Biodiv Sci ›› 2022, Vol. 30 ›› Issue (8): 21443. DOI: 10.17520/biods.2021443
Special Issue: 生物入侵
• Original Papers: Plant Diversity • Next Articles
Bo Wei1,2, Linshan Liu1, Changjun Gu1,2, Haibin Yu3, Yili Zhang1,2,*(), Binghua Zhang1,2, Bohao Cui1,2, Dianqing Gong1,2, Yanli Tu4
Received:
2021-11-07
Accepted:
2022-03-29
Online:
2022-08-20
Published:
2022-08-31
Contact:
Yili Zhang
Bo Wei, Linshan Liu, Changjun Gu, Haibin Yu, Yili Zhang, Binghua Zhang, Bohao Cui, Dianqing Gong, Yanli Tu. The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China[J]. Biodiv Sci, 2022, 30(8): 21443.
1971-1980 | 1971-1990 | 1971-2000 | 1971-2010 | 1971-2020 | |
---|---|---|---|---|---|
生态位稳定性 Niche stability (NS) | 0.995 | 0.953 | 0.909 | 0.881 | 0.859 |
生态位扩张 Niche expansion (NE) | 0.005 | 0.047 | 0.091 | 0.119 | 0.141 |
Table 1 Climate niche stability and expansion of Ageratina adenophora in different periods compared with the native region
1971-1980 | 1971-1990 | 1971-2000 | 1971-2010 | 1971-2020 | |
---|---|---|---|---|---|
生态位稳定性 Niche stability (NS) | 0.995 | 0.953 | 0.909 | 0.881 | 0.859 |
生态位扩张 Niche expansion (NE) | 0.005 | 0.047 | 0.091 | 0.119 | 0.141 |
云南 Yunnan | 广西 Guangxi | 贵州 Guizhou | 四川 Sichuan | 重庆 Chongqing | 西藏 Xizang | |
---|---|---|---|---|---|---|
生态位稳定性 Niche stability (NS) | 0.959 | 0.990 | 0.902 | 0.832 | 1.000 | 1.000 |
生态位扩张 Niche expansion (NE) | 0.041 | 0.010 | 0.098 | 0.168 | 0 | 0 |
Table 2 Climate niche stability and expansion of Ageratina adenophora in the different invasive regions compared with the native region
云南 Yunnan | 广西 Guangxi | 贵州 Guizhou | 四川 Sichuan | 重庆 Chongqing | 西藏 Xizang | |
---|---|---|---|---|---|---|
生态位稳定性 Niche stability (NS) | 0.959 | 0.990 | 0.902 | 0.832 | 1.000 | 1.000 |
生态位扩张 Niche expansion (NE) | 0.041 | 0.010 | 0.098 | 0.168 | 0 | 0 |
Fig. 5 Multivariate environmental similarity surface (MESS), the most dissimilar variable (MoD) of seven bioclimatic variables that affect the distribution of Ageratina adenophora. Bio 1, Annual mean temperature; Bio 2, Mean diurnal range; Bio 6, Min temperature of coldest month; Bio 9, Mean temperature of driest quarter; Bio 12, Annual precipitation; Bio 18, Precipitation of warmest quarter; Bio 19, Precipitation of coldest quarter.
[1] |
Aiello-Lammens ME, Boria RA, Aleksandar R, Bruno V, Anderson RP (2015) spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541-545.
DOI URL |
[2] | Atwater DZ, Ervine C, Barney JN (2018) Climatic niche shifts are common in introduced plants. Nature Ecology & Evolution, 2, 34-43. |
[3] | Bala S, Gupta RC (2014) Meiotic behaviour in two triploids: Erigiron annus and Eupatorium adenophorum (Asteraceae). Biolife, 2, 679-686. |
[4] |
Banerjee AK, Mukherjee A, Guo WX, Liu Y, Huang YL (2019) Spatio-temporal patterns of climatic niche dynamics of an invasive plant Mikania micrantha Kunth and its potential distribution under projected climate change. Frontiers in Ecology and Evolution, 7, 291.
DOI URL |
[5] |
Bustamante RO, Alves L, Goncalves E, Duarte M, Herrera I (2020) A classification system for predicting invasiveness using climatic niche traits and global distribution models: Application to alien plant species in Chile. NeoBiota, 63, 127-146.
DOI URL |
[6] |
Christina M, Limbada F, Atlan A (2020) Climatic niche shift of an invasive shrub (Ulex europaeus): A global scale comparison in native and introduced regions. Journal of Plant Ecology, 13, 42-50.
DOI URL |
[7] |
di Cola V, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A (2017) ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774-787.
DOI URL |
[8] | Datta A, Kühn I, Ahmad M, Michalski S, Auge H (2017) Processes affecting altitudinal distribution of invasive Ageratina adenophora in western Himalaya: The role of local adaptation and the importance of different life-cycle stages. PLoS ONE, 12, e0187708. |
[9] | Datta A, Schweiger O, Kühn I (2019) Niche expansion of the invasive plant species Ageratina adenophora despite evolutionary constraints. Journal of Biogeography, 46, 1306-1315. |
[10] |
Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576.
DOI URL |
[11] |
Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology, 87, 1359-1367.
DOI URL |
[12] |
Duchoslav M, Jandová M, Kobrlová L, Šafářová L, Brus J, Vojtěchová K (2020) Intricate distribution patterns of six cytotypes of Allium oleraceum at a continental scale: Niche expansion and innovation followed by niche contraction with increasing ploidy level. Frontiers in Plant Science, 11, 591137.
DOI URL |
[13] |
Early R, Keith SA (2019) Geographically variable biotic interactions and implications for species ranges. Global Ecology and Biogeography, 28, 42-53.
DOI |
[14] |
Engler R, Guisan A (2009) MigClim: Predicting plant distribution and dispersal in a changing climate. Diversity and Distributions, 15, 590-601.
DOI URL |
[15] |
Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package-seamless integration of dispersal constraints into projections of species distribution models. Ecography, 35, 872-878.
DOI URL |
[16] |
Fan JY, Li HP, Yang Z, Zhu GP (2019) Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China. Biodiversity Science, 27, 140-148. (in Chinese with English abstract)
DOI URL |
[范靖宇, 李汉芃, 杨琢, 朱耿平 (2019) 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布. 生物多样性, 27, 140-148.]
DOI |
|
[17] |
Gu CJ, Tu YL, Liu LS, Wei B, Zhang YL, Yu HB, Wang XL, Yangjin ZG, Zhang BH, Cui BH (2021) Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecology and Evolution, 11, 12092-12113.
DOI URL |
[18] |
Hijmans RJ (2012) Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology, 93, 679-688.
PMID |
[19] | Hu ZJ, Zhang YL, Yu HB (2015) Simulation of Stipa purpurea distribution pattern on Tibetan Plateau based on MaxEnt model and GIS. Chinese Journal of Applied Ecology, 26, 505-511. (in Chinese with English abstract) |
[胡忠俊, 张镱锂, 于海彬 (2015) 基于MaxEnt模型和GIS的青藏高原紫花针茅分布格局模拟. 应用生态学报, 26, 505-511.] | |
[20] | Intergovernmental Panel on Climate Change IPCC (2021) Climate Change 2021:The Physical Science Basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge University Press, Cambridge. |
[21] |
Ju RT, Li H, Shih CJ, Li B (2012) Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611. (in Chinese with English abstract)
DOI URL |
[鞠瑞亭, 李慧, 石正人, 李博 (2012) 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
DOI |
|
[22] |
Kass JM, Muscarella R, Galante PJ, Bohl C, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M, Anderson RP (2021). ENMeval 2.0: redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12, 1602-1608.
DOI URL |
[23] |
Kumar RP, Singh JS (2020) Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators, 111, 106020.
DOI URL |
[24] | Li XX, Zhang QD, Zhu XZ (2017) Progress of the research on invasive plant species Eupatorium adenophorum over the last decade. Pratacultural Science, 34, 283-292. (in Chinese with English abstract) |
[李霞霞, 张钦弟, 朱珣之 (2017) 近十年入侵植物紫茎泽兰研究进展. 草业科学, 34, 283-292.] | |
[25] | Liu CL, Wolter C, Xian WW, Jeschke JM (2020) Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences, USA, 117, 23643-23651. |
[26] | Lu P, Sang WG, Ma KP (2005) Progress and prospects in research of an exotic invasive species, Eupatorium adenophorum. Acta Phytoecologica Sinica, 29, 1029-1037. (in Chinese with English abstract) |
[鲁萍, 桑卫国, 马克平 (2005) 外来入侵种紫茎泽兰研究进展与展望. 植物生态学报, 29, 1029-1037.]
DOI |
|
[27] | Ma SM, Wei B, Li XC, Luo C, Sun FF (2017) The impacts of climate change on the potential distribution of Haloxylon ammodendron. Chinese Journal of Ecology, 36, 1243-1250. (in Chinese with English abstract) |
[马松梅, 魏博, 李晓辰, 罗冲, 孙芳芳 (2017) 气候变化对梭梭植物适宜分布的影响. 生态学杂志, 36, 1243-1250.] | |
[28] |
Meier ES, Kienast F, Pearman PB, Svenning JC, Thuiller W, Araújo MB, Guisan A, Zimmermann NE (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography, 33, 1038-1048.
DOI URL |
[29] |
Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: Implications for biological control. Trends in Ecology & Evolution, 19, 417-422.
DOI URL |
[30] |
Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
DOI URL |
[31] |
Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
DOI PMID |
[32] |
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: An open-source release of Maxent. Ecography, 40, 887-893.
DOI URL |
[33] | Qiang S (1998) The history and status of the study on crofton weed (Eupatorium adenophorum Spreng.)—A worst worldwide weed. Journal of Wuhan Botanical Research, 16, 366-372. (in Chinese with English abstract) |
[强胜 (1998) 世界性恶性杂草——紫茎泽兰研究的历史及现状. 武汉植物学研究, 16, 366-372.] | |
[34] |
Quiroga RE, Premoli AC, Fernández RJ (2021) Niche dynamics in amphitropical desert disjunct plants: Seeking for ecological and species-specific influences. Global Ecology and Biogeography, 30, 370-383.
DOI URL |
[35] | R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2020-02-29) |
[36] | Su XC, Wang L, Li QL, Teng C (2014) Study of surface dry and wet conditions in Southwest China in recent 50 years. Journal of Natural Resources, 29, 104-116. (in Chinese with English abstract) |
[苏秀程, 王磊, 李奇临, 滕超 (2014) 近50a中国西南地区地表干湿状况研究. 自然资源学报, 29, 104-116.] | |
[37] |
Sun Y, Zhou ZS, Wang R, Müller-Schärer H (2017) Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia. Biodiversity Science, 25, 1285-1294. (in Chinese with English abstract)
DOI |
[孙燕, 周忠实, 王瑞, Müller-Schärer H (2017) 气候变化预计会减少东亚地区豚草的生物防治效果. 生物多样性, 25, 1285-1294.]
DOI |
|
[38] |
Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137-152.
DOI URL |
[39] | Tu YL, Liu LS, Liu ZQ, Yangjin ZG, Zhang LP (2018) Invasion status and countermeasures of malignant invasive plant (Ageratina adenophora) in Tibet. Tibet Science and Technology, (4), 71-75. (in Chinese) |
[土艳丽, 刘林山, 刘忠清, 央金卓嘎, 张黎鹏 (2018) 恶性入侵植物紫茎泽兰在西藏的入侵现状及应对建议. 西藏科技, ( 4), 71-75.] | |
[40] | Wang C, Lin HL, He L, Cao AC (2014) Research on responses of Eupatorium adenophorum’s potential distribution to climate change. Acta Prataculturae Sinica, 23, 20-30. (in Chinese with English abstract) |
[王翀, 林慧龙, 何兰, 曹坳程 (2014) 紫茎泽兰潜在分布对气候变化响应的研究. 草业学报, 23, 20-30.] | |
[41] | Wang R (2006) Historical Reconstruction of Invasion and Expansion and Potential Spread of Some Threatening Invasive Alien Species in China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[王瑞 (2006) 我国严重威胁性外来入侵植物入侵与扩散历史过程重建及其潜在分布区的预测. 博士学位论文, 中国科学院植物研究所, 北京.] | |
[42] |
Wang R, Wang YZ (2006) Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 12, 397-408.
DOI URL |
[43] | Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2008) Application of ecologic niche models in explanation of niche shift of invasive alien species. Acta Ecologica Sinica, 28, 4974-4981. (in Chinese with English abstract) |
[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英. 应用生态位模型研究外来入侵物种生态位漂移. 生态学报, 28, 4974-4981.] | |
[44] |
Wu TW, Lu YX, Fang YJ, Xin XG, Li L, Li WP, Jie WH, Zhang J, Liu YM, Zhang L, Zhang F, Zhang YW, Wu FH, Li JL, Chu M, Wang ZZ, Shi XL, Liu XW, Wei M, Huang AN, Zhang YC, Liu XH (2019) The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP 5 to CMIP6. Geoscientific Model Development, 12, 1573-1600.
DOI URL |
[45] | Xiang JW, Zhang LP, Deng Y, She DX, Zhang Q (2021) Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Engineering Journal of Wuhan University, 54, 46-57, 81. (in Chinese with English abstract) |
[向竣文, 张利平, 邓瑶, 佘敦先, 张琴 (2021) 基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估. 武汉大学学报(工学版), 54, 46-57, 81.] | |
[46] | Xie YX, Wang CY, Liu PJ, Peng MC, Gao J, Shu GB, Yuan T (2021) Road network features and its relationship to the dispersal and spread of Ageratina adenophora in Yunnan, China. Ecological Science, 40, 17-24. (in Chinese with English abstract) |
[谢映旭, 王崇云, 刘鹏举, 彭明春, 高杰, 戍国标, 袁婷 (2021) 云南路网特征及其与紫茎泽兰传播扩散的相关性分析. 生态科学, 40, 17-24.] | |
[47] | Yang RX (2003) The badly damaging invasive plant—Eupatorium adenophorum Spreng. Bulletin of Biology, 38, 20-21. (in Chinese) |
[杨蓉西 (2003) 危害严重的外来入侵植物——紫茎泽兰. 生物学通报, 38, 20-21.] | |
[48] |
Yu HB, Zhang YL, Gao JG, Qi W (2014) Visualizing patterns of genetic landscapes and species distribution of Taxus wallichiana (Taxaceae), based on GIS and ecological niche models. Journal of Resources and Ecology, 5, 193-202.
DOI URL |
[49] | Zhang D, Liu KJ, Ma SM, Wei B, Wang CC, Yan H (2022) The suitable distribution of alpine plant Sorbus tianschanica and its environmental driving factors. Acta Ecologica Sinica, 42, 700-709. (in Chinese with English abstract) |
[张丹, 刘凯军, 马松梅, 魏博, 王春成, 闫涵 (2022) 高山植物天山花楸的适宜分布及其环境驱动因子研究. 生态学报, 42, 700-709.] | |
[50] |
Zhang JP, Zhang YL, Liu LS, Nie Y (2011) Predicting potential distribution of Tibetan spruce (Picea smithiana) in Qomolangma (Mount Everest) National Nature Preserve using maximum entropy niche-based model. Chinese Geographical Science, 21, 417-426.
DOI URL |
[51] | Zhu GP, Gutierrez Illan J, Looney C, Crowder DW (2020) Assessing the ecological niche and invasion potential of the Asian giant hornet. Proceedings of the National Academy of Sciences, USA, 117, 24646-24648. |
[52] |
Zhu GP, Liu Q, Gao YB (2014) Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 22, 223-230. (in Chinese with English abstract)
DOI URL |
[朱耿平, 刘强, 高玉葆 (2014) 提高生态位模型转移能力来模拟入侵物种的潜在分布. 生物多样性, 22, 223-230.]
DOI |
|
[53] |
Zhu GP, Qiao HJ (2016) Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodiversity Science, 24, 1189-1196. (in Chinese with English abstract)
DOI URL |
[朱耿平, 乔慧捷 (2016) MaxEnt模型复杂度对物种潜在分布区预测的影响. 生物多样性, 24, 1189-1196.]
DOI |
|
[54] |
Zhu L, Ma KP (2010) On the niche stasis of intercontinental invasive plants. Biodiversity Science, 18, 547-558. (in Chinese with English abstract)
DOI URL |
[朱丽, 马克平 (2010) 洲际入侵植物生态位稳定性研究进展. 生物多样性, 18, 547-558.]
DOI |
[1] | Lixia Han, Yongjian Wang, Xuan Liu. Comparisons between non-native species invasion and native species range expansion [J]. Biodiv Sci, 2024, 32(1): 23396-. |
[2] | Jiajia Pu, Pingjun Yang, Yang Dai, Kexin Tao, Lei Gao, Yuzhou Du, Jun Cao, Xiaoping Yu, Qianqian Yang. Species identification and population genetic structure of non-native apple snails (Ampullariidea: Pomacea) in the lower reaches of the Yangtze River [J]. Biodiv Sci, 2023, 31(3): 22346-. |
[3] | Yanjie Liu, Wei Huang, Qiang Yang, Yu-Long Zheng, Shao-Peng Li, Hao Wu, Ruiting Ju, Yan Sun, Jianqing Ding. Research advances of plant invasion ecology over the past 10 years [J]. Biodiv Sci, 2022, 30(10): 22438-. |
[4] | Jing Yan, Xiaoling Yan, Huiru Li, Cheng Du, Jinshuang Ma. Composition, time of introduction and spatial-temporal distribution of naturalized plants in East China [J]. Biodiv Sci, 2021, 29(4): 428-438. |
[5] | He Weiming. Biological invasions: Are their impacts precisely knowable or not? [J]. Biodiv Sci, 2020, 28(2): 253-255. |
[6] | Zhang Jiazhen, Gao Chunlei, Li Yan, Sun Ping, Wang Zongling. Species composition of dinoflagellates cysts in ballast tank sediments of foreign ships berthed in Jiangyin Port [J]. Biodiv Sci, 2020, 28(2): 144-154. |
[7] | Wandong Yin, Mingke Wu, Baoliang Tian, Hongwei Yu, Qiyun Wang, Jianqing Ding. Effects of bio-invasion on the Yellow River basin ecosystem and its countermeasures [J]. Biodiv Sci, 2020, 28(12): 1533-1545. |
[8] | Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504. |
[9] | Yu Wensheng,Guo Yaolin,Jiang Jiajia,Sun Keke,Ju Ruiting. Comparison of the life history of a native insect Laelia coenosa with a native plant Phragmites australis and an invasive plant Spartina alterniflora [J]. Biodiv Sci, 2019, 27(4): 433-438. |
[10] | Fan Jingyu, Li Hanpeng, Yang Zhuo, Zhu Gengping. Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China [J]. Biodiv Sci, 2019, 27(2): 140-148. |
[11] | Shiguo Sun,Bin Lu,Xinmin Lu,Shuangquan Huang. On reproductive strategies of invasive plants and their impacts on native plants [J]. Biodiv Sci, 2018, 26(5): 457-467. |
[12] | Shaopeng Cui, Xiao Luo, Chunwang Li, Huijian Hu, Zhigang Jiang. Predicting the potential distribution of white-lipped deer using the MaxEnt model [J]. Biodiv Sci, 2018, 26(2): 171-176. |
[13] | Jianmin Chu, Yifu Li, Lei Zhang, Bin Li, Mingyuan Gao, Xiaoqian Tang, Jianwei Ni, Xinqiao Xu. Potential distribution range and conservation strategies for the endangered species Amygdalus pedunculata [J]. Biodiv Sci, 2017, 25(8): 799-806. |
[14] | Yan Sun, Zhongshi Zhou, Rui Wang, Heinz Müller-Schärer. Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia [J]. Biodiv Sci, 2017, 25(12): 1285-1294. |
[15] | Gengping Zhu, Huijie Qiao. Effect of the Maxent model’s complexity on the prediction of species potential distributions [J]. Biodiv Sci, 2016, 24(10): 1189-1196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn