Biodiv Sci ›› 2020, Vol. 28 ›› Issue (6): 695-706. DOI: 10.17520/biods.2020019
Special Issue: 昆虫多样性与生态功能
• Original Papers: Animal Diversity • Previous Articles Next Articles
Jian Wang1,2,Yiyi Dong2,Libin Ma3,Bo Pan2,Fangzhou Ma4,Hui Ding4,Yaping Hu4,Yanqiong Peng2,Xiaobing Wu1,Bo Wang2,*()
Received:
2020-01-15
Accepted:
2020-04-17
Online:
2020-06-20
Published:
2020-05-18
Contact:
Bo Wang
Jian Wang, Yiyi Dong, Libin Ma, Bo Pan, Fangzhou Ma, Hui Ding, Yaping Hu, Yanqiong Peng, Xiaobing Wu, Bo Wang. Spatial variation in ant-tree network organization in the Xishuangbanna National Nature Reserve[J]. Biodiv Sci, 2020, 28(6): 695-706.
样点 Sample sites | 物种数 Species richness (S) | Shannon-Wiener 异质性 Shannon- Wiener heterogeneity (H′) | Simpson异质性 Simpson heterogeneity (D) | Simpson均匀度 Simpson evenness (E) | Pielou均匀度 Pielou evenness (J) | |
---|---|---|---|---|---|---|
蚂蚁 Ant | 纳板河 Nabanhe | 24 | 1.77 | 0.69 | 0.061 | 0.56 |
勐仑 Menglun | 58 | 1.94 | 0.72 | 0.024 | 0.48 | |
补蚌 Bubeng | 20 | 2.26 | 0.85 | 0.059 | 0.76 | |
树 Tree | 纳板河 Nabanhe | 33 | 3.32 | 0.96 | 0.032 | 0.95 |
勐仑 Menglun | 53 | 3.97 | 0.98 | 0.019 | 0.94 | |
补蚌 Bubeng | 24 | 2.94 | 0.92 | 0.043 | 0.91 |
Table 1 Species diversity indices of Nabanhe, Menglun, and Bubeng
样点 Sample sites | 物种数 Species richness (S) | Shannon-Wiener 异质性 Shannon- Wiener heterogeneity (H′) | Simpson异质性 Simpson heterogeneity (D) | Simpson均匀度 Simpson evenness (E) | Pielou均匀度 Pielou evenness (J) | |
---|---|---|---|---|---|---|
蚂蚁 Ant | 纳板河 Nabanhe | 24 | 1.77 | 0.69 | 0.061 | 0.56 |
勐仑 Menglun | 58 | 1.94 | 0.72 | 0.024 | 0.48 | |
补蚌 Bubeng | 20 | 2.26 | 0.85 | 0.059 | 0.76 | |
树 Tree | 纳板河 Nabanhe | 33 | 3.32 | 0.96 | 0.032 | 0.95 |
勐仑 Menglun | 53 | 3.97 | 0.98 | 0.019 | 0.94 | |
补蚌 Bubeng | 24 | 2.94 | 0.92 | 0.043 | 0.91 |
Fig. 2 The NMDS analysis of ant species composition in Nabanhe, Menglun, and Bubeng. Each symbol represents a sample tree. Dotted line and triangles represent Nabanhe; solid line and solid circles represent Menglun; dashed line and squares represent Bubeng.
Fig. 3 Ant-plant bipartite networks in Xishuangbanna. For each network, upper bars represent ant species, and lower bars represent host plant species. Rectangle width is proportional to the number of interactions of each ant species and host plants; the line width represents the frequency of interactions between each interacting species pair. Appendix 1 shows ant and tree name list and code in the bipartite networks.
Fig. 4 Species extinction slopes of Nabanhe, Menglun, and Bubeng in Xishuangbanna. In this figure, the sequence of the extinction is from the least abundant ant to the most abundant ant in the trees. The extinction function calculate the relative alive ant species number (the ratio of alive ant species number relative to total ant species number is response variable) when remove tree species one by one (the ratio of removed tree species number relative to total tree species number is explanatory variable). The extinction slopes fitted a function of type y = 1-xa. Lines in the figure represent the smooth lines of the three sites.
Fig. 5 The observed metrics and standard metrics of ant-tree bipartite networks of Menglun, Nabanhe, and Bubeng. A, Observed network metrics; B, Standard Z-score of metrics based on the distribution of values generated by the null model 1 (r2dtable method); C, Standard Z-score of metrics based on the distribution of values generated by null model 2 (vaznull method). NA indicate that the value is not available. 10× means ten times amplification of the value to better reveal their relationships. We use two null models, each has 999 resamples, to calculate the network metrics, and then get a metrics distribution. We calculate the frequencies of the values that is bigger or smaller than the observed network metrics in the distribution. The frequency is approximation of the probability (P value). Bars without labels are all P < 0.001; * represent P < 0.05; NS represent not significant.
[1] | Anjos DV, Luna P, Borges CCR, Dáttilo W, Del-Claro K (2019) Structural changes over time in individual-based networks involving a harvester ant, seeds, and invertebrates. Ecological Entomology, 44, 753-761. |
[2] | Barônio GJ, Del-Claro K (2018) Increase in ant density promotes dual effects on bee behaviour and plant reproductive performance. Arthropod-Plant Interactions, 12, 201-213. |
[3] | Bascompte J (2007) Networks in ecology. Basic and Applied Ecology, 8, 485-490. |
[4] |
Bascompte J (2010) Structure and dynamics of ecological networks. Science, 329, 765-766.
DOI URL PMID |
[5] |
Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecology, 6, 9.
URL PMID |
[6] |
Blüthgen N, Verhaagh M, Goitía W, Jaffé K, Morawetz W, Barthlott W (2000) How plants shape the ant community in the Amazonian rainforest canopy: The key role of extrafloral nectaries and homopteran honeydew. Oecologia, 125, 229-240.
DOI URL PMID |
[7] |
Câmara T, Leal IR, Blüthgen N, Oliveira FMP, Queiroz R, Arnan X (2018) Effects of chronic anthropogenic disturbance and rainfall on the specialization of ant-plant mutualistic networks in the Caatinga, a Brazilian dry forest. Journal of Animal Ecology, 87, 1022-1033.
DOI URL PMID |
[8] | Cao M, Zou X, Warren M, Zhu H (2006) Tropical forests of Xishuangbanna, China. Biotropica, 38, 306-309. |
[9] | Dáttilo W, Guimarães PR Jr, Izzo TJ (2013) Spatial structure of ant-plant mutualistic networks. Oikos, 122, 1643-1648. |
[10] |
Dáttilo W, Marquitti FMD, Guimarães PR Jr, Izzo TJ (2014) The structure of ant-plant ecological networks: Is abundance enough? Ecology, 95, 475-485.
URL PMID |
[11] | Delmas E, Besson M, Brice MH, Burkle LA, Dalla Riva GV, Fortin MJ, Gravel D, Guimarães PR Jr, Hembry DH, Newman EA, Olesen JM, Pires MM, Yeakel JD, Poisot T (2019) Analysing ecological networks of species interactions. Biological Reviews, 94, 16-36. |
[12] |
Díaz-Castelazo C, Sánchez-Galván IR, Guimarães PR, Raimundo RLG, Rico-Gray V (2013) Long-term temporal variation in the organization of an ant-plant network. Annals of Botany, 111, 1285-1293.
URL PMID |
[13] | Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: Analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7-24. |
[14] | Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, USA, 99, 12917-12922. |
[15] |
Fath BD, Scharler UM, Ulanowicz RE, Hannon B (2007) Ecological network analysis: Network construction. Ecological Modelling, 208, 49-55.
DOI URL |
[16] |
Gonzálvez FG, Santamaría L, Corlett RT, Rodríguez-Gironés MA (2013) Flowers attract weaver ants that deter less effective pollinators. Journal of Ecology, 101, 78-85.
DOI URL |
[17] | Hagen M, Kissling WD, Rasmussen C, De Aguiar MAM, Brown LE, Carstensen DW, Alves-Dos-Santos I, Dupont YL, Edwards FK, Genini J, Guimarães PR, Jenkins GB, Jordano P, Kaiser-Bunbury CN, Ledger ME, Maia KP, Marquitti FMD, McLaughlin Ó, Morellato LPC, O’Gorman EJ, Trøjelsgaard K, Tylianakis JM, Vidal MM, Woodward G, Olesen JM , (2012) Biodiversity, species interactions and ecological networks in a fragmented world. In: Advances in Ecological Research (eds Jacob U, Woodward G), pp. 89-210. Academic Press, London. |
[18] |
Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology, Evolution, and Systematics, 34, 425-453.
DOI URL |
[19] |
Hölldobler B, Lumsden CJ (1980) Territorial strategies in ants. Science, 210, 732-739.
URL PMID |
[20] | Huang Z, Xu ZH, Liu X, Li LM, Wang YL, Shi SH, Shi Y, Chen ZF (2019) Ant species diversity of northeastern Yunnan. Chinese Journal of Ecology, 38, 3697-3705. (in Chinese with English abstract) |
[ 黄钊, 徐正会, 刘霞, 李丽梅, 王亚丽, 史生慧, 石云, 陈志峰 (2019) 滇东北地区的蚂蚁物种多样性. 生态学杂志, 38, 3697-3705.] | |
[21] |
Jørgensen SE (2007) Ecological network theory. Ecological Modelling, 208, 1-2.
DOI URL |
[22] | Krebs CJ (1999) Ecological Methodology, 2nd edn. Addison-Welsey Educational Publishers, Inc., Menlo Park, CA. |
[23] | Li WQ, Xu ZH, Zhou XY, Li AN (2016) Ant species diversity of Mount Everest section of the Himalaya Mountains. Journal of Southwest Forestry University, 36, 114-120. (in Chinese with English abstract) |
[ 李文琼, 徐正会, 周雪英, 李安娜 (2016) 喜马拉雅山珠峰段的蚂蚁物种多样性. 西南林业大学学报, 36, 114-120.] | |
[24] | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2019) vegan: Community Ecology Package. R package version 2.5-5, https://CRAN.R-project.org/package=vegan. (accessed on 2020-03-09) |
[25] | Olesen JM, Jordano P (2002) Geographic patterns in plant- pollinator mutualistic networks. Ecology, 83, 2416-2424. |
[26] | Patefield WM (1981) Algorithm AS 159: An efficient method of generating random R × C tables with given row and column totals. Journal of the Royal Statistical Society, Series C (Applied Statistics), 30, 91-97. |
[27] |
Pellissier L, Albouy C, Bascompte J, Farwig N, Graham C, Loreau M, Maglianesi MA, Melián CJ, Pitteloud C, Roslin T, Rohr R, Saavedra S, Thuiller W, Woodward G, Zimmermann NE, Gravel D (2018) Comparing species interaction networks along environmental gradients. Biological Reviews, 93, 785-800.
URL PMID |
[28] | Podani J, Jordán F, Schmera D (2014) A new approach to exploring architecture of bipartite (interaction) ecological networks. Journal of Complex Networks, 2, 168-186. |
[29] |
Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends in Ecology & Evolution, 20, 345-353.
DOI URL PMID |
[30] | R Development Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 2020-03-09) |
[31] |
Rafferty NE, Ives AR (2013) Phylogenetic trait-based analyses of ecological networks. Ecology, 94, 2321-2333.
DOI URL PMID |
[32] | Ramos-Jiliberto R, Domínguez D, Espinoza C, López G, Valdovinos FS, Bustamante RO, Medel R (2010) Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecological Complexity, 7, 86-90. |
[33] |
Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature, 448, 925-928.
DOI URL PMID |
[34] | Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecology, 28, 305-314. |
[35] | Santos GMM, Dáttilo W, Presley SJ (2014) The seasonal dynamic of ant-flower networks in a semi-arid tropical environment. Ecological Entomology, 39, 674-683. |
[36] | Sebastián-González E, Dalsgaard B, Sandel B, Guimarães PR Jr (2015) Macroecological trends in nestedness and modularity of seed-dispersal networks: Human impact matters. Global Ecology and Biogeography, 24, 293-303. |
[37] | Tylianakis JM, Morris RJ (2017) Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics, 48, 25-48. |
[38] |
Wang B, Geng XZ, Ma LB, Cook JM, Wang RW (2014) A trophic cascade induced by predatory ants in a fig-fig wasp mutualism. Journal of Animal Ecology, 83, 1149-1157.
DOI URL PMID |
[39] |
Wang B, Lu M, Cook JM, Yang DR, Dunn DW, Wang RW (2018) Chemical camouflage: A key process in shaping an ant-treehopper and fig-fig wasp mutualistic network. Scientific Reports, 8, 1833.
URL PMID |
[40] | Wang B, Segar ST, Deng GZ, Luo TX, Lin H, Peng YQ (2019) Variation in trophic cascade strength is triggered by top-down process in an ant-wasp-fig system. Oikos, 128, 185-195. |
[41] | Wetterer JK (2005) Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology, 45, 77-97. |
[42] | Whitehouse MEA, Jaffe K (1996) Ant wars: Combat strategies, territory and nest defence in the leaf-cutting ant Atta laevigata. Animal Behaviour, 51, 1207-1217. |
[43] | Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. |
[44] | Wu J, Wang CL (1995) The Ants of China. China Forestry Publishing House, Beijing. (in Chinese) |
[ 吴坚, 王常禄 (1995) 中国蚂蚁. 中国林业出版社, 中国林业出版社.] | |
[45] | Xu ZH (1999) An analysis on the ant fauna of the tropical rain forest in Xishuangbanna of China. Zoological Research, 20, 379-384. (in Chinese with English abstract) |
[ 徐正会 (1999) 西双版纳热带雨林蚁科昆虫区系分析. 动物学研究, 20, 379-384.] | |
[46] | Xu ZH, Yang BL, Hu G (1999) Formicidae ant communities in fragments of montane rain forest in Xishuangbanna, China. Zoological Research, 20, 288-293. (in Chinese with English abstract) |
[ 徐正会, 杨比伦, 胡刚 (1999) 西双版纳片断山地雨林蚁科昆虫群落研究. 动物学研究, 20, 288-293.] | |
[47] | Zhu H (2007) On the classification of forest vegetation in Xishuangbanna, Southern Yunnan. Acta Botanica Yunnanica, 29, 377-387. (in Chinese with English abstract) |
[ 朱华 (2007) 论滇南西双版纳的森林植被分类. 云南植物研究, 29, 377-387.] | |
[48] | Zhu H (2011) Tropical monsoon forest in Yunnan with comparison to the tropical rain forest. Chinese Journal of Plant Ecology, 35, 463-470. (in Chinese with English abstract) |
[ 朱华 (2011) 云南热带季雨林及其与热带雨林植被的比较. 植物生态学报, 35, 463-470.] | |
[49] | Zhu H, Li YH, Xu ZF, Wang H, Li BG (2001) Characteristics and affinity of the flora of Xishuangbanna, SW China. Guihaia, 21, 127-136. (in Chinese with English abstract) |
[ 朱华, 李延辉, 许再富, 王洪, 李宝贵 (2001) 西双版纳植物区系的特点与亲缘. 广西植物, 21, 127-136.] |
[1] | Xiaobo Lü, Donghai Li, Xiaobo Yang, Mengwen Zhang. The species coexisted in mangrove communities through niche differentiation of flooding time and salinity [J]. Biodiv Sci, 2024, 32(3): 23302-. |
[2] | Peng Wang, Jiarong Sui, Xinyao Ding, Weizhong Wang, Xueqian Cao, Haipeng Zhao, Yanping Wang. Nested distribution patterns of bird assemblages and their influencing factors in Zhengzhou urban parks [J]. Biodiv Sci, 2024, 32(3): 23359-. |
[3] | Wang Yanping, Zhang Minchu, Zhan Chengxiu. A review on the nested distribution pattern (nestedness): Analysis methods, mechanisms and conservation implications [J]. Biodiv Sci, 2023, 31(12): 23314-. |
[4] | Minhao Chen, Chao Zhang, Jiadong Wang, Zhenjie Zhan, Junzhi Chen, Xiaofeng Luan. Distribution and niche overlap of American mink and Eurasian otter in Northeast China [J]. Biodiv Sci, 2023, 31(1): 22289-. |
[5] | Lujia Tian, Xiaobo Yang, Donghai Li, Long Li, Lin Chen, Caiqun Liang, Peichun Zhang, Chendi Li. Species diversity and nestedness of bird assemblages in the forest fragments of Haikou and Sanya cities [J]. Biodiv Sci, 2022, 30(6): 21424-. |
[6] | Chaodan Guo, Caiyun Zhao, Feifei Li, Junsheng Li. Comparative study of invasive and native herbs in natural forests and plantation forests: With Nonggang National Nature Reserve as an example [J]. Biodiv Sci, 2022, 30(4): 21356-. |
[7] | Mengjun Qu, Nueryila·Ababaike , Xuge Zou, Hang Zhao, Weilin Zhu, Jianming Wang, Jingwen Li. Influence of geographic distance and environmental factors on beta diversity of plants in the Alxa gobi region in northern China [J]. Biodiv Sci, 2022, 30(11): 22029-. |
[8] | Jiayun He, Dong Zhang, Ling Chu, Yunzhi Yan. Anthropogenic disturbances affect the functional diversity of stream fishes and its longitudinal patterns in China [J]. Biodiv Sci, 2021, 29(7): 927-937. |
[9] | Jinfeng Zheng, Rong Tang, Shuang He, Yuehong Chen, Su Wu, Kai Zhang, Yu Xu, Xiao Zou. Bird diversity and nestedness on fragmented woodlots in Huaxi University Town, Guizhou Province [J]. Biodiv Sci, 2021, 29(5): 661-667. |
[10] | Mingjia Li, Kaiyuan Wu, Fanfan Meng, Ji Shen, Yongqin Liu, Nengwen Xiao, Jianjun Wang. Beta diversity of stream bacteria in Hengduan Mountains: The effects of climatic and environmental variables [J]. Biodiv Sci, 2020, 28(12): 1570-1580. |
[11] | Yang Siqi,Zhang Qi,Song Xiqiang,Wang Jian,Li Yide,Xu Han,Guo Shouyu,Ding Qiong. Structural features of root-associated fungus-plant interaction networks in the tropical montane rain forest of Jianfengling, China [J]. Biodiv Sci, 2019, 27(3): 314-326. |
[12] | Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo. Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe [J]. Biodiv Sci, 2018, 26(7): 667-677. |
[13] | Kaida Xu, Kaner Lu, Zhanhui Lu, Qian Dai. Ecological niche analysis of dominant shrimp species in the Jiushan Islands Marine Nature Reserve [J]. Biodiv Sci, 2018, 26(6): 601-610. |
[14] | Dong Zhang, Fengying Wan, Ling Chu, Yunzhi Yan. Longitudinal patterns in α and β diversity of the taxonomic and functional organizations of stream fish assemblages in the Qingyi River [J]. Biodiv Sci, 2018, 26(1): 1-13. |
[15] | Xingfeng Si, Yuhao Zhao, Chuanwu Chen, Peng Ren, Di Zeng, Lingbing Wu, Ping Ding. Beta-diversity partitioning: methods, applications and perspectives [J]. Biodiv Sci, 2017, 25(5): 464-480. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn