Biodiv Sci ›› 2022, Vol. 30 ›› Issue (12): 21476. DOI: 10.17520/biods.2021476
Special Issue: 土壤生物与土壤健康
• Original Papers • Next Articles
Fan Li1,2, Dangjun Wang1,2, Xiaoyuan Lin1,2, Kang Ji1,2, Luping Ye1,3, Chao Huang4, Yong Zheng1, Mao Zhun5, Juan Zuo1,*()
Received:
2021-11-23
Accepted:
2022-04-20
Online:
2022-12-20
Published:
2022-07-16
Contact:
*E-mail: zuojuan@wbgcas.cn
Fan Li, Dangjun Wang, Xiaoyuan Lin, Kang Ji, Luping Ye, Chao Huang, Yong Zheng, Mao Zhun, Juan Zuo. Community characteristics of macroinvertebrates in woody debris in a subtropical forest in Badagongshan, China[J]. Biodiv Sci, 2022, 30(12): 21476.
类群Groups | 柳杉Cryptomeria fortunei | 亮叶水青冈Fagus lucida | 檫木Sassafras tsumu | 总数Total (%) | 优势度水平Dominance level | |||
---|---|---|---|---|---|---|---|---|
个体数No. of individuals (%) | 优势度水平Dominance level | 个体数No. of individuals (%) | 优势度水平Dominance level | 个体数No. of individuals (%) | 优势度水平Dominance level | |||
双翅目幼虫 Diptera larvae | 68 (43.31) | +++ | 1,592 (79.76) | +++ | 158 (39.01) | +++ | 1,818 (71.07) | +++ |
膜翅目 Hymenoptera | 20 (12.74) | +++ | 11 (0.55) | + | 134 (33.09) | +++ | 165 (6.45) | ++ |
等翅目 Isoptera | - | - | 146 (7.31) | ++ | 16 (3.95) | ++ | 162 (6.33) | ++ |
鞘翅目 Coleoptera | 14 (8.92) | ++ | 78 (3.91) | ++ | 26 (6.42) | ++ | 118 (4.61) | ++ |
鞘翅目幼虫 Coleoptera larvae | 19 (12.10) | +++ | 29 (1.45) | ++ | 34 (8.40) | ++ | 82 (3.21) | ++ |
姬马陆目 Julida | - | - | 87 (4.36) | ++ | - | - | 87 (3.40) | ++ |
石蜈蚣目 Lithobiomorpha | 16 (10.19) | +++ | 7 (0.35) | + | 1 (0.25) | + | 24 (0.94) | + |
蜘蛛目 Araneae | 11 (7.01) | ++ | 7 (0.35) | + | 4 (0.99) | + | 22 (0.86) | + |
蜈蚣目 Scolodenpromorpha | 1 (0.64) | + | 6 (0.30) | + | 12 (2.96) | ++ | 19 (0.74) | + |
综合目 Symphyla | - | - | 8 (0.40) | + | 9 (2.22) | ++ | 17 (0.66) | + |
缨翅目 Thysanoptera | - | - | 6 (0.30) | + | 1 (0.25) | + | 7 (0.27) | + |
伪蝎目 Pseudoscorpiones | - | - | 4 (0.20) | + | 1 (0.25) | + | 5 (0.20) | + |
等足目 Isopoda | 2 (1.27) | ++ | 2 (0.10) | + | 1 (0.25) | + | 5 (0.20) | + |
带马陆目 Polydesmida | 1 (0.64) | + | 2 (0.10) | + | 1 (0.25) | + | 4 (0.16) | + |
地蜈蚣目 Geophilomrpha | - | - | 1 (0.05) | + | 3 (0.74) | + | 4 (0.16) | + |
鳞翅目幼虫 Lepidoptera larvae | - | - | 3 (0.15) | + | - | - | 3 (0.12) | + |
三肠目 Tricladida | 1 (0.64) | + | - | - | 2 (0.49) | + | 3 (0.12) | + |
腹足纲 Gastropoda | 3 (1.91) | ++ | - | - | - | - | 3 (0.12) | + |
异蛰目 Spirostreptida | - | - | 3 (0.15) | + | - | - | 3 (0.12) | + |
原尾纲 Protura | - | - | 1 (0.05) | + | 1 (0.25) | + | 2 (0.08) | + |
半翅目 Hemiptera | - | - | 1 (0.05) | + | 1 (0.25) | + | 2 (0.08) | + |
蜚蠊目 Blattoptera | - | - | 1 (0.05) | + | - | - | 1 (0.04) | + |
球马陆目 Glomerida | 1 (0.64) | + | - | - | - | - | 1 (0.04) | + |
正蚓目 Limbricida | - | - | 1 (0.05) | + | - | - | 1 (0.04) | + |
总数 Total number | 157 (1.00) | 1,996 (1.00) | 405 (1.00) | 2,558 (1.00) |
Table 1 Composition of macroinvertebrate in woody debris of Cryptomeria fortunei, Fagus lucida and Sassafras tsumu
类群Groups | 柳杉Cryptomeria fortunei | 亮叶水青冈Fagus lucida | 檫木Sassafras tsumu | 总数Total (%) | 优势度水平Dominance level | |||
---|---|---|---|---|---|---|---|---|
个体数No. of individuals (%) | 优势度水平Dominance level | 个体数No. of individuals (%) | 优势度水平Dominance level | 个体数No. of individuals (%) | 优势度水平Dominance level | |||
双翅目幼虫 Diptera larvae | 68 (43.31) | +++ | 1,592 (79.76) | +++ | 158 (39.01) | +++ | 1,818 (71.07) | +++ |
膜翅目 Hymenoptera | 20 (12.74) | +++ | 11 (0.55) | + | 134 (33.09) | +++ | 165 (6.45) | ++ |
等翅目 Isoptera | - | - | 146 (7.31) | ++ | 16 (3.95) | ++ | 162 (6.33) | ++ |
鞘翅目 Coleoptera | 14 (8.92) | ++ | 78 (3.91) | ++ | 26 (6.42) | ++ | 118 (4.61) | ++ |
鞘翅目幼虫 Coleoptera larvae | 19 (12.10) | +++ | 29 (1.45) | ++ | 34 (8.40) | ++ | 82 (3.21) | ++ |
姬马陆目 Julida | - | - | 87 (4.36) | ++ | - | - | 87 (3.40) | ++ |
石蜈蚣目 Lithobiomorpha | 16 (10.19) | +++ | 7 (0.35) | + | 1 (0.25) | + | 24 (0.94) | + |
蜘蛛目 Araneae | 11 (7.01) | ++ | 7 (0.35) | + | 4 (0.99) | + | 22 (0.86) | + |
蜈蚣目 Scolodenpromorpha | 1 (0.64) | + | 6 (0.30) | + | 12 (2.96) | ++ | 19 (0.74) | + |
综合目 Symphyla | - | - | 8 (0.40) | + | 9 (2.22) | ++ | 17 (0.66) | + |
缨翅目 Thysanoptera | - | - | 6 (0.30) | + | 1 (0.25) | + | 7 (0.27) | + |
伪蝎目 Pseudoscorpiones | - | - | 4 (0.20) | + | 1 (0.25) | + | 5 (0.20) | + |
等足目 Isopoda | 2 (1.27) | ++ | 2 (0.10) | + | 1 (0.25) | + | 5 (0.20) | + |
带马陆目 Polydesmida | 1 (0.64) | + | 2 (0.10) | + | 1 (0.25) | + | 4 (0.16) | + |
地蜈蚣目 Geophilomrpha | - | - | 1 (0.05) | + | 3 (0.74) | + | 4 (0.16) | + |
鳞翅目幼虫 Lepidoptera larvae | - | - | 3 (0.15) | + | - | - | 3 (0.12) | + |
三肠目 Tricladida | 1 (0.64) | + | - | - | 2 (0.49) | + | 3 (0.12) | + |
腹足纲 Gastropoda | 3 (1.91) | ++ | - | - | - | - | 3 (0.12) | + |
异蛰目 Spirostreptida | - | - | 3 (0.15) | + | - | - | 3 (0.12) | + |
原尾纲 Protura | - | - | 1 (0.05) | + | 1 (0.25) | + | 2 (0.08) | + |
半翅目 Hemiptera | - | - | 1 (0.05) | + | 1 (0.25) | + | 2 (0.08) | + |
蜚蠊目 Blattoptera | - | - | 1 (0.05) | + | - | - | 1 (0.04) | + |
球马陆目 Glomerida | 1 (0.64) | + | - | - | - | - | 1 (0.04) | + |
正蚓目 Limbricida | - | - | 1 (0.05) | + | - | - | 1 (0.04) | + |
总数 Total number | 157 (1.00) | 1,996 (1.00) | 405 (1.00) | 2,558 (1.00) |
df | 个体密度 Individual density | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson优势度指数 Simpson dominance index | Pielou均匀度指数 Pielou evenness index | |
---|---|---|---|---|---|
树种 Tree species (TS) | 2 | 24.18*** | 1.83 | 3.05 | 17.69*** |
径级 Diameter class (DC) | 1 | 1.10 | 18.18*** | 11.86** | 0.41 |
分解阶段 Decomposition stage (DS) | 1 | 5.63* | 13.10*** | 11.38** | 0.48 |
树种 × 径级 TS × DC | 2 | 0.28 | 0.89 | 0.62 | 0.53 |
树种 × 分解阶段 TS × DS | 2 | 0.41 | 5.89** | 6.69** | 1.30 |
径级 × 分解阶段 DC × DS | 1 | 8.73** | 0.03 | 0.04 | 1.97 |
树种 × 径级 × 分解阶段 TS × DC × DS | 2 | 4.21* | 1.66 | 2.06 | 0.20 |
Table 2 Results of multiple linear regression analysis for the effect of different woody debris traits on macroinvertebrate community characteristics (F value)
df | 个体密度 Individual density | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson优势度指数 Simpson dominance index | Pielou均匀度指数 Pielou evenness index | |
---|---|---|---|---|---|
树种 Tree species (TS) | 2 | 24.18*** | 1.83 | 3.05 | 17.69*** |
径级 Diameter class (DC) | 1 | 1.10 | 18.18*** | 11.86** | 0.41 |
分解阶段 Decomposition stage (DS) | 1 | 5.63* | 13.10*** | 11.38** | 0.48 |
树种 × 径级 TS × DC | 2 | 0.28 | 0.89 | 0.62 | 0.53 |
树种 × 分解阶段 TS × DS | 2 | 0.41 | 5.89** | 6.69** | 1.30 |
径级 × 分解阶段 DC × DS | 1 | 8.73** | 0.03 | 0.04 | 1.97 |
树种 × 径级 × 分解阶段 TS × DC × DS | 2 | 4.21* | 1.66 | 2.06 | 0.20 |
Fig. 1 Diversity characteristics of macroinvertebrate in different diameter classes of Cryptomeria fortunei, Fagus lucida, and Sassafras tsumu woody debris (mean ± SE). Different lowercase letters indicate that there are significant differences among different diameter classes of the same tree species. Different capital letters indicate that there are significant differences between different tree species in the same diameter class. The number of samples included are given in parentheses for large and small diameter classes respectively.
Fig. 2 Non-metric multidimensional scaling (NMDS) plot of macroinvertebrate communities in different types of woody debris. The size of each point in the figure represents the density of wood debris.
自由度 df | 平方和 Sum of squares | 均方 Mean square | F | P | |
---|---|---|---|---|---|
树种 Tree species (TS) | 2 | 2.58 | 1.29 | 4.36 | 0.001*** |
径级 Diameter class (DC) | 1 | 0.96 | 0.96 | 3.01 | 0.006** |
分解阶段 Decomposition stage (DS) | 1 | 0.96 | 0.96 | 2.98 | 0.006** |
树种 × 径级 TS × DC | 2 | 0.50 | 0.25 | 0.88 | 0.58 |
树种 × 分解阶段 TS × DS | 2 | 0.68 | 0.34 | 1.14 | 0.27 |
径级 × 分解阶段 DC × DS | 1 | 0.21 | 0.21 | 0.68 | 0.72 |
树种 × 径级 × 分解阶段 TS × DC × DS | 2 | 0.40 | 0.20 | 0.70 | 0.79 |
残差 Residuals | 44 | 12.47 | 0.28 | ||
总数 Total | 55 | 18.27 |
Table 3 Permutational multivariate analysis of variance (PERMANOVA) on Bray-Curtis similarity distances for macroinvertebrate community composition in wood debris of different tree species, diameter classes and decomposition stages
自由度 df | 平方和 Sum of squares | 均方 Mean square | F | P | |
---|---|---|---|---|---|
树种 Tree species (TS) | 2 | 2.58 | 1.29 | 4.36 | 0.001*** |
径级 Diameter class (DC) | 1 | 0.96 | 0.96 | 3.01 | 0.006** |
分解阶段 Decomposition stage (DS) | 1 | 0.96 | 0.96 | 2.98 | 0.006** |
树种 × 径级 TS × DC | 2 | 0.50 | 0.25 | 0.88 | 0.58 |
树种 × 分解阶段 TS × DS | 2 | 0.68 | 0.34 | 1.14 | 0.27 |
径级 × 分解阶段 DC × DS | 1 | 0.21 | 0.21 | 0.68 | 0.72 |
树种 × 径级 × 分解阶段 TS × DC × DS | 2 | 0.40 | 0.20 | 0.70 | 0.79 |
残差 Residuals | 44 | 12.47 | 0.28 | ||
总数 Total | 55 | 18.27 |
Fig. 3 Group composition of macroinvertebrate in woody debris of different tree species and diameter classes. Numbers indicate the number of groups. Adults and larvae of the same order are regarded as two groups.
木材性质 Wood properties | 土壤性质 Soil properties | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
密度 Density | 相对含水率 WRC | 饱和含水率 WSC | 全碳 WTC | 全氮 WTN | 碳氮比 Wood C/N | 全碳 STC | 全氮 STN | 碳氮比 Soil C/N | 温度 ST | 湿度 SH | |
个体密度 Individual density | -0.02 | 0.07 | -0.05 | -0.29** | 0.20* | -0.25* | 0.08 | 0.15 | -0.19 | 0.38*** | -0.31** |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | -0.33** | 0.44*** | 0.08 | -0.06 | -0.10 | 0.10 | -0.23* | -0.20 | -0.17 | -0.30* | 0.02 |
Simpson优势度指数 Simpson dominance index | -0.36** | 0.40** | 0.10 | -0.003 | -0.15 | 0.16 | -0.21 | -0.21 | -0.10 | -0.37** | 0.09 |
Pielou均匀度指数 Pielou evenness index | -0.46*** | 0.28* | 0.21 | 0.41** | -0.37** | 0.40** | -0.11 | -0.21 | 0.19 | -0.60*** | 0.31* |
Table 4 Correlation analysis of macroinvertebrate diversity characteristics with environmental factors and physical and chemical properties in different types of wood debris
木材性质 Wood properties | 土壤性质 Soil properties | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
密度 Density | 相对含水率 WRC | 饱和含水率 WSC | 全碳 WTC | 全氮 WTN | 碳氮比 Wood C/N | 全碳 STC | 全氮 STN | 碳氮比 Soil C/N | 温度 ST | 湿度 SH | |
个体密度 Individual density | -0.02 | 0.07 | -0.05 | -0.29** | 0.20* | -0.25* | 0.08 | 0.15 | -0.19 | 0.38*** | -0.31** |
Shannon-Wiener多样性指数 Shannon-Wiener diversity index | -0.33** | 0.44*** | 0.08 | -0.06 | -0.10 | 0.10 | -0.23* | -0.20 | -0.17 | -0.30* | 0.02 |
Simpson优势度指数 Simpson dominance index | -0.36** | 0.40** | 0.10 | -0.003 | -0.15 | 0.16 | -0.21 | -0.21 | -0.10 | -0.37** | 0.09 |
Pielou均匀度指数 Pielou evenness index | -0.46*** | 0.28* | 0.21 | 0.41** | -0.37** | 0.40** | -0.11 | -0.21 | 0.19 | -0.60*** | 0.31* |
[1] |
Andringa JI, Zuo J, Berg MP, Klein R, van’t Veer J, de Geus R, de Beaumont M, Goudzwaard L, van Hal J, Broekman R, Li YK, Fujii S, Lammers M, Hefting MM, Sass-Klaassen U, Cornelissen JHC (2019) Combining tree species and decay stages to increase invertebrate diversity in dead wood. Forest Ecology and Management, 441, 80-88.
DOI |
[2] | Arango RA, Iii FG, Hintz K, Lebow PK, Miller RB (2006) Natural durability of tropical and native woods against termite damage by Reticulitermes flavipes (Kollar). International Biodeterioration & Biodegradation, 57, 146-150. |
[3] | Bond-Lamberty B, Wang C, Gower ST (2002) Annual carbon flux from woody debris for a boreal black spruce fire chronosequence. Journal of Geophysical Research, 107, WFX1-1-WFX1-10. |
[4] |
Brin A, Bouget C, Brustel H, Jactel H (2011) Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests. Journal of Insect Conservation, 15, 653-669.
DOI URL |
[5] |
Bultman JD, Southwell CR (1976) Natural resistence of tropical American woods to terrestrial wood-destroying organisms. Biotropica, 8, 71-95.
DOI URL |
[6] | Cao TR, Qi CJ, Yu XL, Long CL, Zhou JR, Zhang QF (1993) Study on Fagus lucida forests in Badagong Mountains of Hunan and their flora. Journal of Central South Forestry University, 13, 8-16. (in Chinese with English abstract) |
[ 曹铁如, 祁承经, 喻勋林, 龙成良, 周建仁, 张金发 (1993) 八大公山亮叶水青冈林及其植物区系的研究. 中南林学院学报, 13, 8-16.] | |
[7] |
Chang CH, Wu FZ, Yang WQ, Tan B, Xiao S, Li J, Gou XL (2015) Changes in log quality at different decay stages in an alpine forest. Chinese Journal of Plant Ecology, 39, 14-22. (in Chinese with English abstract)
DOI URL |
[ 常晨晖, 吴福忠, 杨万勤, 谭波, 肖洒, 李俊, 苟小林 (2015) 高寒森林倒木在不同分解阶段的质量变化. 植物生态学报, 39, 14-22.]
DOI |
|
[8] |
Cornelissen JHC, Sass-Klaassen U, Poorter L, van Geffen K, van Hal J, Goudzwaard L, Sterck FJ, Klaassen RKWM, Freschet GT, van der Wal A, Eshuis H, Zuo J, de Boer W, Lamers T, Weemstra M, Cretin V, Martin R, den Ouden J, Berg MP, Aerts R, Mohren GMJ, Hefting MM (2012) Controls on coarse wood decay in temperate tree species: Birth of the LOGLIFE experiment. Ambio, 41, 231-245.
DOI URL |
[9] |
Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff F, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: Rotted, burned, or consumed? Global Change Biology, 15, 2431-2449.
DOI URL |
[10] |
Currie WS, Nadelhoffer KJ (2002) The imprint of land-use history: Patterns of carbon and nitrogen in downed woody debris at the Harvard forest. Ecosystems, 5, 446-460.
DOI URL |
[11] | de Souza-Campana DR, Silva RR, Fernandes TT, de Morais Silva OG, Saad LP, de Castro Morini MS (2017) Twigs in the leaf litter as ant habitats in different vegetation habitats in southeastern Brazil. Tropical Conservation Science, 10, 1-12. |
[12] |
Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137-167.
DOI URL |
[13] |
Doblas-Miranda E, Sánchez-Piñeroa F, González-Megías A (2009) Vertical distribution of soil macrofauna in an arid ecosystem: Are litter and belowground compartmentalized habitats? Pedobiologia, 52, 361-373.
DOI URL |
[14] |
Dossa GGO, Schaefer D, Zhang JL, Tao JP, Cao KF, Corlett RT, Cunningham AB, Xu JC, Cornelissen JHC, Harrison RD (2018) The cover uncovered: Bark control over wood decomposition. Journal of Ecology, 106, 2147-2160.
DOI URL |
[15] |
Gedminas A, Lynikienė J, Zeniauskas R (2007) Cambio-xylofauna abundance and species diversity of cutting residues in Scots pine and Norway spruce clear-cuts in Lithuania. Biomass and Bioenergy, 31, 733-738.
DOI URL |
[16] |
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372-380.
DOI URL |
[17] |
Grove SJ (2002a) Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics, 33, 1-23.
DOI URL |
[18] |
Grove SJ (2002b) Tree basal area and dead wood as surrogate indicators of saproxylic insect faunal integrity: A case study from the Australian lowland tropics. Ecological Indicators, 1, 171-188.
DOI URL |
[19] | Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins K Jr (1986) Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133-302. |
[20] | Harmon ME, Sexton J (1996) Guidelines for Measurements of Woody Detritus in Forest Ecosystems. Publication No. 20. U.S. LTER Network Office: University of Washington, Seattle, WA, USA. 73 pp. |
[21] |
Jonsell M, Hansson J, Wedmo L (2007) Diversity of saproxylic beetle species in logging residues in Sweden—Comparisons between tree species and diameters. Biological Conservation, 138, 89-99.
DOI URL |
[22] |
Juutilainen K, Halme P, Kotiranta H, Mönkkönen M (2011) Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecology, 4, 342-349.
DOI URL |
[23] |
Kamczyc J, Dyderski MK, Horodecki P, Jagodziński AM (2019) Mite communities (Acari, Mesostigmata) in the initially decomposed ‘litter islands’ of 11 tree species in Scots pine (Pinus sylvestris L.) forest. Forests, 10, 403-419.
DOI URL |
[24] |
Kampichler C, Bruckner A (2009) The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biological Reviews, 84, 375-389.
DOI URL |
[25] | Lachat T, Bouget C, Bütler R, Müller J (2013) Deadwood: Quantitative and qualitative requirements for the conservation of saproxylic biodiversity. In: Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity (eds Kraus D, Krumm F), pp. 92-103. European Forest Institute, Joensuu, Finland. |
[26] |
Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: A synthesis. Canadian Journal of Forest Research, 34, 763-777.
DOI URL |
[27] |
Lasota J, Błońska E, Piaszczyk W, Wiecheć M (2018) How the deadwood of different tree species in various stages of decomposition affected nutrient dynamics? Journal of Soils and Sediments, 18, 2759-2769.
DOI URL |
[28] | Liu BX (1983) The soil of the Badagong Mountain Nature Reserve in western Hunan. Journal of Central South Forestry Institute, 3, 141-159. (in Chinese with English abstract) |
[ 刘博学 (1983) 湘西八大公山自然保护区的土壤. 中南林学院学报, 3, 141-159.] | |
[29] |
Lu ZJ, Bao DC, Guo YL, Lu JM, Wang QG, He D, Zhang KH, Xu YZ, Liu HB, Meng HJ, Huang HD, Wei XZ, Liao JX, Qiao XJ, Jiang MX, Gu ZR, Liao CL (2013) Community composition and structure of Badagongshan (BDGS) forest dynamic plot in a mid-subtropical mountain evergreen and deciduous broad-leaved mixed forest, central China. Plant Science Journal, 31, 336-344. (in Chinese with English abstract)
DOI URL |
[ 卢志军, 鲍大川, 郭屹立, 路俊盟, 王庆刚, 何东, 张奎汉, 徐耀粘, 刘海波, 孟红杰, 黄汉东, 魏新增, 廖建雄, 乔秀娟, 江明喜, 谷志容, 廖春林 (2013) 八大公山中亚热带山地常绿落叶阔叶混交林物种组成与结构. 植物科学学报, 31, 336-344.] | |
[30] |
Lu ZJ, Liu FL, Wu H, Jiang MX (2015) Species composition, size class, and spatial patterns of snags in the Badagongshan (BDGS) mixed evergreen and deciduous broad-leaved forest in central China. Biodiversity Science, 23, 167-173. (in Chinese with English abstract)
DOI |
[ 卢志军, 刘福玲, 吴浩, 江明喜 (2015) 八大公山常绿落叶阔叶混交林枯立木物种组成、大小级与分布格局. 生物多样性, 23, 167-173.]
DOI |
|
[31] |
MacFarlane DW, Luo AD (2009) Quantifying tree and forest bark structure with a bark-fissure index. Canadian Journal of Forest Research, 39, 1859-1870.
DOI URL |
[32] | Mlynarek JJ, Taillefer AG, Wheeler T (2018) Saproxylic Diptera assemblages in a temperate deciduous forest: Implications for community assembly. PeerJ, 6, e6027. |
[33] |
Müller J, Wende B, Strobl C, Eugster M, Gallenberger I, Floren A, Steffan-Dewenter I, Linsenmair KE, Weisser WW, Gossner MM (2015) Forest management and regional tree composition drive the host preference of saproxylic beetle communities. Journal of Applied Ecology, 52, 753-762.
DOI URL |
[34] | Pielou EC (1985) Mathematical Ecology. Wiley-Interscience, New York. |
[35] |
Pyle C, Brown MM (1999) Heterogeneity of wood decay classes within hardwood logs. Forest Ecology and Management, 114, 253-259.
DOI URL |
[36] | R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. . |
[37] |
Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M (2014) Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist, 201, 486-497.
DOI PMID |
[38] |
Seibold S, Bässler C, Brandl R, Gossner MM, Thorn S, Ulyshen MD, Müller J (2015) Experimental studies of dead-wood biodiversity—A review identifying global gaps in knowledge. Biological Conservation, 191, 139-149.
DOI URL |
[39] | Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, Cadotte MW, Lindenmayer DB, Adhikari YP, Aragón R, Bae S, Baldrian P, Barimani Varandi H, Barlow J, Bässler C, Beauchêne J, Berenguer E, Bergamin RS, Birkemoe T, Boros G, Brandl R, Brustel H, Burton PJ, Cakpo-Tossou YT, Castro J, Cateau E, Cobb TP, Farwig N, Fernández RD, Firn J, Gan KS, González G, Gossner MM, Habel JC, Hébert C, Heibl C, Heikkala O, Hemp A, Hemp C, Hjältén J, Hotes S, Kouki J, Lachat T, Liu J, Liu Y, Luo YH, Macandog DM, Martina PE, Mukul SA, Nachin B, Nisbet K, O’Halloran J, Oxbrough A, Pandey JN, Pavlíček T, Pawson SM, Rakotondranary JS, Ramanamanjato JB, Rossi L, Schmidl J, Schulze M, Seaton S, Stone MJ, Stork NE, Suran B, Sverdrup-Thygeson A, Thorn S, Thyagarajan G, Wardlaw TJ, Weisser WW, Yoon S, Zhang NL, Müller J (2021) The contribution of insects to global forest deadwood decomposition. Nature, 597, 77-81. |
[40] | Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbanna. |
[41] |
Siitonen J, Saaristo L (2000) Habitat requirements and conservation of Pytho kolwensis, a beetle species of old-growth boreal forest. Biological Conservation, 94, 211-220.
DOI URL |
[42] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
DOI URL |
[43] | Stokland JN, Siitonen J, Jonsson BG (2012) Biodiversity in Dead Wood. Cambridge University Press, Cambridge. |
[44] |
Sverdrup-Thygeson A, Ims RA (2002) The effect of forest clearcutting in Norway on the community of saproxylic beetles on aspen. Biological Conservation, 106, 347-357.
DOI URL |
[45] |
Tan B, Yin R, Zhang J, Xu ZF, Liu Y, He SQ, Zhang L, Li H, Wang LX, Liu SN, You CM, Peng CH (2021) Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways. Ecosystems, 24, 1142-1156.
DOI URL |
[46] |
Ulyshen MD, Müller J, Seibold S (2016) Bark coverage and insects influence wood decomposition: Direct and indirect effects. Applied Soil Ecology, 105, 25-30.
DOI URL |
[47] | Väisänen R, Biström O, Heliövaara K (1993) Sub-cortical Coleoptera in dead pines and spruces: Is primeval species composition maintained in managed forests? Biodiversity & Conservation, 2, 95-113. |
[48] |
van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytologist, 171, 367-378.
PMID |
[49] | Kuijper DPJ, Churski M, Zub K, Szafrańska P, Smit C (2013) Safe for saplings not safe for seeds: Quercus robur recruitment in relation to coarse woody debris in Białowieża Primeval Forest, Poland. Forest Ecology and Management, 304, 73-79. |
[50] |
Vanderwel MC, Malcolm JR, Smith SM, Islam N (2006) Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecology and Management, 225, 190-199.
DOI URL |
[51] |
Warren RJ, Bradford MA (2012) Ant colonization and coarse woody debris decomposition in temperate forests. Insectes Sociaux, 59, 215-221.
DOI URL |
[52] | Xiang CG, Li WF, Yu DZ (2000) A preliminary study on diversity of soil animal communities in the forest of Badagong Mountain Nature Reserve. Chinese Biodiversity, 8, 304-306. (in Chinese with English abstract) |
[ 向昌国, 李文芳, 于德珍 (2000) 八大公山自然保护区森林土壤动物群落多样性的初步研究. 生物多样性, 8, 304-306.] | |
[53] | Yan ER, Wang XH, Huang JJ (2005) Concept and classification of coarse woody debris in forest ecosystems. Acta Ecologica Sinica, 25, 158-167. (in Chinese with English abstract) |
[ 阎恩荣, 王希华, 黄建军 (2005) 森林粗死木质残体的概念及其分类. 生态学报, 25, 158-167.] | |
[54] | Yang GR, Dou PP, Ma Y, Wang HJ, Lin DM (2020) Characteristics and influencing factors of surface soil fauna community in a subtropical evergreen broad-leaved forest of Jinfo Mountain. Acta Ecologica Sinica, 40, 7602-7610. (in Chinese with English abstract) |
[ 杨光蓉, 豆鹏鹏, 马瑜, 王红娟, 林敦梅 (2020) 金佛山亚热带常绿阔叶林地表土壤动物群落特征及其影响因素. 生态学报, 40, 7602-7610.] | |
[55] | Yang X, Chen LH, Kang YL, Gong WY, Zheng XL (2019) Water-holding characteristics of litter in five typical water conservation forests in low mountainous areas of eastern Liaoning. Chinese Journal of Ecology, 38, 2662-2670. (in Chinese with English abstract) |
[ 杨霞, 陈丽华, 康影丽, 弓文艳, 郑学良 (2019) 辽东低山区5种典型水源涵养林枯落物持水特性. 生态学杂志, 38, 2662-2670.] | |
[56] | Ye GH, Chu B, Hu GX, Zhang FY, Hua XZ, Zhou FF, Hua LM (2021) Response of soil macrofauna diversity to environmental factors under plateau zokor (Myospalax baileyi) disturbance in alpine meadow ecosystem. Acta Ecologica Sinica, 41, 792-802. (in Chinese with English abstract) |
[ 叶国辉, 楚彬, 胡桂馨, 张飞宇, 华铣泽, 周富斐, 花立民 (2021) 高原鼢鼠干扰下高寒草甸大型土壤动物多样性对环境因子的响应. 生态学报, 41, 792-802.] | |
[57] | Yee M, Grove SJ, Richardson AMM, Mohammed CL (2006) Brown rot in inner heartwood: Why large logs support characteristic saproxylic beetle assemblages of conservation concern. In: Insect Biodiversity and Dead Wood. Proceedings of A Symposium at the International Congress of Entomology, Brisbane, Australia, August 2004 (eds Grove SJ, Hanula JL), pp. 42-56. US Department of Agriculture, Forest Service, Southern Research Station, Athens, Asheville, NC. |
[58] |
Yin R, Eisenhauer N, Auge H, Purahong W, Schmidt A, Schädler M (2019) Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology and Biochemistry, 131, 141-148.
DOI |
[59] | Yin WY (1992) Subtropical Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英 (1992) 中国亚热带土壤动物. 科学出版社, 北京.] | |
[60] | Yin WY (1998) Pictorical Key to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[61] | Zhang AJ, Zhang J, Li JJ, Liu ZG, Zhang DJ (2020) Characteristics of soil faunal community structure before and after the rotation period of Eucalyptus grandis plantations with various densities. Acta Ecologica Sinica, 40, 808-821. (in Chinese with English abstract) |
[ 张阿娟, 张健, 李金金, 刘志刚, 张丹桔 (2020) 轮伐期前后不同密度巨桉(Eucalyptus grandis)人工林土壤动物群落结构特征. 生态学报, 40, 808-821.] | |
[62] |
Zhang Y, Jin GZ (2016) Effects of decay classes and diameter classes on physico-chemical properties of Pinus koraiensis log in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 40, 1276-1288. (in Chinese with English abstract)
DOI URL |
[ 张瑜, 金光泽 (2016) 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响. 植物生态学报, 40, 1276-1288.]
DOI |
|
[63] |
Zhou L, Dai LM, Gu HY, Zhong L (2007) Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. Journal of Forestry Research, 18, 48-54.
DOI URL |
[64] |
Zuo J, Berg MP, van Hal J, Goudzwaard L, Hefting MM, Poorter L, Sterck FJ, Cornelissen JHC (2021) Fauna community convergence during decomposition of deadwood across tree species and forests. Ecosystems, 24, 926-938.
DOI URL |
[65] |
Zuo J, Cornelissen JHC, Hefting MM, Sass-Klaassen U, van Hal J, Goudzwaard L, Liu JC, Berg MP (2016) The whole story: Facilitation of dead wood fauna by bark beetles? Soil Biology and Biochemistry, 95, 70-77.
DOI URL |
[66] |
Zuo J, Fonck M, van Hal J, Cornelissen JHC, Berg MP (2014) Diversity of macro-detritivores in dead wood is influenced by tree species, decay stage and environment. Soil Biology and Biochemistry, 78, 288-297.
DOI URL |
[67] |
Zuo J, Hefting MM, Berg MP, van Hal J, Goudzwaard L, Liu JC, Sass-klaassen U, Sterck FJ, Poorter L, Cornelissen JHC (2018) Is there a tree economics spectrum of decomposability? Soil Biology and Biochemistry, 119, 135-142.
DOI URL |
[1] | Yujie Xue, Anpeng Cheng, Shan Li, Xiaojuan Liu, Jingwen Li. The effects of environment and species diversity on shrub survival in subtropical forests [J]. Biodiv Sci, 2023, 31(3): 22443-. |
[2] | Xi Tian, Wencong Liu, Jiesheng Rao, Xiaofeng Wang, Tao Yang, Xi Chen, Qiuyu Zhang, Qiming Liu, Yanxiao Xu, Xu Zhang, Zehao Shen. Patterns and causes of forest gap disturbance in a semi-humid evergreen broadleaved forest in the Jizu Mountains, Yunnan [J]. Biodiv Sci, 2023, 31(11): 23219-. |
[3] | Haifeng Yao, Saichao Zhang, Huayuan Shangguan, Zhipeng Li, Xin Sun. Effects of urbanization on soil fauna community structure and diversity [J]. Biodiv Sci, 2022, 30(12): 22547-. |
[4] | Jianwei Cheng, Yadong Wang, Yanan Wang, Ying Li, Ying Guo, Zheng Bai, Xinmin Liu, Frank Yonghong Li. Effects of soil macro- and meso-fauna on the decomposition of cattle and horse dung pats in a semi-arid steppe [J]. Biodiv Sci, 2022, 30(12): 22575-. |
[5] | Siyao Liu, Zhu Li, Xin Ke, Lina Sun, Longhua Wu, Jiejie Zhao. Community characteristics of soil collembola around a typical mercury-thallium mining area in Guizhou Province [J]. Biodiv Sci, 2022, 30(12): 22265-. |
[6] | Shenglei Fu, Manqiang Liu, Weixin Zhang, Yuanhu Shao. A review of recent advances in the study of geographical distribution and ecological functions of soil fauna diversity [J]. Biodiv Sci, 2022, 30(10): 22435-. |
[7] | Yumei Pan, Naili Zhang. Effects of tree diversity on enzyme activity in litter of a subtropical forest ecosystem [J]. Biodiv Sci, 2021, 29(11): 1447-1460. |
[8] | Xinyang Wang, Cheng Jin, Li Huang, Lihua Zhou, Mingming Zheng, Shenhua Qian, Yongchuan Yang. Plant diversity and species replacement in Chinese Buddhist temples [J]. Biodiv Sci, 2020, 28(6): 668-677. |
[9] | Wang Shitong, Wu Hao, Liu Mengting, Zhang Jiaxin, Liu Jianming, Meng Hongjie, Xu Yaozhan, Qiao Xiujuan, Wei Xinzeng, Lu Zhijun, Jiang Mingxi. Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China [J]. Biodiv Sci, 2018, 26(7): 749-759. |
[10] | Yu Zhang, Zhenggao Xiao, Linhui Jiang, Lei Qian, Xiaoyun Chen, Fajun Chen, Feng Hu, Manqiang Liu. Nitrogen levels modify earthworm-mediated tomato growth and resistance to pests [J]. Biodiv Sci, 2018, 26(12): 1296-1307. |
[11] | Mengru Wang, Shenglei Fu, Haixiang Xu, Meina Wang, Leilei Shi. Ecological functions of millipedes in the terrestrial ecosystem [J]. Biodiv Sci, 2018, 26(10): 1051-1059. |
[12] | Xiuqin Yin, Yan Tao, Haixia Wang, Chen Ma, Xinchang Kou, Huan Xu, Dong Cui. Forest soil fauna ecology in Northeast China: Review and prospect [J]. Biodiv Sci, 2018, 26(10): 1083-1090. |
[13] | Yining Wu, He Wang, Haixiu Zhong, Nan Xu, Jinbo Li, Jifeng Wang, Hongwei Ni, Hongfei Zou. The response of diverse soil fauna communities to elevated CO2 concentrations in Sanjiang Plain [J]. Biodiv Sci, 2018, 26(10): 1127-1132. |
[14] | Yuanjie Xu, Dunmei Lin, Ming Shi, Yanjie Xie, Yizhi Wang, Zhenhua Guan, Jianying Xiang. Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province [J]. Biodiv Sci, 2017, 25(1): 23-33. |
[15] | Zhijun Lu, Fuling Liu, Hao Wu, Mingxi Jiang. Species composition, size class, and spatial patterns of snags in the Badagongshan (BDGS) mixed evergreen and deciduous broad-leaved forest in central China [J]. Biodiv Sci, 2015, 23(2): 167-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn