Biodiv Sci ›› 2024, Vol. 32 ›› Issue (4): 23419. DOI: 10.17520/biods.2023419 cstr: 32101.14.biods.2023419
• Original Papers: Microbial Diversity • Previous Articles Next Articles
Mengyao Zheng, Yuan Li, Xuerong Wang, Yue Zhang, Tong Jia*()
Received:
2023-11-06
Accepted:
2024-02-27
Online:
2024-04-20
Published:
2024-03-28
Contact:
* E-mail: Mengyao Zheng, Yuan Li, Xuerong Wang, Yue Zhang, Tong Jia. Soil protozoa community assembly mechanism in different vegetation types of Luya Mountain[J]. Biodiv Sci, 2024, 32(4): 23419.
植被类型 Vegetation type | 地理位置坐标 Geographic coordinates | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope |
---|---|---|---|---|
草地 Grassland | 111°50′ E 38°43′ N | 2,750 | 南坡 South slope | 0° |
灌丛 Shrub | 111°50′ E 38°43′ N | 2,750 | 南坡 South slope | 0° |
森林 Forest | 111°54′ E 38°44′N | 2,280 | 半阴坡 Semi-shady slope | 9.8° |
Table 1 The information of sampling sites in Luya Mountain
植被类型 Vegetation type | 地理位置坐标 Geographic coordinates | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope |
---|---|---|---|---|
草地 Grassland | 111°50′ E 38°43′ N | 2,750 | 南坡 South slope | 0° |
灌丛 Shrub | 111°50′ E 38°43′ N | 2,750 | 南坡 South slope | 0° |
森林 Forest | 111°54′ E 38°44′N | 2,280 | 半阴坡 Semi-shady slope | 9.8° |
植被类型 Vegetation type | 土壤含水量 SWC | pH | 总氮 TN (g/kg) | 总碳 TC (g/kg) | 总磷 TP (g/kg) | 硝态氮 NO3--N (mg/kg) | 氨态氮 NH4+-N (g/kg) |
---|---|---|---|---|---|---|---|
草地 Grassland | 2.75 ± 0.29b | 6.53 ± 0.28a | 4.88 ± 0.57b | 53.49 ± 5.56a | 0.96 ± 0.43a | 1.23 ± 0.43a | 31.65 ± 4.51a |
灌丛 Shrub | 3.75 ± 0.17ab | 6.71 ± 0.27a | 5.80 ± 0.78a | 64.36 ± 9.25a | 0.83 ± 0.12b | 1.24 ± 0.46a | 24.91 ± 3.33b |
森林 Forest | 5.32 ± 2.29a | 6.51 ± 0.18a | 3.41 ± 0.62c | 57.57 ± 13.49a | 0.64 ± 0.07c | 1.14 ± 0.08a | 32.96 ± 4.30a |
Table 2 Physical and chemical properties of soils in different vegetation types
植被类型 Vegetation type | 土壤含水量 SWC | pH | 总氮 TN (g/kg) | 总碳 TC (g/kg) | 总磷 TP (g/kg) | 硝态氮 NO3--N (mg/kg) | 氨态氮 NH4+-N (g/kg) |
---|---|---|---|---|---|---|---|
草地 Grassland | 2.75 ± 0.29b | 6.53 ± 0.28a | 4.88 ± 0.57b | 53.49 ± 5.56a | 0.96 ± 0.43a | 1.23 ± 0.43a | 31.65 ± 4.51a |
灌丛 Shrub | 3.75 ± 0.17ab | 6.71 ± 0.27a | 5.80 ± 0.78a | 64.36 ± 9.25a | 0.83 ± 0.12b | 1.24 ± 0.46a | 24.91 ± 3.33b |
森林 Forest | 5.32 ± 2.29a | 6.51 ± 0.18a | 3.41 ± 0.62c | 57.57 ± 13.49a | 0.64 ± 0.07c | 1.14 ± 0.08a | 32.96 ± 4.30a |
Fig. 1 Analysis of protozoan community composition among different vegetation types. (A) Dominant phylum (relative abundance > 1%); (B) Dominant family (relative abundance of top 15).
植被类型 Vegetation type | OTUs Operational taxonomic units | Shannon-Wiener指数 Shannon-Wiener index | Simpson指数 Simpson index | Chao指数 Chao index | 覆盖度指数 Coverage index |
---|---|---|---|---|---|
草地 Grassland | 436.8 ± 32.175b | 4.879 ± 0.196a | 0.018 ± 0.048a | 522.537 ± 37.424b | 0.995 ± 0.006a |
灌丛 Shrub | 440.2 ± 127.095b | 4.747 ± 0.288a | 0.021 ± 0.059a | 538.556 ± 172.994b | 0.993 ± 0.003a |
森林 Forest | 576.2 ± 57.430a | 5.002 ± 0.225a | 0.017 ± 0.035a | 714.402 ± 77.434a | 0.990 ± 0.002b |
Table 3 Abundance and diversity of protozoan communities in different vegetation types (mean ± SE)
植被类型 Vegetation type | OTUs Operational taxonomic units | Shannon-Wiener指数 Shannon-Wiener index | Simpson指数 Simpson index | Chao指数 Chao index | 覆盖度指数 Coverage index |
---|---|---|---|---|---|
草地 Grassland | 436.8 ± 32.175b | 4.879 ± 0.196a | 0.018 ± 0.048a | 522.537 ± 37.424b | 0.995 ± 0.006a |
灌丛 Shrub | 440.2 ± 127.095b | 4.747 ± 0.288a | 0.021 ± 0.059a | 538.556 ± 172.994b | 0.993 ± 0.003a |
森林 Forest | 576.2 ± 57.430a | 5.002 ± 0.225a | 0.017 ± 0.035a | 714.402 ± 77.434a | 0.990 ± 0.002b |
Fig. 3 The relationship between soil protozoan community and environmental factors in different vegetation types based on phylum level. SWC, Soil water content; TC, Total carbon; TN, Total nitrogen; TP, Total phosphorus; NO3--N, Nitrate nitrogen; NH4+-N, Ammonium nitrogen. X- and Y-axes are environmental factors and species, respectively. R denotes the correlation coefficient.
Fig. 4 Redundancy analysis of soil protozoan community structure and environmental factors among different vegetation types. SWC, Soil water content; TC, Total carbon; TN, Total nitrogen; TP, Total phosphorus; NO3--N, Nitrate nitrogen; NH4+-N, Ammonium nitrogen; Red and blue lines represent environmental factors and the dominant protozoan phylum, respectively.
Fig. 5 βNTI value of soil protozoan community in different vegetation types and the proportion of community assembly process. βNTI, β-nearest taxon index; Hod, Homogenizing dispersal; Und: Undominated processes.
Fig. 6 Co-occurrence network of soil protozoa in different vegetation types. A node represents a family and each colour represents a phylum. Node size is proportional to abundance, and nodes with significant correlation are connected by lines, with green indicating positive correlation and red negative correlation. (A) Grassland; (B) Shrub; (C) Forest. Cer, Cercozoa; Cil, Ciliophora; Con, Conosa; Lob, Lobosa; Cho, Choanoflagellida; Sag, Sagenista; Opa, Opalozoa; Api, Apicomplexa; Cen, Centroheliozoa; Per, Perkinsea; Met, Metamonada; Mes, Mesomycetozoa; Din, Dinoflagellata; Chr, Chrompodellids; Bre, Breviatea; Hil, Hilomonadea; Hem, Hemimastigophora; Apu, Apusomonadidae.
共现网络拓扑学性质 Topological properties of co-occurring networks | 草地 Grassland | 灌丛 Shrub | 森林 Forest |
---|---|---|---|
节点 Nodes | 313 | 275 | 287 |
边数 Edges | 4,580 | 3,598 | 3,103 |
平均度 Average degree | 29.265 | 26.167 | 21.624 |
网络密度 Network density | 0.094 | 0.096 | 0.076 |
模块化 Modularity | 0.758 | 0.764 | 0.665 |
平均聚类系数 Average clustering coefficient | 0.753 | 0.774 | 0.649 |
平均路径长度 Average path length | 3.698 | 3.914 | 3.378 |
正相关关系 Positive correlation (%) | 95.09 | 94.8 | 82.57 |
负相关关系 Negative correlation (%) | 4.91 | 5.2 | 17.43 |
Table 4 Topological properties of molecular ecological network diagram of soil protozoan communities
共现网络拓扑学性质 Topological properties of co-occurring networks | 草地 Grassland | 灌丛 Shrub | 森林 Forest |
---|---|---|---|
节点 Nodes | 313 | 275 | 287 |
边数 Edges | 4,580 | 3,598 | 3,103 |
平均度 Average degree | 29.265 | 26.167 | 21.624 |
网络密度 Network density | 0.094 | 0.096 | 0.076 |
模块化 Modularity | 0.758 | 0.764 | 0.665 |
平均聚类系数 Average clustering coefficient | 0.753 | 0.774 | 0.649 |
平均路径长度 Average path length | 3.698 | 3.914 | 3.378 |
正相关关系 Positive correlation (%) | 95.09 | 94.8 | 82.57 |
负相关关系 Negative correlation (%) | 4.91 | 5.2 | 17.43 |
[1] | Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634-641. |
[2] | Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N (2013) Global biogeography of highly diverse protistan communities in soil. The ISME Journal, 7, 652-659. |
[3] |
Brazeau HA, Schamp BS (2019) Examining the link between competition and negative co-occurrence patterns. Oikos, 128, 1358-1366.
DOI |
[4] | Carr A, Diener C, Baliga NS, Gibbons SM (2019) Use and abuse of correlation analyses in microbial ecology. The ISME Journal, 13, 2647-2655. |
[5] |
Ceja-Navarro JA, Wang Y, Ning DL, Arellano A, Ramanculova L, Yuan MM, Byer A, Craven KD, Saha MC, Brodie EL, Pett-Ridge J, Firestone MK (2021) Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Microbiome, 9, 96.
DOI PMID |
[6] | Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351-2363. |
[7] | Che RX, Wang SP, Wang YF, Xu ZH, Wang WJ, Rui YC, Wang F, Hu JM, Tao J, Cui XY (2019) Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biology and Biochemistry, 139, 107611. |
[8] | Chen RR, Zhang JW, Dong Y, Lin XG, Feng YZ (2021) Effects of salinity on soil bacterial diversity and assembly processes in coastal soils. Chinese Journal of Applied Ecology, 32, 1816-1824. (in Chinese with English abstract) |
[陈瑞蕊, 张建伟, 董洋, 林先贵, 冯有智 (2021) 盐度对滨海土壤细菌多样性和群落构建过程的影响. 应用生态学报, 32, 1816-1824.]
DOI |
|
[9] |
Chen YL, Yang X, Fu W, Chen BD, Hu HW, Feng K, Geisen S (2022) Conversion of natural grassland to cropland alters microbial community assembly across Northern China. Environmental Microbiology, 24, 5630-5642.
DOI PMID |
[10] | Chen ZH, Liang X, Li YC, Li YF, Xu QF, Wu QF, Li SH, Shen ZM (2017) Effects of different fertilization regimes on soil fungal communities under Phyllostachys violascens stand. Chinese Journal of Applied Ecology, 28, 1168-1176. (in Chinese with English abstract) |
[陈志豪, 梁雪, 李永春, 李永夫, 徐秋芳, 邬奇峰, 李松昊, 沈振明 (2017) 不同施肥模式对雷竹林土壤真菌群落特征的影响. 应用生态学报, 28, 1168-1176.]
DOI |
|
[11] |
Du XF, Deng Y, Li SZ, Escalas A, Feng K, He Q, Wang ZJ, Wu YN, Wang DR, Peng X, Wang S (2021) Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process. Molecular Ecology, 30, 1072-1085.
DOI PMID |
[12] |
Fiore-Donno AM, Richter-Heitmann T, Bonkowski M (2020) Contrasting responses of protistan plant parasites and phagotrophs to ecosystems, land management and soil properties. Frontiers in Microbiology, 11, 1823.
DOI PMID |
[13] |
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E (2018) Soil protists: A fertile frontier in soil biology research. FEMS Microbiology Reviews, 42, 293-323.
DOI PMID |
[14] |
Geisen S, Xiong W, Song Y, Yang K, Shen Q (2020) Rhizosphere protists are key determinants of plant health. Microbiome, 8, 27.
DOI PMID |
[15] | Grossmann L, Jensen M, Heider D, Jost S, Glücksman E, Hartikainen H, Mahamdallie SS, Gardner M, Hoffmann D, Bass D, Boenigk J (2016) Protistan community analysis: Key findings of a large-scale molecular sampling. The ISME Journal, 10, 2269-2279. |
[16] | Grujcic V, Nuy JK, Salcher MM, Shabarova T, Kasalicky V, Boenigk J, Jensen M, Simek K (2018) Cryptophyta as major bacterivores in freshwater summer plankton. The ISME Journal, 12, 1668-1681. |
[17] |
Guo H, Mao ZQ, Liu XL (2011) Research progress of interaction between plant and microorganism. Chinese Agricultural Science Bulletin, 27(9), 28-33. (in Chinese with English abstract)
DOI |
[国辉, 毛志泉, 刘训理 (2011) 植物与微生物互作的研究进展. 中国农学通报, 27(9), 28-33.] | |
[18] | Han DX, Wang N, Sun X, Hu YB, Feng FJ (2018) Biogeo- graphical distribution of bacterial communities in Changbai Mountain, Northeast China. Microbiology Open, 7, e00529. |
[19] |
Howe AT, Bass D, Vickerman K, Chao EE, Cavalier-Smith T (2009) Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa). Protist, 160, 159-189.
DOI PMID |
[20] | Islam W, Saqib HSA, Tayyab M, Wang ZY, Ding XX, Su XP, Huang ZQ, Chen HYH (2022) Natural forest chrono- sequence maintains better soil fertility indicators and assemblage of total belowground soil biota than Chinese fir monoculture in subtropical ecosystem. Journal of Cleaner Production, 334, 130228. |
[21] | Jia T, Liang XX, Guo TY, Wu TH, Chai BF (2022) Bacterial community succession and influencing factors for Imperata cylindrica litter decomposition in a copper tailings area of China. Science of the Total Environment, 815, 152908. |
[22] | Liang GH, Wu JP, Xiong X, Wu XY, Chu GW, Zhou GY, Zeng RS, Zhang DQ (2015) Responses of soil pH value and soil microbial biomass carbon and nitrogen to simulated acid rain in three successional subtropical forests at Dinghushan nature reserve. Ecology and Environmental Sciences, 24, 911-918. (in Chinese with English abstract) |
[梁国华, 吴建平, 熊鑫, 吴小映, 褚国伟, 周国逸, 曾任森, 张德强 (2015) 鼎湖山不同演替阶段森林土壤pH值和土壤微生物量碳氮对模拟酸雨的响应. 生态环境学报, 24, 911-918.]
DOI |
|
[23] | Lin CY, Li XL, Zhang YX, Sun HF, Li CY, Jin LQ, Yang XG, Liu K (2021) Responses of different degradation stages of alpine wetland on soil microbial community in the Yellow River source zone. Environmental Science, 42, 3971-3984. (in Chinese with English abstract) |
[林春英, 李希来, 张玉欣, 孙华方, 李成一, 金立群, 杨鑫光, 刘凯 (2021) 黄河源区高寒沼泽湿地土壤微生物群落结构对不同退化的响应. 环境科学, 42, 3971-3984.] | |
[24] | Luo ZM, Liu JX, Zhou YY, Du JQ, Wu Q, Chai BF (2021) Community structures and diversity patterns of the soil protist communities along an altitudinal gradient in a subalpine grassland. Acta Ecologica Sinica, 41, 2783-2793. (in Chinese with English abstract) |
[罗正明, 刘晋仙, 周妍英, 杜京旗, 吴强, 柴宝峰 (2021) 亚高山草地土壤原生生物群落结构和多样性海拔分布格局. 生态学报, 41, 2783-2793.] | |
[25] | Meira BR, Lansac-Toha FM, Segovia BT, Buosi PRB, Lansac-Tôha FA, Velho LFM (2018) The importance of herbivory by protists in lakes of a tropical floodplain system. Aquatic Ecology, 52, 193-210. |
[26] |
Mo YY, Peng F, Gao XF, Xiao P, Logares R, Jeppesen E, Ren KX, Xue YY, Yang J (2021) Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome, 9, 128.
DOI PMID |
[27] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009) Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI |
[牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
DOI |
|
[28] | Ren QR, Mao XY, Qi XJ, Liu JX, Jia T, Wu TH, Chai BF (2023) Distribution patterns and driving mechanism of soil protozoan community at the different depths of Larix principis-chinensis forest in the Luya Mountain, China. Chinese Journal of Applied Ecology, 34, 1395-1403. (in Chinese with English abstract) |
[任倩茹, 毛晓雅, 齐晓君, 刘晋仙, 贾彤, 吴铁航, 柴宝峰 (2023) 芦芽山华北落叶松林不同深度土壤原生动物群落分布格局及驱动机制. 应用生态学报, 34, 1395-1403.]
DOI |
|
[29] | Salmeron R, García CB, García J (2018) Variance inflation factor and condition number in multiple linear regression. Journal of statistical computation and simulation. Journal of Statistical Computation and Simulation, 88, 2365-2384. |
[30] | Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biology and Biochemistry, 31, 831-838. |
[31] |
Shi Y, Li YT, Xiang XJ, Sun RB, Yang T, He D, Zhang KP, Ni YY, Zhu YG, Adams JM, Chu HY (2018) Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome, 6, 27.
DOI PMID |
[32] | Stegen JC, Lin XJ, Fredrickson JK, Chen XY, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7, 2069-2079. |
[33] | Stegen JC, Lin XJ, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 6, 1653-1664. |
[34] | Wang C, Li YF, Xu RL (2017) Comparative study on community structure of Sarcodina in soils under different vegetations in the Dinghu Mountain. Soils, 49, 580-587. (in Chinese with English abstract) |
[王超, 李亚芳, 徐润林 (2017) 鼎湖山不同植被类型下土壤肉足虫群落结构的比较研究. 土壤, 49, 580-587.] | |
[35] | Wang XR, Zheng MY, Zhang Y, Chen Y, Zhao LJ, Chai BF, Jia T (2023) Stoichiometric soil microbial and enzymatic characteristics under three different plantation types in China’s Luya Mountain. Forests, 14, 558. |
[36] | Wang Y, Ding GD, Liu MJ, Gao GL, Yu MH, Li X (2022) Influence of different vegetation types on soil microbial characteristics of typical forest land in Yulin sandy area. Chinese Journal of Soil Science, 53, 907-918. (in Chinese with English abstract) |
[王岳, 丁国栋, 刘梦婕, 高广磊, 于明含, 李旭 (2022) 榆林沙区典型林地不同植被类型对土壤微生物群落结构的影响. 土壤通报, 53, 907-918.] | |
[37] | Wang Z, Liu Y, Wang F, Wang YC (2023) Effects of vegetation types and seasonal dynamics on the diversity and function of soil bacterial communities in the upper reaches of the Heihe River. Environmental Science, 44, 6339-6353. (in Chinese with English abstract) |
[王竹, 刘扬, 王芳, 王义成 (2023) 黑河上游不同植被类型土壤细菌群落多样性、功能及季节动态. 环境科学, 44, 6339-6353.] | |
[38] |
Wu LK, Lin XM, Lin WX (2014) Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310. (in Chinese with English abstract)
DOI |
[吴林坤, 林向民, 林文雄 (2014) 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI |
|
[39] | Wu XG, Guo JP, Yang XY, Tian XP (2011) Soil organic carbon storage and profile inventory in the different vegetation types of Luya Mountain. Acta Ecologica Sinica, 31, 3009-3019. (in Chinese with English abstract) |
[武小钢, 郭晋平, 杨秀云, 田旭平 (2011) 芦芽山典型植被土壤有机碳剖面分布特征及碳储量. 生态学报, 31, 3009-3019.] | |
[40] | Xiong W, Jousset A, Li R, Delgado-Baquerizo M, Bahram M, Logares R, Wilden B, de Groot GA, Amacker N, Kowalchuk GA, Shen QR, Geisen S (2021) A global overview of the trophic structure within microbiomes across ecosystems. Environment International, 151, 106438. |
[41] | Zhang K, Zuo XY, Hu YL, Yue MY, Lü XC, Yao JY, Yang JY (2022) Community structure of soil fauna of different vegetation types in Saihanba. Forestry and Ecological Sciences, 37, 223-237. (in Chinese with English abstract) |
[张珂, 左鑫钰, 胡娅丽, 岳妹颖, 吕晓翠, 姚巨云, 杨晋宇 (2022) 塞罕坝不同植被类型地表土壤动物群落特征. 林业与生态科学, 37, 223-237.] | |
[42] | Zhang W, Zhang H (2008) Spacial distribution characteristics of soil active organic carbon in three alpine meadows in eastern Qinghai-Tibetan Plateau. Journal of Mountain Science, 26, 205-211. (in Chinese with English abstract) |
[张伟, 张宏 (2008) 青藏高原东缘红原地区三种不同草甸土壤活性碳特征. 山地学报, 26, 205-211.] |
[1] | Bin Li, Pengfei Song, Haifeng Gu, Bo Xu, Daoxin Liu, Feng Jiang, Chengbo Liang, Meng Zhang, Hongmei Gao, Zhenyuan Cai, Tongzuo Zhang. Bird community diversity patterns and their drivers in the Qinghai region of Kunlun Mountains [J]. Biodiv Sci, 2024, 32(4): 23406-. |
[2] | Rui Qu, Zhenjun Zuo, Youxin Wang, Liangjian Zhang, Zhigang Wu, Xiujuan Qiao, Zhong Wang. The biogeochemical niche based on elementome and its applications in different ecosystems [J]. Biodiv Sci, 2024, 32(4): 23378-. |
[3] | Shuhan Yang, He Wang, Lei Chen, Yingfei Liao, Guang Yan, Yining Wu, Hongfei Zou. Effects of heterogeneous habitat on soil nematode community characteristics in the Songnen Plain [J]. Biodiv Sci, 2024, 32(1): 23295-. |
[4] | Xiaomin Duan, Jiajia Li, Jingyu Li, Yannan Li, Cunxia Yuan, Yingna Wang, Jianli Liu. Microbial community diversity among different soil particle sizes of mossy biocrusts-soil continuum in the southeastern Tengger Desert [J]. Biodiv Sci, 2023, 31(9): 23131-. |
[5] | Shengxian Yang, Qing Yang, Xiaodong Li, Xin Chao, Huiqiu Liu, Lanruoxue Wei, Sang Ba. Deterministic processes dominate the geographic distribution pattern and community assembly of phytoplankton in typical plateau rivers [J]. Biodiv Sci, 2023, 31(7): 23092-. |
[6] | Qing Yang, Xiaodong Li, Shengxian Yang, Xin Chao, Huiqiu Liu, Sang Ba. Protozoan community diversity and its impact factor in the middle reaches of the Yarlung Zangbo River in the wet season [J]. Biodiv Sci, 2023, 31(4): 22500-. |
[7] | Jiawen Sang, Chuangye Song, Ningxia Jia, Yuan Jia, Changcheng Liu, Xianguo Qiao, Lin Zhang, Weiying Yuan, Dongxiu Wu, Linghao Li, Ke Guo. Vegetation survey and mapping on the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2023, 31(3): 22430-. |
[8] | Fang Du, Xiaoying Rong, Peng Xu, Benfeng Yin, Yuanming Zhang. Bacterial diversity and community assembly responses to precipitation in the Gurbantunggut Desert [J]. Biodiv Sci, 2023, 31(2): 22492-. |
[9] | Jianyu Dong, Xin Sun, Qipeng Zhan, Yuyang Zhang, Xiumei Zhang. Patterns and drivers of beta diversity of subtidal macrobenthos community on the eastern coast of Laizhou Bay [J]. Biodiv Sci, 2022, 30(3): 21388-. |
[10] | Yin Wang, Jianming Wang, Mengjun Qu, Jingwen Li. Plant community assembly processes and key drivers in an arid inland river basin [J]. Biodiv Sci, 2022, 30(2): 21419-. |
[11] | Siyao Liu, Zhu Li, Xin Ke, Lina Sun, Longhua Wu, Jiejie Zhao. Community characteristics of soil collembola around a typical mercury-thallium mining area in Guizhou Province [J]. Biodiv Sci, 2022, 30(12): 22265-. |
[12] | Yongqingcuomu , Xinqiang Xi, Kechang Niu. Effect of plant species loss on grassland caterpillar in alpine meadows [J]. Biodiv Sci, 2022, 30(11): 22069-. |
[13] | Xiangcheng Mi, Xugao Wang, Guochun Shen, Xubin Liu, Xiaoyang Song, Xiujuan Qiao, Gang Feng, Jie Yang, Zikun Mao, Xuehong Xu, Keping Ma. Chinese Forest Biodiversity Monitoring Network (CForBio): Twenty years of exploring community assembly mechanisms and prospects for future research [J]. Biodiv Sci, 2022, 30(10): 22504-. |
[14] | Cheng Gao, Liang-Dong Guo. Progress on microbial species diversity, community assembly and functional traits [J]. Biodiv Sci, 2022, 30(10): 22429-. |
[15] | Shaopeng Wang, Mingyu Luo, Yanhao Feng, Chengjin Chu, Dayong Zhang. Theoretical advances in biodiversity research [J]. Biodiv Sci, 2022, 30(10): 22410-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn