Biodiv Sci ›› 2022, Vol. 30 ›› Issue (10): 22456. DOI: 10.17520/biods.2022456
• Reviews • Previous Articles Next Articles
Huijie Qiao1,*(), Junhua Hu2,*(
)
Received:
2022-08-10
Accepted:
2022-09-30
Online:
2022-10-20
Published:
2022-10-13
Contact:
Huijie Qiao,Junhua Hu
Huijie Qiao, Junhua Hu. Reconstructing community assembly using a numerical simulation model[J]. Biodiv Sci, 2022, 30(10): 22456.
[1] |
AlQuraishi M (2019) AlphaFold at CASP13. Bioinformatics, 35, 4862-4865.
DOI PMID |
[2] |
Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. American Journal of Botany, 87, 1217-1227.
PMID |
[3] |
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253.
DOI URL |
[4] |
Chase JM, Knight TM (2013) Scale-dependent effect sizes of ecological drivers on biodiversity: Why standardised sampling is not enough. Ecology Letters, 16, 17-26.
DOI URL |
[5] |
Dawideit BA, Phillimore AB, Laube I, Leisler B, Böhning-Gaese K (2009) Ecomorphological predictors of natal dispersal distances in birds. Journal of Animal Ecology, 78, 388-395.
DOI PMID |
[6] | DeepMind (2022) AlphaFold Reveals the Structure of the Protein Universe. https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe/. (accessed on 2022-08-10) |
[7] |
Devarajan K, Morelli TL, Tenan S (2020) Multi-species occupancy models: Review, roadmap, and recommendations. Ecography, 43, 1612-1624.
DOI URL |
[8] |
Di Marco M, Chapman S, Althor G, Kearney S, Besancon C, Butt N, Maina JM, Possingham HP,von Bieberstein KR, Venter O, Watson JEM (2017) Changing trends and persisting biases in three decades of conservation science. Global Ecology and Conservation, 10, 32-42.
DOI URL |
[9] |
Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137-167.
DOI URL |
[10] |
Duan RY, Kong XQ, Huang MY, Wu GL, Wang ZG (2015) SDMvspecies: A software for creating virtual species for species distribution modelling. Ecography, 38, 108-110.
DOI URL |
[11] |
Feeley KJ, Stroud JT, Perez TM (2017) Most ‘global reviews of species’ responses to climate change are not truly global. Diversity and Distributions, 23, 231-234.
DOI URL |
[12] |
Feng X, Qiao HJ (2022) Accounting for dispersal using simulated data improves understanding of species abundance patterns. Global Ecology and Biogeography, 31, 200-214.
DOI URL |
[13] |
Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42-58.
DOI URL |
[14] | Furness EN, Garwood RJ, Mannion PD, Sutton MD (2021) Evolutionary simulations clarify and reconcile biodiversity- disturbance models. Proceedings of the Royal Society B: Biological Sciences, 288, 20210240. |
[15] |
Garwood RJ, Spencer ART, Sutton MD (2019) RE voSim: Organism-level simulation of macro and microevolution. Palaeontology, 62, 339-355.
DOI URL |
[16] |
Garzon-Lopez CX, Bastin L, Foody GM, Rocchini D (2016) A virtual species set for robust and reproducible species distribution modelling tests. Data in Brief, 7, 476-479.
DOI PMID |
[17] | GBIF (2022) GBIF Home Page. https://www.gbif.org/. (accessed on 2022-08-10) |
[18] |
Ginzburg LR, Burger O, Damuth J (2010) The May threshold and life-history allometry. Biology Letters, 6, 850-853.
DOI PMID |
[19] |
Hagen O, Flück B, Fopp F, Cabral JS, Hartig F, Pontarp M, Rangel TF, Pellissier L (2021) gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biology, 19, e3001340.
DOI URL |
[20] |
Hajima T, Kawamiya M, Watanabe M, Kato E, Tachiiri K, Sugiyama M, Watanabe S, Okajima H, Ito A (2014) Modeling in Earth system science up to and beyond IPCC AR5. Progress in Earth and Planetary Science, 1, 1-25.
DOI URL |
[21] |
Hardin G (1960) The competitive exclusion principle: An idea that took a century to be born has implications in ecology, economics, and genetics. Science, 131, 1292-1297.
PMID |
[22] |
Henson SA, Cael BB, Allen SR, Dutkiewicz S (2021) Future phytoplankton diversity in a changing climate. Nature Communications, 12, 5372.
DOI PMID |
[23] |
Hill MO (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427-432.
DOI URL |
[24] |
Hirzel AH, Helfer V, Metral F (2001) Assessing habitat- suitability models with a virtual species. Ecological Modelling, 145, 111-121.
DOI URL |
[25] |
Hughes AC, Qiao HJ, Orr MC (2020) Extinction targets are not SMART (specific, measurable, ambitious, realistic, and time bound). BioScience, 71, 115-118.
DOI URL |
[26] |
Hughes AC, Orr MC, Ma KP, Costello MJ, Waller J, Provoost P, Yang QM, Zhu CD, Qiao HJ (2021a) Sampling biases shape our view of the natural world. Ecography, 44, 1259-1269.
DOI URL |
[27] |
Hughes AC, Orr MC, Yang QM, Qiao HJ (2021b) Effectively and accurately mapping global biodiversity patterns for different regions and taxa. Global Ecology and Biogeography, 30, 1375-1388.
DOI URL |
[28] |
Hurlbert SH (1971) The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52, 577-586.
DOI PMID |
[29] |
Ingber DE (2022) Human organs-on-chips for disease modelling, drug development and personalized medicine. Nature Reviews Genetics, 23, 467-491.
DOI URL |
[30] | Ji LQ, Qiao HJ, Xie BG, Zhang SW, Lin B, Zhu H, Deng H, Li N, Han Y (2004) GBIF, the global biodiversity information facility: Its organization, activity, programme and information service. China. In: Advances in Biodiversity Conservation and Research in China VI—Proceeding of the Sixth National Symposium on the Conservation and Sustainable Uses of Biodiversity in China (ed. Biodiversity Committee, Chinese Academy of Sciences), pp. 79-141. China Meteorological Press, Beijing. (in Chinese) |
[纪力强, 乔慧捷, 谢本贵, 张尚武, 林斌, 朱慧, 邓浩, 李诺, 韩艳 (2004) 全球生物多样性信息网络(GBIF)介绍: 组织、活动、项目和信息服务. 见: 中国生物多样性保护与研究进展VI——第六届全国生物多样性保护与持续利用研讨会论文集(中国科学院生物多样性委员会编著), pp. 79-141. 气象出版社, 北京.] | |
[31] | Leroy B, Meynard CN, Bellard C, Courchamp F (2016) virtualspecies, an R package to generate virtual species distributions. Ecography, 39, 599-607. |
[32] | Liu X, Wang XH, Zhang LM, Sun LL, Wang HR, Zhao H, Zhang ZT, Liu WL, Huang YM, Ji S, Zhang J, Li K, Song BB, Li C, Zhang H, Li S, Wang S, Zheng XF, Gu Q (2021) 3D liver tissue model with branched vascular networks by multimaterial bioprinting. Advanced Healthcare Materials, 10, e2101405. |
[33] | Lotka AJ (1932) Contribution to the mathematical theory of capture. I. Conditions for capture. Proceedings of the National Academy of Sciences, USA, 18, 172-178. |
[34] | Ma KP (1993) On the concept of biodiversity. Chinese Biodiversity, 1, 20-22. (in Chinese) |
[马克平 (1993) 试论生物多样性的概念. 生物多样性, 1, 20-22.] | |
[35] |
May F, Gerstner K, McGlinn DJ, Xiao X, Chase JM (2018) mobsim: An R package for the simulation and measurement of biodiversity across spatial scales. Methods in Ecology and Evolution, 9, 1401-1408.
DOI URL |
[36] |
May RM (1974) Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos. Science, 186, 645-647.
PMID |
[37] |
May RM (1976) Simple mathematical models with very complicated dynamics. Nature, 261, 459-467.
DOI URL |
[38] |
McDonald-Madden E, Sabbadin R, Game ET, Baxter PWJ, Chadès I, Possingham HP (2016) Using food-web theory to conserve ecosystems. Nature Communications, 7, 10245.
DOI PMID |
[39] |
Meynard CN, Kaplan DM (2013) Using virtual species to study species distributions and model performance. Journal of Biogeography, 40, 1-8.
DOI URL |
[40] | Miller JA (2014) Virtual species distribution models: Using simulated data to evaluate aspects of model performance. Progress in Physical Geography, 38, 117-128. |
[41] |
Murphy SJ, Lenoir J (2021) Sampling units derived from geopolitical boundaries bias biodiversity analyses. Global Ecology and Biogeography, 30, 1876-1888.
DOI URL |
[42] |
Paine RT (1966) Food web complexity and species diversity. The American Naturalist, 100, 65-75.
DOI URL |
[43] | Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological Niches and Geographic Distributions. Princeton University Press, New Jersey. |
[44] |
Pielou EC (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144.
DOI URL |
[45] |
Qiao HJ, Peterson AT, Campbell LP, Soberón J, Ji LQ, Escobar LE (2016a) NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography, 39, 805-813.
DOI URL |
[46] |
Qiao HJ, Peterson AT, Ji LQ, Hu JH (2017) Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods in Ecology and Evolution, 8, 1804-1812.
DOI URL |
[47] |
Qiao HJ, Saupe EE, Soberón J, Peterson AT, Myers CE (2016b) Impacts of niche breadth and dispersal ability on macroevolutionary patterns. The American Naturalist, 188, 149-162.
DOI URL |
[48] |
Qiao HJ, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6, 1126-1136.
DOI URL |
[49] |
Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361, eaar5452.
DOI URL |
[50] |
Rota CT, Ferreira MAR, Kays RW, Forrester TD, Kalies EL, McShea WJ, Parsons AW, Millspaugh JJ (2016) A multispecies occupancy model for two or more interacting species. Methods in Ecology and Evolution, 7, 1164-1173.
DOI URL |
[51] |
Saupe EE, Myers CE, Peterson AT, Soberón J, Singarayer J, Valdes P, Qiao HJ (2019a) Non-random latitudinal gradients in range size and niche breadth predicted by spatial patterns of climate. Global Ecology and Biogeography, 28, 928-942.
DOI URL |
[52] | Saupe EE, Myers CE, Townsend PA, Soberón J, Singarayer J, Valdes P, Qiao HJ (2019b) Spatio-temporal climate change contributes to latitudinal diversity gradients. Nature Ecology & Evolution, 3, 1419-1429. |
[53] |
Saupe EE, Qiao HJ, Donnadieu Y, Farnsworth A, Kennedy- Asser AT, Ladant J, Lunt DJ, Pohl Al, Valdes P, Finnegan S (2020) Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience, 13, 65-70.
DOI URL |
[54] |
Seshagiri RN, Kalyani K (2020) Ecological models on multi species interaction within unlimited resources. International Journal of Applied and Computational Mathematics, 6, 95.
DOI URL |
[55] |
Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423.
DOI URL |
[56] |
Silvestro D, Goria S, Sterner T, Antonelli A (2022) Improving biodiversity protection through artificial intelligence. Nature Sustainability, 5, 415-424.
DOI PMID |
[57] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
DOI URL |
[58] |
Smith AB, Godsoe W, Rodríguez-Sánchez F, Wang HH, Warren D (2019) Niche estimation above and below the species level. Trends in Ecology & Evolution, 34, 260-273.
DOI URL |
[59] |
Soberón J, Nakamura M (2009) Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Science, USA, 106 (Suppl. 2), 19644-19650.
DOI URL |
[60] |
Soberón J, Peterson AT (2020) What is the shape of the fundamental Grinnellian niche? Theoretical Ecology, 13, 105-115.
DOI URL |
[61] |
Spellerberg IF, Fedor PJ (2003) A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ index. Global Ecology and Biogeography, 12, 177-179.
DOI URL |
[62] | Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences, USA, 108, 3648-3652. |
[63] |
Tamme R, Götzenberger L, Zobel M, Bullock JM, Hooftman DAP, Kaasik A, Pärtel M (2014) Predicting species’ maximum dispersal distances from simple plant traits. Ecology, 95, 505-513.
PMID |
[64] |
Tao TT, Deng PW, Wang YQ, Zhang X, Guo YQ, Chen WW, Qin JH (2022) Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes. Advanced Science, 9, 2103495.
DOI URL |
[65] |
Tittensor DP, Novaglio C, Harrison CS, Heneghan RF, Barrier N, Bianchi D, Bopp L, Bryndum-Buchholz A, Britten GL, Büchner M, Cheung WWL, Christensen V, Coll M, Dunne JP, Eddy TD, Everett JD, Fernandes-Salvador JA, Fulton EA, Galbraith ED, Gascuel D, Guiet J, John JG, Link JS, Lotze HK, Maury O, Ortega-Cisneros K, Palacios-Abrantes J, Petrik CM, du Pontavice H, Rault J, Richardson AJ, Shannon L, Shin YJ, Steenbeek J, Stock CA, Blanchard JL (2021) Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 11, 973-981.
DOI PMID |
[66] |
Trisos CH, Merow C, Pigot AL (2020) The projected timing of abrupt ecological disruption from climate change. Nature, 580, 496-501.
DOI URL |
[67] |
Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A, Cowie A, Meyer C, Laydon A, Velankar S, Kleywegt GJ, Bateman A, Evans R, Pritzel A, Figurnov M, Ronneberger O, Bates R, Kohl SA, Potapenko A, Ballard AJ, Romera-Paredes B, Nikolov S, Jain R, Clancy E, Reiman D, Petersen S, Senior AW, Kavukcuoglu K, Birney E, Kohli P, Jumper J, Hassabis D (2021) Highly accurate protein structure prediction for the human proteome. Nature, 596, 590-596.
DOI URL |
[68] |
Vignali S, Barras AG, Arlettaz R, Braunisch V (2020) SDMtune: An R package to tune and evaluate species distribution models. Ecology and Evolution, 10, 11488-11506.
DOI PMID |
[69] |
Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. ICES Journal of Marine Science, 3(1), 3-51.
DOI URL |
[70] |
Whitmee S, Orme CDL (2013) Predicting dispersal distance in mammals: A trait-based approach. Journal of Animal Ecology, 82, 211-221.
DOI PMID |
[1] | Jiman Li, Nan Jin, Maogang Xu, Jusong Huo, Xiaoyun Chen, Feng Hu, Manqiang Liu. Effects of earthworm on tomato resistance under different drought levels [J]. Biodiv Sci, 2022, 30(7): 21488-. |
[2] | Hong Qian, Jian Zhang, Jingchao Zhao. How many known vascular plant species are there in the world? An integration of multiple global plant databases [J]. Biodiv Sci, 2022, 30(7): 22254-. |
[3] | Ruiliang Zhu, Xiaoying Ma, Chang Cao, Ziyin Cao. Advances in research on bryophyte diversity in China [J]. Biodiv Sci, 2022, 30(7): 22378-. |
[4] | Zhengfei Li, Xiaoming Jiang, Jun Wang, Xingliang Meng, Junqian Zhang, Zhicai Xie. Species diversity and driving factors of benthic macroinvertebrate assemblages in the middle and lower reaches of the Yarlung Zangbo River [J]. Biodiv Sci, 2022, 30(6): 21431-. |
[5] | Xiaoyan Jiang, Shengjie Gao, Yan Jiang, Yun Tian, Xin Jia, Tianshan Zha. Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland [J]. Biodiv Sci, 2022, 30(5): 21387-. |
[6] | Kuiling Zu, Zhiheng Wang. Research progress on the elevational distribution of mountain species in response to climate change [J]. Biodiv Sci, 2022, 30(5): 21451-. |
[7] | Min Zhang, Chunpo Tian, Xianli Che, Yanyan Zhao, Shiwang Chen, Xia Zhou, Fasheng Zou. New bird records in Guangdong Province and their correlation with natural and social-economic factors [J]. Biodiv Sci, 2022, 30(5): 21396-. |
[8] | Taohua Yuan, Meijun Li, Liuyi Ren, Rongxin Huang, Yi Chen, Xinxiang Bai. A dataset on the diversity and geographical distributions of wild Impatiens in China [J]. Biodiv Sci, 2022, 30(5): 22019-. |
[9] | Wen Pan, Yunhui Liu, Zehao Wu, Zengli Liu, Wenxuan Han, Zhenrong Yu. Simulation of changes in land use distribution and biodiversity under different development scenarios in Qinghai Province [J]. Biodiv Sci, 2022, 30(4): 21425-. |
[10] | Haiping Li, Zhuqing Xu, Zhihang Long. Conservation gap analysis of key protected and rare animals in Da Hinggan Range Region, China [J]. Biodiv Sci, 2022, 30(2): 21294-. |
[11] | Shengxian Chen, Xiting Zhang, Danqi She, Zhonghua Zhang, Zhiqiang Zhou, Huimei Wang, Wenjie Wang. Effects of plant species diversity, dominant species importance, and soil properties on glomalin-related soil protein [J]. Biodiv Sci, 2022, 30(2): 21115-. |
[12] | Jiang Qiao, Guoqing Jia, Huaming Zhou, Lin Gong, Yong Jiang, Nengwen Xiao, Xiaoqi Gao, Anxiang Wen, Jie Wang. Mammal and bird diversity recorded with camera traps in Gongga Mountain National Nature Reserve, Sichuan, China [J]. Biodiv Sci, 2022, 30(2): 20395-. |
[13] | Jun Wang, Chao Zhao. Taxonomy, species diversity and distribution patterns of fungus-feeding Phlaeothripidae in China [J]. Biodiv Sci, 2022, 30(12): 22128-. |
[14] | Yongqingcuomu , Xinqiang Xi, Kechang Niu. Effect of plant species loss on grassland caterpillar in alpine meadows [J]. Biodiv Sci, 2022, 30(11): 22069-. |
[15] | Zixiao Dai, Guoke Chen, Naili Zhang, Keping Ma. A dataset on the diversity of forest vascular epiphytes in China [J]. Biodiv Sci, 2022, 30(11): 22332-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn