Biodiv Sci ›› 2024, Vol. 32 ›› Issue (11): 24288. DOI: 10.17520/biods.2024288 cstr: 32101.14.biods.2024288
• Special Feature: Biological Invasion • Previous Articles Next Articles
Xuejiao Yuan1,2(), Yuanyuan Zhang2,3,*(
)(
), Yanliang Zhang1(
), Luyi Hu1(
), Weiguo Sang1,*(
)(
), Zheng Yang2,3(
), Qi Chen2,3
Received:
2024-07-01
Accepted:
2024-09-30
Online:
2024-11-20
Published:
2025-01-24
Contact:
E-mail: Supported by:
Xuejiao Yuan, Yuanyuan Zhang, Yanliang Zhang, Luyi Hu, Weiguo Sang, Zheng Yang, Qi Chen. Investigating the prediction ability of the species distribution model fitted with the historical distribution records of Chromolaena odorata[J]. Biodiv Sci, 2024, 32(11): 24288.
年 Year | 曲线下面积 Area under curve (AUC) | 遗漏率 Omission rate | 参数设置 Parameter settings (调控倍频/特征组合 Regularization multiplier/feature combination) | ||
---|---|---|---|---|---|
训练数据 Training data | 测试数据 Testing data | 训练数据 Training data | 测试数据 Testing data | ||
1934-1969 | 0.928 | 0.873 | 0.095 | 0.232 | 1.0/LQ 线性和二次型 Linear and quadratic |
1934-1989 | 0.899 | 0.881 | 0.098 | 0.152 | 1.5/H 片段化 Hinge |
1934-2009 | 0.878 | 0.887 | 0.099 | 0.131 | 1.0/L 线性 Linear |
1934-2024 | 0.849 | - | 0.102 | - | 1.0/LQ 线性和二次型 Linear and quadratic |
Table 1 The AUC value, omission rate of the 10% training presence and parameter settings of MaxEnt models
年 Year | 曲线下面积 Area under curve (AUC) | 遗漏率 Omission rate | 参数设置 Parameter settings (调控倍频/特征组合 Regularization multiplier/feature combination) | ||
---|---|---|---|---|---|
训练数据 Training data | 测试数据 Testing data | 训练数据 Training data | 测试数据 Testing data | ||
1934-1969 | 0.928 | 0.873 | 0.095 | 0.232 | 1.0/LQ 线性和二次型 Linear and quadratic |
1934-1989 | 0.899 | 0.881 | 0.098 | 0.152 | 1.5/H 片段化 Hinge |
1934-2009 | 0.878 | 0.887 | 0.099 | 0.131 | 1.0/L 线性 Linear |
1934-2024 | 0.849 | - | 0.102 | - | 1.0/LQ 线性和二次型 Linear and quadratic |
1934-1969 | 1934-1989 | 1934-2009 | 1934-2024 | |
---|---|---|---|---|
生态位稳定性 Niche stability | 1 | 1 | 0.92 | 0.91 |
生态位扩张性 Niche expansion | 0 | 0 | 0.08 | 0.09 |
生态位重叠 Niche overlap | 0.499 | 0.512 | 0.579 | 0.598 |
生态位等效性 Niche equivalence | 0.045 | 0.039 | 0.031 | 0.027 |
生态位相似性 Niche similarity N→I | 0.048 | 0.044 | 0.039 | 0.029 |
生态位相似性 Niche similarity I→N | 0.039 | 0.035 | 0.027 | 0.021 |
Table 2 Realized climate niche of Chromolaena odorata in different periods compared with the native region
1934-1969 | 1934-1989 | 1934-2009 | 1934-2024 | |
---|---|---|---|---|
生态位稳定性 Niche stability | 1 | 1 | 0.92 | 0.91 |
生态位扩张性 Niche expansion | 0 | 0 | 0.08 | 0.09 |
生态位重叠 Niche overlap | 0.499 | 0.512 | 0.579 | 0.598 |
生态位等效性 Niche equivalence | 0.045 | 0.039 | 0.031 | 0.027 |
生态位相似性 Niche similarity N→I | 0.048 | 0.044 | 0.039 | 0.029 |
生态位相似性 Niche similarity I→N | 0.039 | 0.035 | 0.027 | 0.021 |
[1] | Atwater DZ, Barney JN (2021) Climatic niche shifts in 815 introduced plant species affect their predicted distributions. Global Ecology and Biogeography, 30, 1671-1684. |
[2] | Bang A, Cuthbert RN, Haubrock PJ, Fernandez RD, Moodley D, Diagne C, Turbelin AJ, Renault D, Dalu T, Courchamp F (2022) Massive economic costs of biological invasions despite widespread knowledge gaps: A dual setback for India. Biological Invasions, 24, 2017-2039. |
[3] | Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018) Can species distribution models really predict the expansion of invasive species? PLoS ONE, 13, e0193085. |
[4] |
Blackburn TM, Bellard C, Ricciardi A (2019) Alien versus native species as drivers of recent extinctions. Frontiers in Ecology and the Environment, 17, 203-207.
DOI |
[5] | Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73-77. |
[6] | Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481-497. |
[7] |
Briscoe Runquist RD, Lake T, Tiffin P, Moeller DA (2019) Species distribution models throughout the invasion history of Palmer amaranth predict regions at risk of future invasion and reveal challenges with modeling rapidly shifting geographic ranges. Scientific Reports, 9, 2426.
DOI PMID |
[8] | Cola VD, Broennimann O, Petitpierre B, Breiner FT, D’Amen M, Randin C, Engler R, Pottier J, Pio D, Dubuis A, Pellissier L, Mateo RG, Hordijk W, Salamin N, Guisan A (2017) ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40, 774-787. |
[9] | Courchamp F, Fournier A, Bellard C, Bertelsmeier C, Bonnaud E, Jeschke JM, Russell JC (2017) Invasion biology: Specific problems and possible solutions. Trends in Ecology & Evolution, 32, 13-22. |
[10] | Cuthbert RN, Pattison Z, Taylor NG, Verbrugge L, Diagne C, Ahmed DA, Leroy B, Angulo E, Briski E, Capinha C, Catford JA, Dalu T, Essl F, Gozlan RE, Haubrock PJ, Kourantidou M, Kramer AM, Renault D, Wasserman RJ, Courchamp F (2021) Global economic costs of aquatic invasive alien species. Science of the Total Environment, 775, 145238. |
[11] | Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576. |
[12] | Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package-seamless integration of dispersal constraints into projections of species distribution models. Ecography, 35, 872-878. |
[13] | Essl F, Lenzner B, Bacher S, Bailey S, Capinha C, Daehler C, Dullinger S, Genovesi P, Hui C, Hulme PE, Jeschke JM, Katsanevakis S, Kühn I, Leung B, Liebhold A, Liu CL, MacIsaac HJ, Meyerson LA, Nuñez MA, Pauchard A, Pyšek P, Rabitsch W, Richardson DM, Roy HE, Ruiz GM, Russell JC, Sanders NJ, Sax DF, Scalera R, Seebens H, Springborn M, Turbelin A, van Kleunen M, von Holle B, Winter M, Zenni RD, Mattsson BJ, Roura-Pascual N (2020) Drivers of future alien species impacts: An expert-based assessment. Global Change Biology, 26, 4880-4893. |
[14] | Gan QL (2007) A malignant invasive plant Chromolaena odorata was found in Zhuxi. Hubei Daily, 2007-09-07, 004. (in Chinese) |
[甘啟良 (2007) 竹溪发现恶性入侵植物飞机草. 湖北日报, 2007年09月07日, 第004版.] | |
[15] | Guareschi S, Cancellario T, Oficialdegui FJ, Clavero M (2024) Insights from the past: Invasion trajectory and niche trends of a global freshwater invader. Global Change Biology, 30, e17059. |
[16] | Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C (2014) Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution, 29, 260-269. |
[17] | Guisan A, Theurillat JP (2000) Equilibrium modeling of alpine plant distribution: How far can we go? Phytocoenologia, 30, 353-384. |
[18] | Hijmans RJ, Phillips S, Leathwick J, Elith J (2020) Dismo: Species distribution modeling. R Package Version 1.3-3. https://CRAN.Rproject.org/package=dismo/. (accessed on 2024-04-22) |
[19] | Hill MP, Gallardo B, Terblanche JS (2017) A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 26, 679-689. |
[20] | Hulme PE (2017) Climate change and biological invasions: Evidence, expectations, and response options. Biological Reviews, 92, 1297-1313. |
[21] | Intergovernmental Panel on Climate Change (IPCC) (2021) Climate change 2021:The physical science basis. In: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge University Press, Cambridge. |
[22] | Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Pyšek P, Ricciardi A, Bacher S, Blackburn TM, Dick JTA, Evans T, Hulme PE, Kühn I, Mrugała A, Pergl J, Rabitsch W, Richardson DM, Sendek A, Winter M (2015) Ecological impacts of alien species: Quantification, scope, caveats, and recommendations. BioScience, 65, 55-63. |
[23] | Liu CL, Wolter C, Xian WW, Jeschke JM (2020) Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences, USA, 117, 23643-23651. |
[24] | Liu CL, Wolter C, Courchamp F, Roura-Pascual N, Jeschke JM (2022) Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology, 103, e3719. |
[25] | Lu P, Sang WG, Ma KP (2006) Activity of antioxidant enzymes in the invasive plant Eupatorium odoratum under various environmental stresses. Acta Ecologica Sinica, 26, 3578-3585. (in Chinese with English abstract) |
[鲁萍, 桑卫国, 马克平 (2006) 外来入侵种飞机草在不同环境胁迫下抗氧化酶系统的变化. 生态学报, 26, 3578-3585.] | |
[26] | Lustenhouwer N, Parker IM (2022) Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions. Journal of Biogeography, 49, 1481-1493. |
[27] | Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS, Broennimann O, Vittoz P, Dubuis A, Edwards ME, Binney HA, Guisan A (2013) Building the niche through time: Using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 22, 302-317. |
[28] | Marchioro CA, Krechemer FS (2024) Reconstructing the biological invasion of Tuta absoluta: Evidence of niche shift and its consequences for invasion risk assessment. Journal of Pest Science, 97, 127-141. |
[29] | Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36, 1058-1069. |
[30] | Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods in Ecology and Evolution, 5, 1198-1205. |
[31] | Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78, 419-433. |
[32] |
Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
DOI PMID |
[33] | Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: An open-source release of MaxEnt. Ecography, 40, 887-893. |
[34] | Qiao HJ, Peterson AT, Campbell LP, Soberón J, Ji LQ, Escobar LE (2016) NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805-813. |
[35] | Quan GM, Zhang JE, Xu HQ, Mao DJ, Xie JF (2009) Biological characteristics and control strategies of alien invasive plant Eupatorium odoratum. Chinese Agricultural Science Bulletin, 25(9), 236-243. (in Chinese with English abstract) |
[全国明, 章家恩, 徐华勤, 毛丹鹃, 谢俊芳 (2009) 外来入侵植物飞机草的生物学特性及控制策略. 中国农学通报, 25(9), 236-243.] | |
[36] | R Core Team (2020) R: A Language and Environment for Statistical Computing. R foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2024-01-20) |
[37] | Seebens H, Bacher S, Blackburn TM, Capinha C, Dawson W, Dullinger S, Genovesi P, Hulme PE, van Kleunen M, Kühn I, Jeschke JM, Lenzner B, Liebhold AM, Pattison Z, Pergl J, Pyšek P, Winter M, Essl F (2021) Projecting the continental accumulation of alien species through to 2050. Global Change Biology, 27, 970-982. |
[38] |
Shrestha UB, Shrestha BB (2019) Climate change amplifies plant invasion hotspots in Nepal. Diversity and Distributions, 25, 1599-1612.
DOI |
[39] | Simberloff D (2021) Maintenance management and eradication of established aquatic invaders. Hydrobiologia, 848, 2399-2420. |
[40] | Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts methods and assumptions. Proceedings of the National Academy of Sciences, USA, 106, 19644-19650. |
[41] | Vaissi S, Rezaei S (2023) Climatic niche dynamics in the invasive nutria, Myocastor coypus: Global assessment under climate change. Biological Invasions, 25, 2763-2774. |
[42] | Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36, 2290-2299. |
[43] | Wang R (2006) Historical Reconstruction of Invasion and Expansion and Potential Spread of Some Threatening Invasive Alien Species in China. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[王瑞 (2006) 我国严重威胁性外来入侵植物入侵与扩散历史过程重建及其潜在分布区的预测. 博士学位论文, 中国科学院植物研究所, 北京.] | |
[44] | Wang R, Wang YZ (2006) Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 12, 397-408. |
[45] |
Warren DL, Seifert SN (2011) Ecological niche modeling in MaxEnt: The importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335-342.
PMID |
[46] | Wei B, Liu LS, Gu CJ, Yu HB, Zhang YL, Zhang BH, Cui BH, Gong DQ, Tu YL (2022) The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China. Biodiversity Science, 30, 21443 (in Chinese with English abstract) |
[魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽 (2022) 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋. 生物多样性, 30, 21443.]
DOI |
|
[47] | Wei TY, Simko V (2021) R Package ’Corrplot’: Visualization of a Correlation Matrix. https://github.com/taiyun/corrplot/. (accessed on 2024-04-22) |
[48] | Ye WH, Mu HP, Cao HL, Ge XJ (2004) Genetic structure of the invasive Chromolaena odorata in China. Weed Research, 44, 129-135. |
[49] | Yu FK, Akin-Fajiye M, Thapa Magar K, Ren J, Gurevitch J, Rejmanek M (2016) A global systematic review of ecological field studies on two major invasive plant species, Ageratina adenophora and Chromolaena odorata. Diversity and Distributions, 22, 1174-1185. |
[50] | Yu XQ, Feng YL, Li QM (2010) Review of research advances and prospects of invasive Chromolaena odorata. Chinese Journal of Plant Ecology, 34, 591-600. (in Chinese with English abstract) |
[余香琴, 冯玉龙, 李巧明 (2010) 外来入侵植物飞机草的研究进展与展望. 植物生态学报, 34, 591-600.]
DOI |
|
[51] | Zhang LY, Zhu M, Wan Y, Liu XF (2023) Multiple invasion trajectories induce niche dynamics inconsistency and increase risk uncertainty of a plant invader. Ecosphere, 14, e4483. |
[52] | Zhu GP, Illan GJ, Looney C, Crowder DW (2020) Assessing the ecological niche and invasion potential of the Asian giant hornet. Proceedings of the National Academy of Sciences, USA, 117, 24646-24648. |
[53] |
Zhu GP, Liu Q, Gao YB (2014) Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 22, 223-230. (in Chinese with English abstract)
DOI |
[朱耿平, 刘强, 高玉葆 (2014) 提高生态位模型转移能力来模拟入侵物种的潜在分布. 生物多样性, 22, 223-230.]
DOI |
[1] | Congcong Du, Xueyu Feng, Zhilin Chen. The reducing of climate niche differences in the bridgehead effect promotes the invasion of Solenopsis invicta [J]. Biodiv Sci, 2024, 32(11): 24276-. |
[2] | Lixia Han, Yongjian Wang, Xuan Liu. Comparisons between non-native species invasion and native species range expansion [J]. Biodiv Sci, 2024, 32(1): 23396-. |
[3] | Jiajia Pu, Pingjun Yang, Yang Dai, Kexin Tao, Lei Gao, Yuzhou Du, Jun Cao, Xiaoping Yu, Qianqian Yang. Species identification and population genetic structure of non-native apple snails (Ampullariidea: Pomacea) in the lower reaches of the Yangtze River [J]. Biodiv Sci, 2023, 31(3): 22346-. |
[4] | Bo Wei, Linshan Liu, Changjun Gu, Haibin Yu, Yili Zhang, Binghua Zhang, Bohao Cui, Dianqing Gong, Yanli Tu. The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China [J]. Biodiv Sci, 2022, 30(8): 21443-. |
[5] | Yanjie Liu, Wei Huang, Qiang Yang, Yu-Long Zheng, Shao-Peng Li, Hao Wu, Ruiting Ju, Yan Sun, Jianqing Ding. Research advances of plant invasion ecology over the past 10 years [J]. Biodiv Sci, 2022, 30(10): 22438-. |
[6] | Jing Yan, Xiaoling Yan, Huiru Li, Cheng Du, Jinshuang Ma. Composition, time of introduction and spatial-temporal distribution of naturalized plants in East China [J]. Biodiv Sci, 2021, 29(4): 428-438. |
[7] | Weiming He. Biological invasions: Are their impacts precisely knowable or not? [J]. Biodiv Sci, 2020, 28(2): 253-255. |
[8] | Jiazhen Zhang, Chunlei Gao, Yan Li, Ping Sun, Zongling Wang. Species composition of dinoflagellates cysts in ballast tank sediments of foreign ships berthed in Jiangyin Port [J]. Biodiv Sci, 2020, 28(2): 144-154. |
[9] | Wandong Yin, Mingke Wu, Baoliang Tian, Hongwei Yu, Qiyun Wang, Jianqing Ding. Effects of bio-invasion on the Yellow River basin ecosystem and its countermeasures [J]. Biodiv Sci, 2020, 28(12): 1533-1545. |
[10] | Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504. |
[11] | Wensheng Yu, Yaolin Guo, Jiajia Jiang, Keke Sun, Ruiting Ju. Comparison of the life history of a native insect Laelia coenosa with a native plant Phragmites australis and an invasive plant Spartina alterniflora [J]. Biodiv Sci, 2019, 27(4): 433-438. |
[12] | Shiguo Sun,Bin Lu,Xinmin Lu,Shuangquan Huang. On reproductive strategies of invasive plants and their impacts on native plants [J]. Biodiv Sci, 2018, 26(5): 457-467. |
[13] | Yan Sun, Zhongshi Zhou, Rui Wang, Heinz Müller-Schärer. Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia [J]. Biodiv Sci, 2017, 25(12): 1285-1294. |
[14] | Gengping Zhu, Huijie Qiao. Effect of the Maxent model’s complexity on the prediction of species potential distributions [J]. Biodiv Sci, 2016, 24(10): 1189-1196. |
[15] | Ziyan Zhang, Zhijie Zhang, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to shading: introduced vs. native populations [J]. Biodiv Sci, 2015, 23(1): 18-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn