in tropical forests | Erwin, |
1986 | 飞艇(热气球) + 林冠筏等系列外挂设备 Airship (hot-air balloon), canopy raft and other external equipment | Francis Hallé, Gilles Ebersolt | 法属圭亚那(1986、1989、1996)、喀麦隆(1991)、加蓬(1999)、马达加斯加(2001)、巴拿马BCI ( | 外层林冠(林冠-大气交互面), 可一次性搭载74名科学家在林冠层开展工作 Studying outer canopies (canopy- atmospheric interface), which can carry 74 scientists to work in the canopy at a time | Opération Canopée http://www.radeau-des-cimes.org/?lang=en; Mitchell et al, |
1990 | 林冠塔吊 Canopy crane | Alan Smith | 截至2023年, 全球共建成22座林冠塔吊(3座已停运), 其中7座位于热带森林 Until | 依托塔吊先后开展了IBISCA、FACE、TCBP等林冠研究计划 Canopy research programs such as IBISCA, FACE, and TCBP have been carried out successively using canopy cranes | 吴毅等, |
2001 | Biotopia研究中心(构想) Biotopia Research Center (conceptual idea) | Andrew Mitchell | 集成塔吊、走廊、林冠筏、铁塔、单绳等各种工具为一体 Canopy access techniques including crane, walkway, craft, tower, and single rope technique were combined | Stork & Best, | |
2014 | 林冠研究永久访问系统 Canopy Operation Permanent Access System (COPAS) | G. Gottsberger | 法属圭亚那Nouragues生态站Nouragues Ecology Station, French Guyana | 3座45 m高的铁塔, 通过缆绳连接, 构成边长为180 m的等边三角形, 覆盖森林面积1.4 ha Three 45 m high towers, connected by cables, form an equilateral triangle with a side length of 180 m, covering a forest area of 1.4 ha | Basset et al, http://www.nouragues.cnrs.fr/spip.php?rubrique4 |
2015 | 无人机和激光雷达 Drones and light detection and ranging (LiDAR) | Greg Asner, Roberta Martin | 美国亚利桑那州立大学 Arizona State University, USA | 结合激光雷达(LiDAR)与高保真成像光谱(HiFIS), 通过计算森林冠层含水量的损失来量化干旱程度 Combined with LiDAR and HiFIS, the degree of drought was quantified by calculating the loss of forest canopy water content | Asner et al, |
Table1 The chronological progress of the forest canopy access techniques
时间 Time | 林冠访问工具 Tools | 人物 People | 地点 Location | 基本特征 Characteristics | 参考文献 Reference |
---|---|---|---|---|---|
1878 | 望远镜 Telescope | Alfred R. Wallace | 基于地面对林冠的初步认知 Preliminary understanding of forest canopy based on ground observation | Lowman, | |
1926 | 长梯 Spike ladder | W. C. Allee | 巴拿马巴罗科罗拉多岛 Panama Barro Colorado Island (BCI) | 实测林冠垂直梯度的小气候 Measuring vertical gradient microclimate of the forest canopy | Hingston, |
1929 | 抛绳枪 + 观察座椅 Line throwing gun and observation chair | R. W. G. Hingston | 英属圭亚那 British Guyana | 研究林冠昆虫、鸟类及哺乳类生物 Study on canopy insects, birds and mammals | Hingston, |
1958 | 林冠铁塔 High tower | 乌干达Mpanga森林保护区 Uganda Mpanga Forest Reserve | 研究热带雨林内温湿度垂直梯度和昆虫多样性 Study on temperature and humidity and insect diversity along the vertical gradient of tropical rainforests | Haddow et al, | |
1968 | 林冠走廊 Canopy walkway | Ilar Muul | 马来西亚 Malaysia | 研究热带雨林中动物传播疾病及其对军队的影响。截至2009年, 全球有51座林冠走廊 Study of animal-borne diseases in tropical rainforests and their impacts on the military. Until | Muul & Liat, Lowman, Ramlan et al, |
1978 | 单绳攀爬技术 Single rope technique | Donald R. Perry | 哥斯达黎加La Selva生态站 La Selva Biological Station, Costa Rica | 研究散生巨树生态学 Study on the ecology of emergent and canopy trees | Perry, |
1981 | 林冠吊杆 Canopy boom | Peter Ashton | 马来西亚巴索森林保护区 Malaysia Pasoh Forest Reserve | 研究龙脑香植物传粉生物学 Study on pollination biology of dipterocarp plants | Lowman, |
1982 | 林冠喷雾设备 Canopy fogging apparatus | Terry Erwin | 巴拿马巴罗科罗拉多岛 Panama BCI | 研究热带森林的林冠昆虫多样性 Studying canopy insect diversity in tropical forests | Erwin, |
1986 | 飞艇(热气球) + 林冠筏等系列外挂设备 Airship (hot-air balloon), canopy raft and other external equipment | Francis Hallé, Gilles Ebersolt | 法属圭亚那(1986、1989、1996)、喀麦隆(1991)、加蓬(1999)、马达加斯加(2001)、巴拿马BCI ( | 外层林冠(林冠-大气交互面), 可一次性搭载74名科学家在林冠层开展工作 Studying outer canopies (canopy- atmospheric interface), which can carry 74 scientists to work in the canopy at a time | Opération Canopée http://www.radeau-des-cimes.org/?lang=en; Mitchell et al, |
1990 | 林冠塔吊 Canopy crane | Alan Smith | 截至2023年, 全球共建成22座林冠塔吊(3座已停运), 其中7座位于热带森林 Until | 依托塔吊先后开展了IBISCA、FACE、TCBP等林冠研究计划 Canopy research programs such as IBISCA, FACE, and TCBP have been carried out successively using canopy cranes | 吴毅等, |
2001 | Biotopia研究中心(构想) Biotopia Research Center (conceptual idea) | Andrew Mitchell | 集成塔吊、走廊、林冠筏、铁塔、单绳等各种工具为一体 Canopy access techniques including crane, walkway, craft, tower, and single rope technique were combined | Stork & Best, | |
2014 | 林冠研究永久访问系统 Canopy Operation Permanent Access System (COPAS) | G. Gottsberger | 法属圭亚那Nouragues生态站Nouragues Ecology Station, French Guyana | 3座45 m高的铁塔, 通过缆绳连接, 构成边长为180 m的等边三角形, 覆盖森林面积1.4 ha Three 45 m high towers, connected by cables, form an equilateral triangle with a side length of 180 m, covering a forest area of 1.4 ha | Basset et al, http://www.nouragues.cnrs.fr/spip.php?rubrique4 |
2015 | 无人机和激光雷达 Drones and light detection and ranging (LiDAR) | Greg Asner, Roberta Martin | 美国亚利桑那州立大学 Arizona State University, USA | 结合激光雷达(LiDAR)与高保真成像光谱(HiFIS), 通过计算森林冠层含水量的损失来量化干旱程度 Combined with LiDAR and HiFIS, the degree of drought was quantified by calculating the loss of forest canopy water content | Asner et al, |
[1] | Anhuf D, Winkler H (1999) Geographical and ecological settings of the Surumoni-crane-project (Upper Orinoco, Estado Amazonas, Venezuela). Anzeiger Abt. I, 135, 3-23. |
[2] | Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE (2016) Progressive forest canopy water loss during the 2012-2015 California drought. Proceedings of the National Academy of Sciences, USA, 113, E249-E255. |
[3] |
Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F, Vaughn NR, Llactayo W (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355, 385-389.
DOI PMID |
[4] |
Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C (2013) Central European hardwood trees in a high-CO2 future: Synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology, 101, 1509-1519.
DOI URL |
[5] |
Bader MKF, Siegwolf R, Körner C (2010) Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. Planta, 232, 1115-1125.
DOI URL |
[6] |
Barker MG, Sutton SL (1997) Low‐tech methods for forest canopy access. Biotropica, 29, 243-247.
DOI URL |
[7] |
Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, da Rocha WD, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science, 338, 1481-1484.
DOI PMID |
[8] | Basset Y, Cizek L, Cuénoud P, Didham RK, Novotny V, Ødegaard F, Roslin T, Tishechkin AK, Schmidl J, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, da Rocha WD, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Lewinsohn TM, Leponce M (2015) Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS ONE, 10, e0144110. |
[9] | Basset Y, Corbara B, Barrios H, Cuénoud P, Leponce M, Aberlenc H, Bail J, Bito D, Bridle J, Meneses GC, Čížek L, Remice AC, Curletti G, Delabie J, Dejean A, Didham R, Dufrêne M, Fagan L, Floren A, Frame D, Hallé F, Hardy O, Hernández A, Kitching R, Lewinsohn T, Lewis O, Manumbor M, Medianero E, Missa O, Mitchell A, Mogia M, Novotný V, Ødegaard F, Oliveira EG, Orivel J, Ozanne C, Pascal O, Pinzon S, Rapp M, Ribeiro S, Roisin Y, Roslin T, Roubik D, Samaniego M, Schmidl J, Sørensen LL, Tishechkin A, Osselaer CV, Winchester N (2007) IBISCA-Panama, a large-scale study of arthropod beta-diversity and vertical stratification in a lowland rainforest: Rationale, study sites and field protocols. Bulletin of the Institute of Entomology, Royal Belgian Academy of Natural Sciences, 77, 39-69. |
[10] | Basset Y, Horlyck V, Wright SJ (2003) Studying Forest Canopies from Above:The International Canopy Crane Network. United Nations Environmental Programme. Smithsonian Tropical Research Institute and UNEP, New York. |
[11] | Batke S (2012) Epiphytes: A study of the history of forest canopy research. The Plymouth Student Scientist, 5, 253-268. |
[12] | Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253. |
[13] |
Cernusak LA, Winter K, Dalling JW, Holtum JAM, Jaramillo C, Korner C, Leakey ADB, Norby RJ, Poulter B, Turner BL, Wright SJ (2013) Tropical forest responses to increasing atmospheric CO2: Current knowledge and opportunities for future research. Functional Plant Biology, 40, 531-551.
DOI PMID |
[14] |
Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: A literature review. Journal of Plant Research, 126, 447-460.
DOI PMID |
[15] | Corlett RT, Primack RB (2011) Tropical Rain Forests: An Ecological and Biogeographical Comparison, 2nd edn, Wiley-Blackwell, Chichester. |
[16] |
Crous KY, Cheesman AW, Middleby K, Rogers EIE, Wujeska-Klause A, Bouet AYM, Ellsworth DS, Liddell MJ, Cernusak LA, Barton CVM (2023) Similar patterns of leaf temperatures and thermal acclimation to warming in temperate and tropical tree canopies. Tree Physiology, 43, 1383-1399.
DOI URL |
[17] | Devy MS, Ganesh T (2003) Canopy science and its relevance in India. Current Science, 85, 581-584. |
[18] | Didham RK, Fagan LL (2003) Project IBISCA—Investigating the biodiversity of soil and canopy arthropods. The Weta, 26, 1-6. |
[19] | Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences, USA, 105, 12069-12074. |
[20] |
Ellsworth DS, Anderson IC, Crous KY, Cooke J, Drake JE, Gherlenda AN, Gimeno TE, MacDonald CA, Medlyn BE, Powell JR (2017) Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nature Climate Change, 7, 279-282.
DOI |
[21] |
Erwin TL (1983) Tropical forest canopies: The last biotic frontier. Bulletin of the Entomological Society of America, 29, 14-20.
DOI URL |
[22] | Facey SL, Fidler DB, Rowe RC, Bromfield LM, Nooten SS, Staley JT, Ellsworth DS, Johnson SN (2017) Atmospheric change causes declines in woodland arthropods and impacts specific trophic groups. Agricultural and Forest Entomology, 19, 101-112. |
[23] |
Gherlenda AN, Crous KY, Moore BD, Haigh AM, Johnson SN, Riegler M (2016) Precipitation, not CO2 enrichment, drives insect herbivore frass deposition and subsequent nutrient dynamics in a mature Eucalyptus woodland. Plant and Soil, 399, 29-39.
DOI URL |
[24] |
Gotsch SG, Nadkarni N, Amici A (2016) The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, 32, 455-468.
DOI URL |
[25] |
Grushka MM, Adams J, Lowman M, Lin GH, Marino BDV (1999) The Biosphere 2 canopy access system. Ecological Engineering, 13, 313-320.
DOI URL |
[26] |
Haddow AJ, Corbet PS (1961) Entomological studies from a high tower in Mpanga forest, Uganda. Transactions of the Royal Entomological Society of London, 113, 284-300.
DOI URL |
[27] |
Hasegawa S, MacDonald CA, Power SA (2016) Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. Global Change Biology, 22, 1628-1643.
DOI PMID |
[28] | Hines S, Richardson S (2011) Era of canopy crane ending; Certain research and education activities remain. What’s Up? 17, 2. |
[29] |
Hingston RWG (1930) The Oxford University Expedition to British Guiana. Geographical Journal, 76, 1-20.
DOI URL |
[30] | Hopkin M (2005) Biodiversity and climate form focus of forest canopy plan. Nature, 436, 452. |
[31] |
Hosaka T, Yumoto T, Chen YY, Sun IF, Wright SJ, Noor NSM (2011) Abundance of insect seed predators and intensity of seed predation on Shorea (Dipterocarpaceae) in two consecutive masting events in Peninsular Malaysia. Journal of Tropical Ecology, 27, 651-655.
DOI URL |
[32] |
Hu HX, Mo YX, Shen T, Wu Y, Shi XM, Ai YY, Lu HZ, Zakari S, Li S, Song L (2022) Simulated high-intensity phorophyte removal mitigates the robustness of epiphyte community and destroys commensal network structure. Forest Ecology and Management, 526, 120586.
DOI URL |
[33] |
Hu HX, Shen T, Quan DL, Nakamura A, Song L (2021) Structuring interaction networks between epiphytic bryophytes and their hosts in Yunnan, SW China. Frontiers in Forests and Global Change, 4, 716278.
DOI URL |
[34] | Inoue T, Yumoto T, Hamid AA, Seng LH, Ogino K (1995) Construction of a canopy observation system in a tropical rainforest of Sarawak. Selbyana, 16, 100-111. |
[35] |
Kitching RL (2006) Crafting the pieces of the diversity jigsaw puzzle. Science, 313, 1055-1057.
PMID |
[36] |
Klein T, Siegwolf RTW, Körner C (2016) Belowground carbon trade among tall trees in a temperate forest. Science, 352, 342-344.
DOI PMID |
[37] |
Körner C (2009) Responses of humid tropical trees to rising CO2. Annual Review of Ecology, Evolution, and Systematics, 40, 61-79.
DOI URL |
[38] |
Körner C, Asshoff R, Bignucolo O, Hättenschwiler S, Keel SG, Peláez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 309, 1360-1362.
PMID |
[39] |
Leponce M, Corbara B, Delabie JHC, Orivel J, Aberlenc HP, Bail J, Barrios H, Campos RI, do Nascimento IC, Compin A, Didham RK, Floren A, Medianero E, Ribeiro SP, Roisin Y, Schmidl J, Tishechkin AK, Winchester NN, Basset Y, Dejean A (2021) Spatial and functional structure of an entire ant assemblage in a lowland Panamanian rainforest. Basic and Applied Ecology, 56, 32-44.
DOI URL |
[40] | Linsenmair KE, Davis AJ, Fiala B, Speight MR (2001) Tropical Forest Canopies: Ecology and Management. Springer, Dordrecht. |
[41] |
Liu WY, Ma WZ, Yang LP (2006) Advances in ecological studies on epiphytes in forest canopies. Chinese Journal of Plant Ecology, 30, 522-533. (in Chinese with English abstract)
DOI URL |
[刘文耀, 马文章, 杨礼攀 (2006) 林冠附生植物生态学研究进展. 植物生态学报, 30, 522-533.]
DOI |
|
[42] |
Lowman MD (1984) An assessment of techniques for measuring herbivory: Is rainforest defoliation more intense than we thought? Biotropica, 16, 264-268.
DOI URL |
[43] | Lowman MD (2009) Canopy research in the twenty-first century: A review of arboreal ecology. Tropical Ecology, 50, 125-136. |
[44] |
Lowman MD (2020) Life in the treetops—An overview of forest canopy science and its future directions. Plants, People, Planet, 3, 16-21.
DOI URL |
[45] | Lowman MD, Devy S, Ganesh T (2013) Treetops at Risk: Challenges of Global Canopy Ecology and Conservation. Springer, New York. |
[46] |
Lowman MD, Moffett M (1993) The ecology of tropical rain forest canopies. Trends in Ecology & Evolution, 8, 104-107.
DOI URL |
[47] | Lowman MD, Nadkarni NM (1995) Forest Canopies. Academic Press, San Diego. |
[48] | Lowman MD, Rinker HB (2004) Forest Canopies, 2nd edn. Elsevier Academic Press, London. |
[49] |
Lowman MD, Schowalter TD (2012) Plant science in forest canopies—The first 30 years of advances and challenges (1980-2010). New Phytologist, 194, 12-27.
DOI URL |
[50] | Lowman MD, Schowalter TD, Franklin JF (2012) Methods in Forest Canopy Research. University of California Press, Oakland. |
[51] |
Ma KP (2014) Rapid development of biodiversity informatics in China. Biodiversity Science, 22, 251-252. (in Chinese)
DOI |
[马克平 (2014) 生物多样性信息学在中国快速发展. 生物多样性, 22, 251-252.]
DOI |
|
[52] |
Ma KP (2015) Biodiversity monitoring in China: From CForBio to Sino BON. Biodiversity Science, 23, 1-2. (in Chinese)
DOI |
[马克平 (2015) 中国生物多样性监测网络建设:从CForBio到Sino BON. 生物多样性, 23, 1-2.]
DOI |
|
[53] |
Ma KP (2016) Hot topics for biodiversity science. Biodiversity Science, 24, 1-2. (in Chinese)
DOI |
[马克平 (2016) 生物多样性科学的热点问题. 生物多样性, 24, 1-2.]
DOI |
|
[54] |
Midgley JJ (2003) Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends in Ecology & Evolution, 18, 5-6.
DOI URL |
[55] |
Mitchell A (2001) Introduction—Canopy science: Time to shape up. Plant Ecology, 153, 5-11.
DOI URL |
[56] | Mitchell AW, Secoy K, Jackson T (2002) The Global Canopy Handbook:Techniques of Access and Study in the Forest Roof. University of Oxford, Oxford. |
[57] |
Moffett MW (2000) What’s “Up”? A critical look at the basic terms of canopy biology. Biotropica, 32, 569-596.
DOI URL |
[58] |
Monteiro JAF, Zotz G, Körner C (2009) Tropical epiphytes in a CO2-rich atmosphere. Acta Oecologica, 35, 60-68.
DOI URL |
[59] | Morawetz W (2001) The Surumoni Project:The botanical approach toward gaining an interdisciplinary understanding of the functions of the rain forest canopy. In: Biodiversity (eds Barthlott W, Winiger M, Biedinger N), pp. 71-80. Springer, Berlin. |
[60] |
Muul I, Liat LB (1970) Vertical zonation in a tropical rain forest in Malaysia: Method of study. Science, 169, 788-789.
PMID |
[61] |
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
DOI |
[62] |
Nadkarni NM (1981) Canopy roots: Convergent evolution in rainforest nutrient cycles. Science, 214, 1023-1024.
PMID |
[63] |
Nadkarni NM (1984) Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica, 16, 249-256.
DOI URL |
[64] | Nadkarni NM, Parker GG, Ford ED, Cushing JB, Stallman C (1996) The international canopy network: A pathway for interdisciplinary exchange of scientific information on forest canopies. Northwest Science, 70, 104-108. |
[65] |
Nadkarni NM, Parker GG, Lowman MD (2011) Forest canopy studies as an emerging field of science. Annals of Forest Science, 68, 217-224.
DOI URL |
[66] | Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, Hewitt CN, Itioka T, Koh LP, Ma KP, Malhi Y, Mitchell A, Novotny V, Ozanne CMP, Song L, Wang H, Ashton LA (2017) Forests and their canopies: Achievements and horizons in canopy science. Trends in Ecology & Evolution, 32, 438-451. |
[67] |
Nakamura M, Makoto K, Tanaka M, Inoue T, Son Y, Hiura T (2016) Leaf flushing and shedding, bud and flower production, and stem elongation in tall birch trees subjected to increases in aboveground temperature. Trees, 30, 1535-1541.
DOI URL |
[68] |
Nakamura M, Muller O, Tayanagi S, Nakaji T, Hiura T (2010) Experimental branch warming alters tall tree leaf phenology and acorn production. Agricultural and Forest Meteorology, 150, 1026-1029.
DOI URL |
[69] |
Nakamura M, Nakaji T, Muller O, Hiura T (2015) Different initial responses of the canopy herbivory rate in mature oak trees to experimental soil and branch warming in a soil-freezing area. Oikos, 124, 1071-1077.
DOI URL |
[70] |
Norby RJ, De Kauwe MG, Domingues TF, Duursma RA, Ellsworth DS, Goll DS, Lapola DM, Luus KA, MacKenzie AR, Medlyn BE, Pavlick R, Rammig A, Smith B, Thomas R, Thonicke K, Walker AP, Yang XJ, Zaehle S (2016) Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 209, 17-28.
DOI URL |
[71] | Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science, 313, 1115-1118. |
[72] | Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2007) Response to comment on “Why are there so many species of herbivorous insects in tropical rainforests?”. Science, 315, 1666. |
[73] |
Ochoa-Hueso R, Hughes J, Delgado-Baquerizo M, Drake JE, Tjoelker MG, Piñeiro J, Power SA (2017) Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO2 in a mature Eucalyptus woodland. Plant and Soil, 416, 283-295.
DOI |
[74] | Opération Canopée (2015) Pertinence of the Study of Forest Canopies for the Conservation of Biodiversity in the Indo-Burma Hotspot. http://www.radeau-des-cimes.org/wp-content/uploads/2016/06/OperationCanopee_IndoBurmaPertinence_ENG_Reduced.pdf. (accessed on 2023-09-26) |
[75] |
Osada N (2021) Differential springtime branch warming controls intra-crown nitrogen allocation and leaf photosynthetic traits in understory saplings of a temperate deciduous species. Oecologia, 196, 331-340.
DOI PMID |
[76] |
Ozanne CMP, Anhuf D, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PL, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: A global view of forest canopies. Science, 301, 183-186.
DOI PMID |
[77] |
Parker GG, Smith AP, Hogan KP (1992) Access to the upper forest canopy with a large tower crane. BioScience, 42, 664-670.
DOI URL |
[78] | Peng SL, Ren H (2002) Promoting sustainable development of forestry through forest canopy research—Introduction to the 3rd International Canopy Conference. Acta Ecologica Sinica, 22, 1371-1372. (in Chinese) |
[彭少麟, 任海 (2002) 通过森林冠层研究促进林业可持续发展——第3届国际冠层大会介绍. 生态学报, 22, 1371-1372.] | |
[79] |
Pepin S, Körner C (2002) Web-FACE: A new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia, 133, 1-9.
DOI URL |
[80] |
Perry DR (1978) A method of access into the crowns of emergent and canopy trees. Biotropica, 10, 155-157.
DOI URL |
[81] |
Pihlblad J, Andresen LC, MacDonald CA, Ellsworth DS, Carrillo Y (2023) The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland. Biogeosciences, 20, 505-521.
DOI URL |
[82] | Ramlan MA, Aziz A, Yahya NA, Kadir AA, Yacob MR (2012) Potential of canopy tourism in Malaysia. Malaysian Forester, 75, 87-96. |
[83] |
Ribeiro SP, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography, 30, 663-672.
DOI URL |
[84] |
Ribeiro SP, Basset Y (2016) Effects of sclerophylly and host choice on gall densities and herbivory distribution in an Australian subtropical forest. Austral Ecology, 41, 219-226.
DOI URL |
[85] |
Roisin Y, Dejean A, Corbara B, Orivel J, Samaniego M, Leponce M (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia, 149, 301-311.
PMID |
[86] |
Roslin T (2003) Not so quiet on the high frontier. Trends in Ecology & Evolution, 18, 376-379.
DOI URL |
[87] |
Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake TC, Cameron EK, Dáttilo W, Donoso DA, Drozd P, Gray CL, Hik DS, Hill SJ, Hopkins T, Huang S, Koane B, Koane B, Laird-Hopkins B, Laukkanen L, Lewis OT, Milne S, Mwesige I, Nakamura A, Nell CS, Nichols E, Prokurat A, Sam K, Schmidt NM, Slade A, Slade V, Suchanková A, Teder T, van Nouhuys S, Vandvik V, Weissflog A, Zhukovich V, Slade EM (2017) Higher predation risk for insect prey at low latitudes and elevations. Science, 356, 742-744.
DOI PMID |
[88] | Roubik DW, Sakai S, Karim AAH (2005) Pollination Ecology and the Rain Forest: Sarawak Studies Springer, New York. |
[89] |
Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant, Cell and Environment, 29, 367-381.
DOI URL |
[90] |
Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242.
DOI URL |
[91] |
Sabot MEB, De Kauwe MG, Pitman AJ, Ellsworth DS, Medlyn BE, Caldararu S, Zaehle S, Crous KY, Gimeno TE, Wujeska-Klause A, Mu MY, Yang JY (2022) Predicting resilience through the lens of competing adjustments to vegetation function. Plant, Cell and Environment, 45, 2744-2761.
DOI URL |
[92] |
Sakai S (2002) General flowering in lowland mixed dipterocarp forests of South-east Asia. Biological Journal of the Linnean Society, 75, 233-247.
DOI URL |
[93] |
Sakai S, Momose K, Yumoto T, Nagamitsu T, Nagamasu H, Hamid AA, Nakashizuka T (1999) Plant reproductive phenology over four years including an episode of general flowering in a lowland dipterocarp forest, Sarawak, Malaysia. American Journal of Botany, 86, 1414-1436.
PMID |
[94] | Sapp J (2016) Coexistence:The Ecology and Evolution of Tropical Biodiversity. Oxford University Press, Oxford. |
[95] | Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016) The broad footprint of climate change from genes to biomes to people. Science, 354, aaf7671. |
[96] |
Schleppi P, Körner C, Klein T (2019) Increased nitrogen availability in the soil under mature Picea abies trees exposed to elevated CO2 concentrations. Frontiers in Forests and Global Change, 2, 00059.
DOI URL |
[97] |
Shaw D, Greene S (2003) Wind river canopy crane research facility and wind river experimental forest. Bulletin of the Ecological Society of America, 84, 115-121.
DOI URL |
[98] |
Shen H, Cai JN, Li MJ, Chen Q, Ye WH, Wang ZF, Lian JY, Song L (2017) On Chinese forest canopy biodiversity monitoring. Biodiversity Science, 25, 229-236. (in Chinese with English abstract)
DOI |
[沈浩, 蔡佳宁, 李萌姣, 陈青, 叶万辉, 王峥峰, 练琚愉, 宋亮 (2017) 中国森林冠层生物多样性监测. 生物多样性, 25, 229-236.]
DOI |
|
[99] | Shen T, Corlett RT, Collart F, Kasprzyk T, Guo XL, Patiño J, Su Y, Hardy OJ, Ma WZ, Wang J, Wei YM, Mouton L, Li Y, Song L, Vanderpoorten A (2022a) Microclimatic variation in tropical canopies: A glimpse into the processes of community assembly in epiphytic bryophyte communities. Journal of Ecology, 12, 3023-3038. |
[100] |
Shen T, Corlett RT, Song L, Ma WZ, Guo XL, Song Y, Wu Y (2018) Vertical gradient in bryophyte diversity and species composition in tropical and subtropical forests in Yunnan, SW China. Journal of Vegetation Science, 29, 1075-1087.
DOI URL |
[101] |
Shen T, Song L, Collart F, Guisan A, Su Y, Hu HX, Wu Y, Dong JL, Vanderpoorten A (2022b) What makes a good phorophyte? Predicting occupancy, species richness and abundance of vascular epiphytes in a lowland seasonal tropical forest. Frontiers in Forests and Global Change, 5, 1007473.
DOI URL |
[102] |
Shen T, Song L, Corlett RT, Guisan A, Wang J, Ma WZ, Mouton L, Vanderpoorten A, Collart F (2023) Disentangling the roles of chance, abiotic factors and biotic interactions among epiphytic bryophyte communities in a tropical rainforest (Yunnan, China). Plant Biology, 25, 880-891.
DOI PMID |
[103] | Sievert R, Jaffe R, Morawetz W (2007) Comparing the ant fauna in a tropical and a temperate forest canopy. Ecotropicos, 20, 74-81. |
[104] |
Stork NE (2005) Canopy science. Trends in Ecology & Evolution, 20, 284-284.
DOI URL |
[105] |
Stork NE (2007a) Australian tropical forest canopy crane: New tools for new frontiers. Austral Ecology, 32, 4-9.
DOI URL |
[106] |
Stork NE (2007b) Dynamics and processes in the canopy of an Australian tropical rainforest. Austral Ecology, 32, 2-3.
DOI URL |
[107] | Stork NE, Best V (1994) European science foundation—Results of a survey of European canopy research in the tropics. Selbyana, 15, 51-62. |
[108] |
Stork NE, Grimbacher PS, Storey R, Oberprieler RG, Reid C, Slipinski SA (2008) What determines whether a species of insect is described? Evidence from a study of tropical forest beetles. Insect Conservation and Diversity, 1, 114-119.
DOI URL |
[109] |
Stork NE, Stone M, Sam L (2016) Vertical stratification of beetles in tropical rainforests as sampled by light traps in North Queensland, Australia. Austral Ecology, 41, 168-178.
DOI URL |
[110] |
Stork NE, Wright SJ, Mulkey SS (1997) Craning for a better view: The canopy crane network. Trends in Ecology & Evolution, 12, 418-420.
DOI URL |
[111] | Suchanek TH, Mooney HA, Franklin JF, Gucinski H, Ustin SL (2004) Carbon dynamics of an old-growth forest. Ecosystems, 7, 421-426. |
[112] |
Sun IF, Chen YY, Hubbell SP, Wright SJ, Noor N (2007) Seed predation during general flowering events of varying magnitude in a Malaysian rain forest. Journal of Ecology, 95, 818-827.
DOI URL |
[113] |
Sutton SL (2001) Alice grows up: Canopy science in transition from Wonderland to Reality. Plant Ecology, 153, 13-21.
DOI URL |
[114] | Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH (2004) Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 303, 1879-1881. |
[115] | Tng DYP, Apgaua DMG, Campbell MJ, Cox CJ, Crayn DM, Ishida FY, Laidlaw MJ, Liddell MJ, Seager M, Laurance SGW (2016) Vegetation and floristics of a lowland tropical rainforest in northeast Australia. Biodiversity Data Journal, 4, e7599. |
[116] |
Toberman H, Chen CR, Xu ZH (2011) Rhizosphere effects on soil nutrient dynamics and microbial activity in an Australian tropical lowland rainforest. Soil Research, 49, 652-660.
DOI URL |
[117] | Unterseher M, Morawetz W, Klotz S, Arndt E (2007) The Canopy of a Temperate Floodplain Forest: Results from Five Years of Research at the Leipzig Canopy Crane. University of Leipzig, Leipzig. |
[118] |
Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the western United States. Science, 323, 521-524.
DOI PMID |
[119] | Volf M, Klimeš P, Lamarre GPA, Redmond CM, Seifert CL, Abe T, Auga J, Anderson-Teixeira K, Basset Y, Beckett S, Butterill PT, Drozd P, Gonzalez-Akre E, Kaman O, Kamata N, Laird-Hopkins B, Libra M, Manumbor M, Miller SE, Molem K, Mottl O, Murakami M, Nakaji T, Plowman NS, Pyszko P, Šigut M, Šipos J, Tropek R, Weiblen GD, Novotny V (2019) Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach. PLoS ONE, 14, e0222119. |
[120] | Wardhaugh CW (2013) The importance of flowers for beetle biodiversity and abundance. In: Treetops at Risk (eds Lowman M, Devy S, Ganesh T), pp. 275-288. Springer, New York. |
[121] |
Wardhaugh CW, Edwards W, Stork NE (2013a) Body size variation among invertebrates inhabiting different canopy microhabitat: Flower visitors are smaller. Ecological Entomology, 38, 101-111.
DOI URL |
[122] |
Wardhaugh CW, Edwards W, Stork NE (2013b) Variation in beetle community structure across five microhabitats in Australian tropical rainforest trees. Insect Conservation and Diversity, 6, 463-472.
DOI URL |
[123] |
Wardhaugh CW, Edwards W, Stork NE (2015) The specialization and structure of antagonistic and mutualistic networks of beetles on rainforest canopy trees. Biological Journal of the Linnean Society, 114, 287-295.
DOI URL |
[124] |
Wardhaugh CW, Stork NE, Edwards W (2012a) Feeding guild structure of beetles on Australian tropical rainforest trees reflects microhabitat resource availability. Journal of Animal Ecology, 81, 1086-1094.
DOI URL |
[125] |
Wardhaugh CW, Stork NE, Edwards W (2013c) Specialization of rainforest canopy beetles to host trees and microhabitats: Not all specialists are leaf‐feeding herbivores. Biological Journal of the Linnean Society, 109, 215-228.
DOI URL |
[126] |
Wardhaugh CW, Stork NE, Edwards W (2014) Canopy invertebrate community composition on rainforest trees: Different microhabitats support very different invertebrate communities. Austral Ecology, 39, 367-377.
DOI URL |
[127] | Wardhaugh CW, Stork NE, Edwards W, Grimbacher PS (2012b) The overlooked biodiversity of flower-visiting invertebrates. PLoS ONE, 7, e45796. |
[128] |
Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM (2016) Advances in ecological studies of epiphytes using canopy cranes. Chinese Journal of Plant Ecology, 40, 508-522. (in Chinese with English abstract)
DOI |
[吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 (2016) 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40, 508-522.]
DOI |
|
[129] |
Xiao ZS, Zhang ZB, Krebs CJ (2013) Long-term seed survival and dispersal dynamics in a rodent-dispersed tree: Testing the predator satiation hypothesis and the predator dispersal hypothesis. Journal of Ecology, 101, 1256-1264.
DOI URL |
[130] | Yang J, Chen WH, Shui YM, Sheng JS (2008) Investigating methods of epiphytes in forest canopy. Journal of Wuhan Botanical Research, 26, 661-667. (in Chinese with English abstract) |
[杨洁, 陈文红, 税玉民, 盛家舒 (2008) 林冠附生植物观测方法概述. 武汉植物学研究, 26, 661-667.] | |
[131] | Yumoto T, Inoue T, Hamid AA (Turner IM, 1996) Monitoring and inventorying system in canopy biology program in Sarawak, Malaysia. In:Biodiversity and the Dynamics of Ecosystems. Proceedings of an International Workshop (eds Diong CH, Lim SSL, Ng PKL), pp. 203-215. National University of Singapore, Singapore. |
[132] | Yumoto T, Nakashizuka T (2005) The canopy biology program in Sarawak:Scope, methods, and merit. In: Pollination Ecology and the Rain Forest (eds Roubik DW, Sakai S, Karim HAA), pp. 13-21. Springer, New York. |
[133] |
Zellweger F, De Frenne P, Lenoir J, Vangansbeke P, Verheyen K, Bernhardt-Röemermann M, Baeten L, Hédl R, Berki I, Brunet J, Van Calster H, Chudomelová M, Decocq G, Dirnböeck T, Durak T, Heinken T, Jaroszewicz B, Kopecký M, Máliš F, Macek M, Malicki M, Naaf T, Nagel TA, Ortmann-Ajkai A, Petřík P, Pielech R, Reczyńska K, Schmidt W, Standovár T, Świerkosz K, Teleki B, Vild O, Wulf M, Coomes D (2020) Forest microclimate dynamics drive plant responses to warming. Science, 368, 772-775.
DOI PMID |
[134] |
Zhang L, Chen YJ, Hao GY, Ma KP, Bongers F, Sterck FJ (2020) Conifer and broadleaved trees differ in branch allometry but maintain similar functional balances. Tree Physiology, 40, 511-519.
DOI PMID |
[135] |
Zhang L, Chen YJ, Ma KP, Bongers F, Sterck FJ (2019) Fully exposed canopy tree and liana branches in a tropical forest differ in mechanical traits but are similar in hydraulic traits. Tree Physiology, 39, 1713-1724.
DOI PMID |
[136] | Zheng G, Li SQ (2015) Arthropods from Forest Canopies. Science Press, Beijing. (in Chinese) |
[郑国, 李枢强 (2015) 森林冠层节肢动物. 科学出版社, 北京.] | |
[137] |
Zhu Y, Mi XC, Ma KP (2009) A mechanism of plant species coexistence: The negative density-dependent hypothesis. Biodiversity Science, 17, 594-604. (in Chinese with English abstract)
DOI |
[祝燕, 米湘成, 马克平 (2009) 植物群落物种共存机制: 负密度制约假说. 生物多样性, 17, 594-604.]
DOI |
[1] | Yiyun Gu, Jiaqi Xue, Jinhui Gao, Xinyi Xie, Ming Wei, Jinyu Lei, Cheng Wen. A public science data-based regional bird diversity assessment method [J]. Biodiv Sci, 2024, 32(7): 24080-. |
[2] | Hua Ma, Changqing Li, Pinfeng Yu, Jie Chen, Tianyao He, Kehong Wang. Distribution patterns and impact factors of soil macrofauna communities in the riparian zone of the Pengxi River [J]. Biodiv Sci, 2024, 32(7): 24117-. |
[3] | Yanli Wang, Ying Zhang, Chunlin Qi, Changda Zhang, Youhai Shi, Yanjun Du, Qiong Ding. Identifying biodiversity hotspots and conservation gaps in Hainan Tropical Rainforest National Park based on macrofungi and plants perspectives [J]. Biodiv Sci, 2024, 32(7): 24081-. |
[4] | Yongqiang Shi, Qingshan Luan, Xiujuan Shan, Chao Wei, Yongsong Zhao, Cece Sun, Xianshi Jin. Annual changes in zooplankton biodiversity in the southern waters of Changdao [J]. Biodiv Sci, 2024, 32(7): 23428-. |
[5] | Yu Tian, Junsheng Li. Analysis of the connotation and implementation path for the 30 by 30 target in the Kunming-Montreal Global Biodiversity Framework [J]. Biodiv Sci, 2024, 32(6): 24086-. |
[6] | Yihui Jiang, Yue Liu, Xu Zeng, Zheying Lin, Nan Wang, Jihao Peng, Ling Cao, Cong Zeng. Fish diversity and connectivity in six national marine protected areas in the East China Sea [J]. Biodiv Sci, 2024, 32(6): 24128-. |
[7] | Fuwei Zhao, Yingshuo Li, Hui Chen. Reflections on biodiversity legislation in China’s new era [J]. Biodiv Sci, 2024, 32(5): 24027-. |
[8] | Dekui Yan. Common elements, deficiencies, and optimization suggestions of biodiversity conservation policies in China [J]. Biodiv Sci, 2024, 32(5): 23293-. |
[9] | Biyu Ma. Summary of amendments to India’s Biological Diversity Act and enlightenments for improving China’s legal system of biodiversity conservation [J]. Biodiv Sci, 2024, 32(5): 23412-. |
[10] | Yunwei Dong, Menghuan Bao, Jiao Cheng, Yiyong Chen, Jianguo Du, Yangchun Gao, Lisha Hu, Xincheng Li, Chunlong Liu, Geng Qin, Jin Sun, Xin Wang, Guang Yang, Chongliang Zhang, Xiong Zhang, Yuyang Zhang, Zhixin Zhang, Aibin Zhan, Qiang He, Jun Sun, Bin Chen, Zhongli Sha, Qiang Lin. Advances of marine biogeography in China: Species distribution model and its applications [J]. Biodiv Sci, 2024, 32(5): 23453-. |
[11] | Yingli Cai, Hongge Zhu, Jiaxin Li. Biodiversity conservation in China: Policy evolution, main measures and development trends [J]. Biodiv Sci, 2024, 32(5): 23386-. |
[12] | Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song. Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains [J]. Biodiv Sci, 2024, 32(5): 24072-. |
[13] | Jingzhou Liu, Yixin Qian, Yanxuedan Zhang, Feng Cui. Research progress and implications of flagship species paradigms based on latent Dirichlet allocation (LDA) model [J]. Biodiv Sci, 2024, 32(4): 23439-. |
[14] | Lejie Wu, Zekang Liu, Xing Tian, Qun Zhang, Bo Li, Jihua Wu. Effects of genotypic diversity on vegetative growth and reproductive strategies of Scirpus mariqueter population [J]. Biodiv Sci, 2024, 32(4): 23478-. |
[15] | Xuemeng Li, Jibao Jiang, Zenglu Zhang, Xiaojing Liu, Yali Wang, Yizhao Wu, Yinsheng Li, Jiangping Qiu, Qi Zhao. Earthworm biodiversity and its influencing factors in Baotianman National Nature Reserve [J]. Biodiv Sci, 2024, 32(4): 23352-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn