Biodiv Sci ›› 2018, Vol. 26 ›› Issue (7): 667-677. DOI: 10.17520/biods.2018045
• Original Papers: Plant Diversity • Previous Articles Next Articles
Song Naiping*(), Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo
Received:
2018-02-08
Accepted:
2018-05-15
Online:
2018-07-20
Published:
2018-09-11
Contact:
Song Naiping
Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo. Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe[J]. Biodiv Sci, 2018, 26(7): 667-677.
Fig. 1 Jaccard dissimilarity matrix heat map for different area soil islands. The purple indicate the 0 value reflecting the maximum similarity, the turquoise indicate the 1 value reflecting the minimum similarity. The numbers 1-3, 4-6 and 7-8 represent inside, marginal and outside areas of the soil islands, respectively.
土岛内部 Inside the soil island | 土岛外部 Outside the soil island | |||||
---|---|---|---|---|---|---|
大土岛 Large island | 中土岛 Medium island | 小土岛 Small island | 中土岛 Medium island | 小土岛 small island | ||
短花针茅 S. breviflora | 22.28 ± 11.17ab | 29.75 ± 10.43a | 28.17 ± 14.24a | 13.19 ± 6.38bc | 7.03 ± 5.25bc | |
猪毛蒿 A. scoparia | 4.68 ± 3.65c | 29.33 ± 20.56bc | 38.42 ± 3.47bc | 69.63 ± 13.99ab | 73.83 ± 30.46ab |
Table 1 Density of Stipa breviflora and Artemisia scoparia inside and outside the soil islands (mean ± SD)
土岛内部 Inside the soil island | 土岛外部 Outside the soil island | |||||
---|---|---|---|---|---|---|
大土岛 Large island | 中土岛 Medium island | 小土岛 Small island | 中土岛 Medium island | 小土岛 small island | ||
短花针茅 S. breviflora | 22.28 ± 11.17ab | 29.75 ± 10.43a | 28.17 ± 14.24a | 13.19 ± 6.38bc | 7.03 ± 5.25bc | |
猪毛蒿 A. scoparia | 4.68 ± 3.65c | 29.33 ± 20.56bc | 38.42 ± 3.47bc | 69.63 ± 13.99ab | 73.83 ± 30.46ab |
物种数 Species richness | Simpson指数 Simpson index | Shannon-Wiener指数 Shannon-Wiener index | 均匀度指数 Evenness index | β多样性 β diversity | 生物量 Biomass | ||
---|---|---|---|---|---|---|---|
内部 Inside | 大土岛 Large island | 10.1 ± 2.26a | 0.89 ± 0.2a | 2.48 ± 0.39a | 0.98 ± 0.19a | 2.93 ± 0.67a | 44.34 ± 5.45bc |
中土岛 Medium island | 9.64 ± 2.98a | 0.85 ± 0.19a | 2.27 ± 0.28a | 0.93 ± 0.14a | 2.49 ± 0.57ab | 55.29 ± 2.13abc | |
小土岛 Small island | 9.66 ± 1.23a | 0.87 ± 0.17a | 2.25 ± 0.20a | 0.91 ± 0.12a | 2.24 ± 0.6ab | 34.66 ± 6.41c | |
外部 Outside | 大土岛 Large island | 11.15 ± 3.36a | 0.83 ± 0.16a | 2.11 ± 0.39ab | 0.82 ± 0.05a | 1.89 ± 0.4b | 86.46 ± 41.13a |
中土岛 Medium island | 8.89 ± 1.86a | 0.73 ± 0.15a | 1.83 ± 0.46ab | 0.78 ± 0.20a | 2.59 ± 0.3ab | 89.48 ± 32.24a | |
小土岛 Small island | 7.5 ± 0.94a | 0.61 ± 0.02a | 1.48 ± 0.15b | 0.74 ± 0.13a | 2.6 ± 0.52ab | 81.54 ± 7.64ab |
Table 2 Plant diversity and biomass among different soil islands (mean ± SD)
物种数 Species richness | Simpson指数 Simpson index | Shannon-Wiener指数 Shannon-Wiener index | 均匀度指数 Evenness index | β多样性 β diversity | 生物量 Biomass | ||
---|---|---|---|---|---|---|---|
内部 Inside | 大土岛 Large island | 10.1 ± 2.26a | 0.89 ± 0.2a | 2.48 ± 0.39a | 0.98 ± 0.19a | 2.93 ± 0.67a | 44.34 ± 5.45bc |
中土岛 Medium island | 9.64 ± 2.98a | 0.85 ± 0.19a | 2.27 ± 0.28a | 0.93 ± 0.14a | 2.49 ± 0.57ab | 55.29 ± 2.13abc | |
小土岛 Small island | 9.66 ± 1.23a | 0.87 ± 0.17a | 2.25 ± 0.20a | 0.91 ± 0.12a | 2.24 ± 0.6ab | 34.66 ± 6.41c | |
外部 Outside | 大土岛 Large island | 11.15 ± 3.36a | 0.83 ± 0.16a | 2.11 ± 0.39ab | 0.82 ± 0.05a | 1.89 ± 0.4b | 86.46 ± 41.13a |
中土岛 Medium island | 8.89 ± 1.86a | 0.73 ± 0.15a | 1.83 ± 0.46ab | 0.78 ± 0.20a | 2.59 ± 0.3ab | 89.48 ± 32.24a | |
小土岛 Small island | 7.5 ± 0.94a | 0.61 ± 0.02a | 1.48 ± 0.15b | 0.74 ± 0.13a | 2.6 ± 0.52ab | 81.54 ± 7.64ab |
土岛 Soil island | 实际值C-score Observed C-score | 模拟值C-score Simulated C-score | 实际值小于模拟值的P值 P-observed < P-simulated | 实际值大于模拟值的P值 P-observed > P-simulated | 标准效应量 Standardized effect size | |
---|---|---|---|---|---|---|
内部 Inside | 大土岛 Large island | 25.11 | 25.05 | 0.64 | 0.36 | 0.29 |
中土岛 Medium island | 10.25 | 10.23 | 0.6 | 0.41 | 0.16 | |
小土岛 Small island | 7.8 | 7.63 | 0.95 | 0.05 | 1.85 | |
外部 Outside | 大土岛 Large island | 9.32 | 9.27 | 0.72 | 0.29 | 0.5 |
中土岛 Medium island | 9.44 | 9.15 | 0.02 | 0.02 | 2.22 | |
小土岛 Small island | 11.99 | 11.8 | 0.94 | 0.06 | 1.62 |
Table 3 Species co-occurrence analysis for plant community among different soil islands (null model analysis)
土岛 Soil island | 实际值C-score Observed C-score | 模拟值C-score Simulated C-score | 实际值小于模拟值的P值 P-observed < P-simulated | 实际值大于模拟值的P值 P-observed > P-simulated | 标准效应量 Standardized effect size | |
---|---|---|---|---|---|---|
内部 Inside | 大土岛 Large island | 25.11 | 25.05 | 0.64 | 0.36 | 0.29 |
中土岛 Medium island | 10.25 | 10.23 | 0.6 | 0.41 | 0.16 | |
小土岛 Small island | 7.8 | 7.63 | 0.95 | 0.05 | 1.85 | |
外部 Outside | 大土岛 Large island | 9.32 | 9.27 | 0.72 | 0.29 | 0.5 |
中土岛 Medium island | 9.44 | 9.15 | 0.02 | 0.02 | 2.22 | |
小土岛 Small island | 11.99 | 11.8 | 0.94 | 0.06 | 1.62 |
Fig. 2 Frequency distribution of standardized effect size (SES) among the pairs of coexisting species. A, B and C indicate inside the large, medium and small islands, respectively. D, E and F indicate outside the large, medium and small islands, respectively. The lines represent the 95% confidence interval.
Fig. 3 Meta analysis of species pairs with significant interactions. A, B and C indicate inside the large, medium and small soil islands, respectively. D, E and F indicate outside the large, medium and small soil islands, respectively.
Fig. 4 Meta analysis of the strength interaction for significant species pairs in soil islands community. A, B and C indicate inside the large, medium and small islands, respectively. D, E and F indicate outside the large, medium and small islands, respectively.
参数 Parameter | 总异质性 Total heterogeneity | 混合效应模型 Mixed-Effects Model | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | Area | |||
土岛内部 Inside the soil islands | 模型方差 tau2 Estimated amount of total heterogeneity | 0.97 | 0.1565 | 0.1897 | 2.1863 | 1.7245 |
标准差 SD | 1.16 | 0.4067 | 0.4516 | 3.3815 | 2.8083 | |
R2 (amount of heterogeneity accounted for) | 85.36% | 80.44% | 0% | 0% | ||
异质性检验结果 Test for heterogeneity | ||||||
自由度 Q (df = 2) | 12.68 | 2.1946 | 5.1145 | 0.0039 | 0.2431 | |
P-val P值 | < 0.01 | 0.017 | 0.0237 | 0.9504 | 0.622 | |
土岛内外 Outside and inside the soil islands | 模型方差 tau2 Estimated amount of total heterogeneity | 0.29 | - | - | - | - |
自由度 Q (df = 5) | 14.45 | 1.06 | 0.3759 | 0.745 | - | |
P-val P值 | 0.01 | 0.7867 | 0.5398 | 0.3881 | - |
Table 4 Test for meta heterogeneity of the strength interaction among significant species pairs inside the soil island
参数 Parameter | 总异质性 Total heterogeneity | 混合效应模型 Mixed-Effects Model | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | Area | |||
土岛内部 Inside the soil islands | 模型方差 tau2 Estimated amount of total heterogeneity | 0.97 | 0.1565 | 0.1897 | 2.1863 | 1.7245 |
标准差 SD | 1.16 | 0.4067 | 0.4516 | 3.3815 | 2.8083 | |
R2 (amount of heterogeneity accounted for) | 85.36% | 80.44% | 0% | 0% | ||
异质性检验结果 Test for heterogeneity | ||||||
自由度 Q (df = 2) | 12.68 | 2.1946 | 5.1145 | 0.0039 | 0.2431 | |
P-val P值 | < 0.01 | 0.017 | 0.0237 | 0.9504 | 0.622 | |
土岛内外 Outside and inside the soil islands | 模型方差 tau2 Estimated amount of total heterogeneity | 0.29 | - | - | - | - |
自由度 Q (df = 5) | 14.45 | 1.06 | 0.3759 | 0.745 | - | |
P-val P值 | 0.01 | 0.7867 | 0.5398 | 0.3881 | - |
环境变量 Environment variables | 实测值 Observed value | 模拟值 Mean of simulated value | 标准效应量 SES | 实测值大于模拟值的P值 P-observed > P-simulated | 实测值小于模拟值的P值 P-observed < P-simulated | |
---|---|---|---|---|---|---|
大土岛 Large island | PC1 | 0.61 | 0.60 | 1.01 | 0.86 | 0.14 |
PC2 | 0.61 | 0.54 | 6.62 | 0.00 | 1.00 | |
中土岛 Medium island | PC1 | 0.54 | 0.54 | 0.53 | 0.24 | 0.76 |
PC2 | 0.55 | 0.47 | 5.61 | 0.00 | 1.00 | |
小土岛 Small island | PC1 | 0.49 | 0.44 | 2.39 | 0.03 | 0.97 |
Table 5 Community niche analysis for selected environmental principal components
环境变量 Environment variables | 实测值 Observed value | 模拟值 Mean of simulated value | 标准效应量 SES | 实测值大于模拟值的P值 P-observed > P-simulated | 实测值小于模拟值的P值 P-observed < P-simulated | |
---|---|---|---|---|---|---|
大土岛 Large island | PC1 | 0.61 | 0.60 | 1.01 | 0.86 | 0.14 |
PC2 | 0.61 | 0.54 | 6.62 | 0.00 | 1.00 | |
中土岛 Medium island | PC1 | 0.54 | 0.54 | 0.53 | 0.24 | 0.76 |
PC2 | 0.55 | 0.47 | 5.61 | 0.00 | 1.00 | |
小土岛 Small island | PC1 | 0.49 | 0.44 | 2.39 | 0.03 | 0.97 |
[1] | Albrecht M, Gotelli NJ (2001) Spatial and temporal niche partitioning in grassland ants. Oecologia, 126, 134-141. |
[2] | Bao SD (2000) Soil Agro-chemistrical Analysis. China Agriculture Press, Beijing. (in Chinese) |
[鲍士旦 (2000) 土壤农化分析. 中国农业出版社, 北京.] | |
[3] | Bergholz K, May F, Giladi I, Ristow M, Ziv Y, Jeltsch F (2017) Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment. Perspectives in Plant Ecology, Evolution and Systematics, 24, 138-146. |
[4] | Boeye J, Kubisch A, Bonte D (2014) Habitat structure mediates spatial segregation and therefore coexistence. Landscape Ecology, 29, 593-604. |
[5] | Borcard D, Gillet F, Legendre P (translated by Lai JS) (2014) Numerical Ecology with R, pp. 332-334. Higher Education Press, Beijing. (in Chinese) |
[赖江山 (译) (2014) 数量生态学——R语言的应用, 332-334页. 高等教育出版社, 北京.] | |
[6] | Briers R (2006) Ecology: From individuals to ecosystems. Freshwater Biology, 51, 1787-1788. |
[7] | Brown CD, Boutin C (2009) Linking past land use, recent disturbance, and dispersal mechanism to forest composition. Biological Conservation, 142, 1647-1656. |
[8] | Chai YF, Yue M (2017) Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 36, 4557-4572. (in Chinese with English abstract) |
[柴永福, 岳明 (2017) 植物群落构建机制研究进展. 生态学报, 36, 4557-4572.] | |
[9] | Chen L, Mi XC, Ma KP (2014) Niche differentiation and its consequence on biodiversity maintenance in forest communities. Chinese Bulletin of Life Sciences, 26, 112-117. (in Chinese) |
[陈磊, 米湘成, 马克平 (2014) 生态位分化与森林群落物种多样性维持研究展望. 生命科学, 26, 112-117.] | |
[10] | Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract) |
[储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.] | |
[11] | Collins CD, Banks-Leite C, Brudvig LA, Foster BL, Cook WM, Damschen EI, Andrade A, Austin M, Camargo JL, Driscoll DA (2017) Fragmentation affects plant community composition over time. Ecography, 40, 119-130. |
[12] | Duan HL, Zhao A, Yao Z (2017) Analysis of wetland plant-soil relationships and population niches in Chayegang marshland near Henghu farm in the Poyang Lake region during the dry season. Acta Ecologica Sinica, 37, 3744-3754. (in Chinese with English abstract) |
[段后浪, 赵安, 姚忠 (2017) 恒湖农场茶叶港草洲枯水期湿地植物与土壤关系及种群生态位分析. 生态学报, 37, 3744-3754.] | |
[13] | Gao M, He P, Zhang X (2014) Relative roles of spatial factors, environmental filtering and biotic interactions in fine-scale structuring of a soil mite community. Soil Biology & Biochemistry, 79, 68-77. |
[14] | Gonzalez M, Ladet S, Deconchat M, Cabanettes A, Alard D, Balent G (2010) Relative contribution of edge and interior zones to patch size effect on species richness: An example for woody plants. Forest Ecology and Management, 259, 266-274. |
[15] | Gotelli NJ, McCabe DJ (2002) Species co-occurrence: A meta-analysis of JM Diamond’s assembly rules model. Ecology, 83, 2091-2096. |
[16] | Gotelli NJ, Ulrich W (2010) The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 162, 463-477. |
[17] | Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052. |
[18] | Han DY, Yang YF (2014) Species abundance-distribution relationship and its interpretation in plant communities on the Songnen grasslands, China. Biodiversity Science, 22, 348-357. (in Chinese with English abstract) |
[韩大勇, 杨允菲 (2014) 松嫩草地植物群落物种多度-分布关系及其解释. 生物多样性, 22, 348-357.] | |
[19] | Hu G, Feeley KJ, Yu M (2016) Habitat fragmentation drives plant community assembly processes across life stages. PLoS ONE, 11, e0159572. |
[20] | Hu GL, Zhao WZ, Wang G (2011) Reviews on spatial pattern and sand-binding effect of patch vegetation in arid desert area. Acta Ecologica Sinica, 31, 7609-7616. (in Chinese with English abstract) |
[胡广录, 赵文智, 王岗 (2011) 干旱荒漠区斑块状植被空间格局及其防沙效应研究进展. 生态学报, 31, 7609-7616. ] | |
[21] | Jiménez JJ, Decaëns T, Rossi JP (2012) Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian “Llanos”. Oikos, 121, 915-926. |
[22] | Krasnov BR, Shenbrot GI, Khokhlova IS (2011) Aggregativestructure is the rule in communities of fleas: Null model analysis. Ecography, 34, 751-761. |
[23] | Li XR, Zhao Y, Hui R, Su JQ, Gao YH (2014) Progress and trend of development of restoration ecology research in the arid regions of China. Progress in Geography, 33, 1435-1443. (in Chinese with English abstract) |
[李新荣, 赵洋, 回嵘, 苏洁琼, 高艳红 (2014) 中国干旱区恢复生态学研究进展及趋势评述. 地理科学进展, 33, 1435-1443.] | |
[24] | Ma KM, Zhang JY, Guo XD, Fu BJ (2002) Plant diversity distribution of mountains in rural landscapes: The combined influences of topography and land use. Acta Phytoecologica Sinica, 26, 575-588. (in Chinese with English abstract) |
[马克明, 张洁瑜, 郭旭东, 傅伯杰 (2002) 农业景观中山体的植物多样性分布: 地形和土地利用的综合影响. 植物生态学报, 26, 575-588.] | |
[25] | May R, Mclean A (1976) Theoretical Ecology: Principles and Applications, pp. 1147-1152. Oxford University Press, New York. |
[26] | Miguel JM, Martín-Forés I, Acosta-Gallo B, del Pozo A, Ovalle C, Sánchez-Jardón L, Castro I, Casado MA (2016) Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands. Acta Oecologica, 77, 18-26. |
[27] | Patiño J, Whittaker RJ, Borges PAV, Fernández-Palacios JM, Ah-Peng C, Araújo MB, Ávila SP, Cardoso P, Cornuault J, de Boer EJ, de Nascimento L, Gil A, Gon?alez-Castro A, Gruner DS, Heleno R, Horta J, Illera GJ, Kaiser-Bunbury CN, Matthews TJ, Papadopoulou A, Pettorelli N, Price JP, Santos AMC, Steinbauer MJ,Triantis KA, Valente L, Vargas P, Weigelt P, Emerson BC (2017) A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. Journal of Biogeography, 44, 963-983. |
[28] | Shang KK, Da LJ (2013) Microtopographic spatial differentiation pattern and coexistence mechanism of relict deciduous broadleaved trees: A review. Chinese Journal of Ecology, 32, 1912-1919. (in Chinese with English abstract) |
[商侃侃, 达良俊 (2013) 孑遗落叶阔叶树种微地形空间分异格局及共存机制研究概述. 生态学杂志, 32, 1912-1919.] | |
[29] | Walter H (1985) Vegetation of the Earth and Ecological Systems of the Geo-biosphere. Springer-Verlag, New York. |
[30] | Wu J, Yu XC, Liu ZM, Hou XZ, Qian JQ, Xing BZ (2017) Effects of “habitat island” area on plant species diversity and its distribution pattern in Horqin Sand Land. Chinese Journal of Ecology, 36, 43-53. (in Chinese with English abstract) |
[武晶, 余新春, 刘志民, 侯宪章, 钱建强, 邢宝振 (2017) 科尔沁沙地“生境岛屿”面积对植物物种多样性及其分布格局的影响. 生态学杂志, 36, 43-53.] | |
[31] | Zhang JT (2004) Numerical Ecology. Science Press, Beijing. (in Chinese) |
[张金屯 (2004) 数量生态学. 科学出版社, 北京.] | |
[32] | Zhang Q (2011) Biodiversity Patterns and Environmental Interpretation of Stipa breviflora Grassland in Inner Mongolia. PhD dissertation, Inner Mongolia University, Hohhot. (in Chinese with English abstract) |
[张庆 (2011) 内蒙古短花针茅草原生物多样性格局及环境解释. 博士学位论文, 内蒙古大学, 呼和浩特.] | |
[33] | Zhou SR, Zhang DY (2006) Neutral theory in community ecology. Journal of Plant Ecology (Chinese Version), 30, 868-877. (in Chinese with English abstract) |
[周淑荣, 张大勇 (2006) 群落生态学的中性理论. 植物生态学报, 30, 868-877.] | |
[34] | Zou XH (2015) Ecological Effects and Dynamic Mechanisms of Vegetattion Patches in Alkali-Saline Grassland Landscape on the Songnen Plains. PhD dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract) |
[邹雪辉 (2015) 松嫩盐碱化草地景观植被斑块的生态效应与动态机制. 博士学位论文, 东北师范大学, 长春.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn