Biodiv Sci ›› 2021, Vol. 29 ›› Issue (12): 1620-1628. DOI: 10.17520/biods.2021209
Special Issue: 青藏高原生物多样性与生态安全
• Original Papers: Plant Diversity • Previous Articles Next Articles
Wenting Wang*(), Tingting Yang, Lei Jin, Jiamin Jiang
Received:
2021-05-24
Accepted:
2021-08-11
Online:
2021-12-20
Published:
2021-11-12
Contact:
Wenting Wang
Wenting Wang, Tingting Yang, Lei Jin, Jiamin Jiang. Vulnerability of two Rhodiola species under climate change in the future[J]. Biodiv Sci, 2021, 29(12): 1620-1628.
Fig. 1 Occurrence data for two Rhodiola species studied on the Qinghai-Tibet Plateau and its adjacent areas. The area in the red box is the study area. The boundary data of the Qinghai-Tibet Plateau is downloaded from National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn).
生物气候 Bioclimate | 大花红景天 R. crenulate | 菊叶红景天 R. chrysanthemifolia | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
敏感性Sensitivity | 偏离性 Departure | 脆弱性 Vulnerability | 敏感性 Sensitivity | 偏离性 Departure | 脆弱性 Vulnerability | ||||||
SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | ||||
平均日温差 Mean diurnal range | 2.4 | 0.24 | 0.33 | 1.7 | 1.79 | 2.43 | 0.22 | 0.3 | 1.7 | 1.8 | |
等温性 Isothermality | 3.6 | 0.17 | 0.23 | 2 | 2.1 | 4.78 | 0.17 | 0.2 | 2.4 | 2.4 | |
最暖季平均气温 Mean temperature of warmest quarter | 6.2 | 0.28 | 0.42 | 2.8 | 2.97 | 11.6 | 0.28 | 0.4 | 3.9 | 4 | |
季节性降水量 Precipitation seasonality | 2 | 0.09 | 0.12 | 1.5 | 1.5 | 2.65 | 0.07 | 0.1 | 1.7 | 1.7 | |
最暖季降水量 Precipitation of warmest quarter | 13 | 0.08 | 0.12 | 3.7 | 3.79 | 17.1 | 0.08 | 0.1 | 4.3 | 4.4 | |
最冷季降水量 Precipitation of coldest quarter | 1.5 | 0.03 | 0.04 | 1.3 | 1.26 | 2.55 | 0.02 | 0 | 1.6 | 1.6 |
Table 1 Sensitivity factors of Rhodiola crenulata and R. chrysanthemifolia, as well as departure factors and vulnerability factors under different shared socioeconomic pathways (SSPs). The two widest coefficients in each column are shown in bold.
生物气候 Bioclimate | 大花红景天 R. crenulate | 菊叶红景天 R. chrysanthemifolia | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
敏感性Sensitivity | 偏离性 Departure | 脆弱性 Vulnerability | 敏感性 Sensitivity | 偏离性 Departure | 脆弱性 Vulnerability | ||||||
SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | ||||
平均日温差 Mean diurnal range | 2.4 | 0.24 | 0.33 | 1.7 | 1.79 | 2.43 | 0.22 | 0.3 | 1.7 | 1.8 | |
等温性 Isothermality | 3.6 | 0.17 | 0.23 | 2 | 2.1 | 4.78 | 0.17 | 0.2 | 2.4 | 2.4 | |
最暖季平均气温 Mean temperature of warmest quarter | 6.2 | 0.28 | 0.42 | 2.8 | 2.97 | 11.6 | 0.28 | 0.4 | 3.9 | 4 | |
季节性降水量 Precipitation seasonality | 2 | 0.09 | 0.12 | 1.5 | 1.5 | 2.65 | 0.07 | 0.1 | 1.7 | 1.7 | |
最暖季降水量 Precipitation of warmest quarter | 13 | 0.08 | 0.12 | 3.7 | 3.79 | 17.1 | 0.08 | 0.1 | 4.3 | 4.4 | |
最冷季降水量 Precipitation of coldest quarter | 1.5 | 0.03 | 0.04 | 1.3 | 1.26 | 2.55 | 0.02 | 0 | 1.6 | 1.6 |
物种 Species | 边缘性 Marginality | 特化性 Specialization | 敏感性 Sensitivity | 暴露性 Exposure | 脆弱性 Vulnerability | ||
---|---|---|---|---|---|---|---|
SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | ||||
大花红景天 R. crenulate | 0.84 | 1.34 | 2.18 | 0.42 | 0.61 | 1.47 | 1.45 |
菊叶红景天 R. chrysanthemifolia | 1.01 | 1.60 | 2.62 | 0.41 | 0.58 | 1.61 | 1.63 |
Table 2 Total indices of specialization, marginality and sensitivity of Rhodiola crenulata and R. chrysanthemifolia as well as total indices of exposure and vulnerability under different shared socioeconomic pathways (SSPs) scenarios
物种 Species | 边缘性 Marginality | 特化性 Specialization | 敏感性 Sensitivity | 暴露性 Exposure | 脆弱性 Vulnerability | ||
---|---|---|---|---|---|---|---|
SSP2-45 | SSP5-85 | SSP2-45 | SSP5-85 | ||||
大花红景天 R. crenulate | 0.84 | 1.34 | 2.18 | 0.42 | 0.61 | 1.47 | 1.45 |
菊叶红景天 R. chrysanthemifolia | 1.01 | 1.60 | 2.62 | 0.41 | 0.58 | 1.61 | 1.63 |
Fig. 2 Sensitivity of two Rhodiola species on the Qinghai-Tibet Plateau and its adjacent areas. The black dots in figures represent sample distributions of two Rhodiola species, the demarcation point between red and green in the legend represents the median spatial sensitivity of the species.
Fig. 3 Exposure of two Rhodiola species on the Qinghai-Tibet Plateau and its adjacent areas under future climate change (shared socioeconomic pathway, SSP2-45): (a) R. crenulata and (b) R. chrysanthemifolia; and the increment of exposure of two Rhodiola species under two SSPs scenarios (SSP2-45 and SSP5-85): (c) R. crenulata and (d) R. chrysanthemifolia. The black dots in figures represent sample distributions of two Rhodiola species. The demarcation point between red and green in the legend of (a) and (b) represent the median spatial exposure of the species.
Fig. 4 Vulnerability of two Rhodiola species on the Qinghai-Tibet Plateau and its adjacent areas under future climate change (shared socioeconomic pathway, SSP2-45): (a) R. crenulata and (b) R. chrysanthemifolia; and the increment of vulnerability of two Rhodiola species under two shared SSPs scenarios (SSP2-45 and SSP5-85): (c) R. crenulata and (d) R. chrysanthemifolia. The black dots in figures represent sample distributions of two Rhodiola species. The demarcation point between red and purple in the legend of (a) and (b) represent the median spatial vulnerability of the species.
Fig. 5 Comparison of the climatic niches of Rhodiola crenulata and R. chrysanthemifolia distribution on the Qinghai-Tibet Plateau and its adjacent areas. Red showing the climatic niches of R. crenulata and green showing the climatic niches of R. chrysanthemifolia; the overlap of the climatic niches between the two species showed in blue. The area enclosed by the red line indicates the climatic niche of the study area.
[1] |
Akçakaya HR, Butchart SHM, Watson JEM, Pearson RG (2014) Preventing species extinctions resulting from climate change. Nature Climate Change, 4, 1048-1049.
DOI URL |
[2] |
Alkemade R, Bakkenes M, Eickhout B (2011) Towards a general relationship between climate change and biodiversity: An example for plant species in Europe. Regional Environmental Change, 11, 143-150.
DOI URL |
[3] |
Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science, 313, 1396-1397.
DOI URL |
[4] |
Beaumont NJ, Austen MC, Atkins JP, Burdon D, Degraer S, Dentinho TP, Derous S, Holm P, Horton T, van Ierland E, Marboe AH, Starkey DJ, Townsend M, Zarzycki T (2007) Identification, definition and quantification of goods and services provided by marine biodiversity: Implications for the ecosystem approach. Marine Pollution Bulletin, 54, 253-265.
PMID |
[5] | Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. |
[6] | Chen WQ, Ruan YZ, Fu SX, Fu KJ (1984) Flora Reipublicae Popularis Sinicae, vol.34. Science Press, Beijing. (in Chinese) |
[ 陈伟球, 阮云珍, 傅书遐, 傅坤俊 (1984) 中国植物志(第34卷). 科学出版社, 北京.] | |
[7] |
Christmas MJ, Breed MF, Lowe AJ (2016) Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, 17, 305-320.
DOI URL |
[8] | Chinese Pharmacopoeia Commission (2015) Pharmacopoeia of the People’s Republic of China. China Medical Science Press, Beijing. (in Chinese) |
国家药典委员会 (2015) 中华人民共和国药典. 中国医药科技出版社, 北京.] | |
[9] |
Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258-261.
DOI PMID |
[10] |
Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: Biodiversity conservation in a changing climate. Science, 332, 53-58.
DOI URL |
[11] |
Erasmus BFN, van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Global Change Biology, 8, 679- 693.
DOI URL |
[12] |
Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, Davies TJ, Jones KE, Olson VA, Ridgely RS, Rasmussen PC, Ding TS, Bennett PM, Blackburn TM, Gaston KJ, Gittleman JL, Owens IPF (2006) Global distribution and conservation of rare and threatened vertebrates. Nature, 444, 93-96.
DOI URL |
[13] | Health Bureau of Tibet, Qinghai, Sichuan, Gansu, Yunnan, Xinjiang (1979) Tibetan Medicine Standard. Qinghai People’s Publishing House Press, Xining. (in Chinese) |
西藏、青海、四川、甘肃、云南、新疆卫生局 (1979) 藏药标准. 青海人民出版社, 西宁.] | |
[14] |
Herrmann JD, Carlo TA, Brudvig LA, Damschen EI, Haddad NM, Levey DJ, Orrock JL, Tewksbury JJ (2016) Connectivity from a different perspective: Comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology, 97, 1274-1282.
PMID |
[15] |
Hirzel A, Hausser J, Chessel D, Perrin N (2002) Ecological- niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83, 2027-2036.
DOI URL |
[16] |
Hughes C (2011) Changes and challenges in 20 years of research into the development of executive functions. Infant and Child Development, 20, 251-271.
DOI URL |
[17] | Intergovernmental Panel on Climate Change IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B). Cambridge University Press, Cambridge. |
[18] |
Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica, 31, 361-369.
DOI URL |
[19] |
Leclerc C, Courchamp F, Bellard C (2020) Future climate change vulnerability of endemic island mammals. Nature Communications, 11, 4943-4952.
DOI URL |
[20] |
Liu CR, White M, Newell G (2011) Measuring and comparing the accuracy of species distribution models with presence- absence data. Ecography, 34, 232-243.
DOI URL |
[21] | Liu MC, Zhang DJ (2013) The progress of Rhodiola rosea’s pharmacological effects research. Asia-Pacific Traditional Medicine, 9(6), 65-69. (in Chinese with English abstract) |
[ 刘明成, 张得钧 (2013) 红景天药理作用研究进展. 亚太传统医药, 9(6), 65-69.] | |
[22] |
McMahon SJ, Hyland WB, Muir MF, Coulter JA, Jain S, Butterworth KT, Schettino G, Dickson GR, Hounsell AR, O'Sullivan JM, Prise KM, Hirst DG, Currell FJ (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 1, 18.
DOI URL |
[23] |
Morgan JW, Venn SE (2017) Alpine plant species have limited capacity for long-distance seed dispersal. Plant Ecology, 218, 813-819.
DOI URL |
[24] | Occdownload GBIF.org (2021) GBIF Occurrence Download https://www.gbif.org/occurrence/download/0326595-200613084148143 . (accessed on 2021-07-19) |
[25] |
Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nature Climate Change, 5, 215-224.
DOI URL |
[26] |
Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
DOI URL |
[27] |
Quintero I, Wiens JJ (2013) Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters, 16, 1095-1103.
DOI PMID |
[28] | Rinnan DS (2020) CENFA: Climate and ecological niche factor analysis. R Package Version 1.0.0. https://CRAN.R- project.org/package=CENFA . (accessed on 2020-10-16) |
[29] |
Rinnan DS, Lawler J (2019) Climate-niche factor analysis: A spatial approach to quantifying species vulnerability to climate change. Ecography, 42, 1494-1503.
DOI |
[30] |
Schwartz MW, Iverson LR, Prasad AM, Matthews SN, O’Connor RJ (2006) Predicting extinctions as a result of climate change. Ecology, 87, 1611-1615.
PMID |
[31] | Su JS, Zhao J, Jing GH, Wei L, Liu J, Cheng JM, Zhang JE (2017) Root pattern of Stipa plants in semiarid grassland after long-term grazing exclusion. Acta Ecologica Sinica, 37, 6571-6580. (in Chinese with English abstract) |
[ 苏纪帅, 赵洁, 井光花, 魏琳, 刘建, 程积民, 张金娥 (2017) 半干旱草地长期封育进程中针茅植物根系格局变化特征. 生态学报, 37, 6571-6580.] | |
[32] |
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature, 427, 145-148.
DOI URL |
[33] |
Urban MC (2015) Accelerating extinction risk from climate change. Science, 348, 571-573.
DOI PMID |
[34] |
Vanneste T, Michelsen O, Graae BJ, Kyrkjeeide MO, Holien H, Hassel K, Lindmo S, Kapás RE, De Frenne P (2017) Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 32, 579-593.
DOI URL |
[35] | Wang Q, Ruan X, Li HD, Wang GJ (2007) Research status, questions and strategies of rare medicinal plant Rhodiola L. Journal of Natural Resources, 22, 880-889. (in Chinese with English abstract) |
[ 王强, 阮晓, 李荷迪, 王国军 (2007) 珍稀药用资源植物红景天研究现状、问题与对策. 自然资源学报, 22, 880-889.] | |
[36] | Wang S, Xie Y (2004) China Species Red List (vol. 1). Higher Education Press, Beijing. (in Chinese) |
[ 汪松, 解焱 (2004) 中国物种红色名录 (第一卷). 高等教育出版社, 北京.] | |
[37] |
Wang WT, Guo WY, Jarvie S, Svenning JC (2021) The fate of Meconopsis species in the Tibet-Himalayan region under future climate change. Ecology and Evolution, 11, 887-899.
DOI URL |
[38] |
Welter S, Brunner K, Hofstraat JW, De Cola L (2003) Electroluminescent device with reversible switching between red and green emission. Nature, 421, 54-57.
DOI URL |
[39] | Wen J, Lü XM, Hong DX, Xie CX, Zhang J, Zhang Y (2016) Potential distribution of Rhodiola crenulata in Tibetan Plateau based on MaxEnt model. China Journal of Chinese Materia Medica, 41, 3931-3936. (in Chinese with English abstract) |
[ 文检, 吕秀梅, 洪道鑫, 谢彩香, 张静, 张艺 (2016) 基于MaxEnt模型的青藏高原大花红景天生态适宜性分析. 中国中药杂志, 41, 3931-3936.] | |
[40] |
Wheatley CJ, Beale CM, Bradbury RB, Pearce-Higgins JW, Critchlow R, Thomas CD (2017) Climate change vulnerability for species-Assessing the assessments. Global Change Biology, 23, 3704-3715.
DOI URL |
[41] |
Zhang J, Nielsen SE, Chen YH, Georges D, Qin YC, Wang SS, Svenning JC, Thuiller W (2017) Extinction risk of North American seed plants elevated by climate and land-use change. Journal of Applied Ecology, 54, 303-312.
DOI URL |
[1] | Qi Wu, Xiaoqing Zhang, Yuting Yang, Yibo Zhou, Yi Ma, Daming Xu, Xingfeng Si, Jian Wang. Spatio-temporal changes in biodiversity of epiphyllous liverworts in Qingyuan Area of Qianjiangyuan-Baishanzu National Park, Zhejiang Province [J]. Biodiv Sci, 2024, 32(4): 24010-. |
[2] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[3] | Li Feng. On synergistic governance of biodiversity and climate change in the perspective of international law [J]. Biodiv Sci, 2023, 31(7): 23110-. |
[4] | Xue Yao, Xing Chen, Zun Dai, Kun Song, Shichen Xing, Hongyu Cao, Lu Zou, Jian Wang. Importance of collection strategy on detection probability and species diversity of epiphyllous liverworts [J]. Biodiv Sci, 2023, 31(4): 22685-. |
[5] | Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song. Phenotypic plasticity and local adaptation of Oryza rufipogon revealed by common garden trials [J]. Biodiv Sci, 2023, 31(3): 22311-. |
[6] | Jiawen Sang, Chuangye Song, Ningxia Jia, Yuan Jia, Changcheng Liu, Xianguo Qiao, Lin Zhang, Weiying Yuan, Dongxiu Wu, Linghao Li, Ke Guo. Vegetation survey and mapping on the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2023, 31(3): 22430-. |
[7] | Jinzhou Wang, Jing Xu. Nature-based solutions for addressing biodiversity loss and climate change: Progress, challenges and suggestions [J]. Biodiv Sci, 2023, 31(2): 22496-. |
[8] | Jiman Li, Nan Jin, Maogang Xu, Jusong Huo, Xiaoyun Chen, Feng Hu, Manqiang Liu. Effects of earthworm on tomato resistance under different drought levels [J]. Biodiv Sci, 2022, 30(7): 21488-. |
[9] | Ruiliang Zhu, Xiaoying Ma, Chang Cao, Ziyin Cao. Advances in research on bryophyte diversity in China [J]. Biodiv Sci, 2022, 30(7): 22378-. |
[10] | Kuiling Zu, Zhiheng Wang. Research progress on the elevational distribution of mountain species in response to climate change [J]. Biodiv Sci, 2022, 30(5): 21451-. |
[11] | Huijie Qiao, Junhua Hu. Reconstructing community assembly using a numerical simulation model [J]. Biodiv Sci, 2022, 30(10): 22456-. |
[12] | Xin Jing, Shengjing Jiang, Huiying Liu, Yu Li, Jin-Sheng He. Complex relationships and feedback mechanisms between climate change and biodiversity [J]. Biodiv Sci, 2022, 30(10): 22462-. |
[13] | Wenyu Song, Xueyou Li, Hongjiao Wang, Zhongzheng Chen, Shuiwang He, Xuelong Jiang. Multi-dimensional evaluation of small mammal diversity in tree line habitats across the Three Parallel Rivers of Yunnan Protected Areas: Implications for conservation [J]. Biodiv Sci, 2021, 29(9): 1215-1228. |
[14] | Run Zhou, Xiuqin Ci, Jianhua Xiao, Guanlong Cao, Jie Li. Effects and conservation assessment of climate change on the dominant group—The genusCinnamomum of subtropical evergreen broad-leaved forests [J]. Biodiv Sci, 2021, 29(6): 697-711. |
[15] | Yuhan Shi, Zongxin Ren, Weijia Wang, Xin Xu, Jie Liu, Yanhui Zhao, Hong Wang. Predicting the spatial distribution of three Astragalusspecies and their pollinating bumblebees in the Sino-Himalayas [J]. Biodiv Sci, 2021, 29(6): 759-769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn