Biodiv Sci ›› 2020, Vol. 28 ›› Issue (12): 1570-1580. DOI: 10.17520/biods.2019390
Special Issue: 青藏高原生物多样性与生态安全
• Original Papers • Previous Articles
Mingjia Li1,2, Kaiyuan Wu1,3, Fanfan Meng1,2, Ji Shen1,2, Yongqin Liu2,4, Nengwen Xiao5,*(), Jianjun Wang1,2,*()
Received:
2019-12-07
Accepted:
2020-03-08
Online:
2020-12-20
Published:
2020-05-25
Contact:
Nengwen Xiao,Jianjun Wang
Mingjia Li, Kaiyuan Wu, Fanfan Meng, Ji Shen, Yongqin Liu, Nengwen Xiao, Jianjun Wang. Beta diversity of stream bacteria in Hengduan Mountains: The effects of climatic and environmental variables[J]. Biodiv Sci, 2020, 28(12): 1570-1580.
Fig. 1 The sample sites of this study along the 89 streams of Lancang River and the Nujiang River. (a) The study area is located in the biodiversity hotspot of south-eastern Tibetan Plateau. In total, 37 streams flow into the Lancang River, while 52 sampled streams flow into the Nujiang River. NMDS plots illustrate the differences in bacterial total beta diversity (b), turnover (c) and nestedness components (d) across the Lancang and Nujiang catchments. The red dots and black dots indicate the sample sites in Langcang and Nujiang catchment, respectively. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.
Fig. 2 Plots showing the relationship between (a) bacterial total beta diversity, (b) turnover and (c) nestedness components and elevational distance in Lancang and Nujiang catchments. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.
Fig. 3 The environmental and climate factors related to the variance in bacterial beta diversity and its components in Lancang River and Nujiang River catchments, identified with multiple regression on distance matrices (MRM). Filled shapes and empty shapes indicate significant relationship (P < 0.05) and non-significant relationship (P > 0.05), respectively. Comp.1 and Comp.2 indicate principal component analysis (PCA) was performed to reduce the dimensions of measured metal and metalloid concentrations, and the first two axes were used as proxies for these elements. Depth, Stream depth; EC_ us, Electrical conductivity; TN, Total nitrogen; Airtemp, Mean annual temperature; Precipsum, Annual precipitation; PrecSeascov, Precipitation seasonality conditions; TempRange, Annual temperature range.
澜沧江流域 Lancang catchment | 怒江流域 Nujiang catchment | |||||
---|---|---|---|---|---|---|
总beta多样性 Total beta diversity | 周转组分 Turnover | 嵌套组分 Nestedness | 总beta多样性 Total beta diversity | 周转组分 Turnover | 嵌套组分 Nestedness | |
环境因子 Local factors | ||||||
海拔 Elevation | 0.43*** | 0.41*** | 0.43*** | 0.45*** | ||
PCA1轴 Comp.1 | 0.21* | 0.25* | ||||
PCA2轴 Comp.2 | 0.22* | 0.26* | ||||
酸碱度 pH | 0.17* | 0.15* | ||||
水深 Stream depth | 0.23** | 0.23*** | ||||
水温 Water temperature | ||||||
电导率 Electrical conductivity | 0.17* | 0.18* | 0.24** | 0.29*** | ||
总氮 Total nitrogen | 0.24** | 0.28*** | ||||
生物膜 Biofilm | 0.20* | 0.17* | 0.28** | 0.22** | ||
气候因子 Climate factors | ||||||
年平均气温 Mean annual temperature | 0.42*** | 0.42*** | 0.38*** | 0.41*** | ||
年降水量 Annual precipitation | 0.39*** | 0.37*** | 0.19* | -0.14* | ||
降水季节 Precipitation seasonality conditions | 0.34*** | 0.39*** | -0.11* | |||
年温度范围 Annual temperature range | 0.33* | 0.34** | 0.23** | 0.3** | -0.15** |
Table 1 The variation of bacterial total beta diversity, turnover or nestedness components in Lancang and Nujiang catchments are explained by the environmental and climate factors and the partial regression coefficients (R2) of the final model is reported.
澜沧江流域 Lancang catchment | 怒江流域 Nujiang catchment | |||||
---|---|---|---|---|---|---|
总beta多样性 Total beta diversity | 周转组分 Turnover | 嵌套组分 Nestedness | 总beta多样性 Total beta diversity | 周转组分 Turnover | 嵌套组分 Nestedness | |
环境因子 Local factors | ||||||
海拔 Elevation | 0.43*** | 0.41*** | 0.43*** | 0.45*** | ||
PCA1轴 Comp.1 | 0.21* | 0.25* | ||||
PCA2轴 Comp.2 | 0.22* | 0.26* | ||||
酸碱度 pH | 0.17* | 0.15* | ||||
水深 Stream depth | 0.23** | 0.23*** | ||||
水温 Water temperature | ||||||
电导率 Electrical conductivity | 0.17* | 0.18* | 0.24** | 0.29*** | ||
总氮 Total nitrogen | 0.24** | 0.28*** | ||||
生物膜 Biofilm | 0.20* | 0.17* | 0.28** | 0.22** | ||
气候因子 Climate factors | ||||||
年平均气温 Mean annual temperature | 0.42*** | 0.42*** | 0.38*** | 0.41*** | ||
年降水量 Annual precipitation | 0.39*** | 0.37*** | 0.19* | -0.14* | ||
降水季节 Precipitation seasonality conditions | 0.34*** | 0.39*** | -0.11* | |||
年温度范围 Annual temperature range | 0.33* | 0.34** | 0.23** | 0.3** | -0.15** |
Fig. 4 The relative importance of environmental (L), climate (C) and spatial (S) factors in explaining the variance in bacterial beta diversity and its components in Nujiang River and Lancang River catchments. The top-left panel is the general outline. The pure variation explained by each factor is represented by the edges of the triangle. The sides and middle of the triangles indicate the percentages of variation explained by interactions of two or all factors, respectively. (a) Total beta diversity, (b) Turnover component and (c) Nestedness component in Lancang catchment. (d) Total beta diversity, (e) Turnover component and (f) Nestedness component in Nujiang catchment.
[1] | Alahuhta J, Kosten S, Akasaka M, Auderset D, Azzella MM, Bolpagni R, Bove CP, Chambers PA, Chappuis E, Clayton JS ( 2017) Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, 44, 1758-1769. |
[2] | Anderson MJ ( 2001) A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32-46. |
[3] | Anderson MJ, Cribble NA ( 1998) Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Austral Ecology, 23, 158-167. |
[4] | Barberan A, Casamayor EO ( 2010) Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquatic Microbial Ecology, 59, 1-10. |
[5] |
Bardgett RD, Freeman C, Ostle NJ ( 2008) Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805-814.
DOI URL PMID |
[6] | Baselga A ( 2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143. |
[7] |
Bishop TR, Robertson MP, van Rensburg BJ, Parr CL ( 2015) Contrasting species and functional beta diversity in montane ant assemblages. Journal of Biogeography, 42, 1776-1786.
URL PMID |
[8] | Borcard D, Legendre P ( 2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68. |
[9] |
Butchart SHM, Walpole M, Collen B, Van SA, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J ( 2010) Global biodiversity: Indicators of recent declines. Science, 328, 1164-1168.
DOI URL PMID |
[10] |
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI ( 2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336.
URL PMID |
[11] |
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA ( 2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67.
DOI URL PMID |
[12] | Carr GM, Morin A, Chambers PA ( 2005) Bacteria and algae in stream periphyton along a nutrient gradient. Freshwater Biology, 50, 1337-1350. |
[13] | Chase JM ( 2007) Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences, USA, 104, 17430-17434. |
[14] |
Edgar RC ( 2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.
URL PMID |
[15] | Forster J, Hirst AG, Atkinson D ( 2012) Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences, USA, 109, 19310-19314. |
[16] | Frauendorf TC, Mackenzie RA, Tingley RW, Frazier AG, Riney MH, Elsabaawi RW ( 2019) Evaluating ecosystem effects of climate change on tropical island streams using high spatial and temporal resolution sampling regimes. Global Change Biology, 25, 1344-1357. |
[17] | Gutierrezcanovas C, Millan A, Velasco J, Vaughan IP, Ormerod SJ ( 2013) Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography, 22, 796-805. |
[18] | Hanson CA, Fuhrman JA, Hornerdevine MC, Martiny Jennifer BH ( 2012) Beyond biogeographic patterns: Processes shaping the microbial landscape. Nature Reviews Microbiology, 10, 497-506. |
[19] | Heino J, Tolkkinen M, Pirttila AM, Aisala H, Mykra H ( 2014) Microbial diversity and community-environment relationnships in boreal streams. Journal of Biogeography, 41, 2234-2244. |
[20] |
Kuypers MMM, Marchant HK, Kartal B ( 2018) The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16, 263-276.
DOI URL PMID |
[21] |
Lear G, Niyogi DK, Harding JS, Dong Y, Lewis G ( 2009) Biofilm bacterial community structure in streams affected by acid mine drainage. Applied and Environmental Microbiology, 75, 3455-3460.
URL PMID |
[22] |
Legendre P, Lapointe F, Casgrain P ( 1994) Modeling brain evolution from behavior: A permutational regression approach. Evolution, 48, 1487-1499.
DOI URL PMID |
[23] |
Magoc T, Salzberg SL ( 2011) FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957-2963.
DOI URL PMID |
[24] |
Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT ( 2006) Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology, 4, 102-112.
URL PMID |
[25] | Minchin PR ( 1987) An evaluation of the relative robustness of techniques for ecological ordination. Plant Ecology, 69, 89-107. |
[26] | Mori A, Shiono T, Haraguchi TF, Ota AT, Koide D, Ohgue T, Kitagawa R, Maeshiro R, Aung TT, Nakamori T ( 2015) Functional redundancy of multiple forest taxa along an elevational gradient: Predicting the consequences of non‐random species loss. Journal of Biogeography, 42, 1383-1396. |
[27] |
Myers N, Mittermeier RA, Mittermeier CG, Fonseca GABD, Kent J ( 2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
URL PMID |
[28] |
Qian H, Ricklefs RE, White PS ( 2004) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters, 8, 15-22.
DOI URL |
[29] | R Core Team ( 2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. |
[30] |
Si XF, Zhao YH, Chen CW, Ren P, Zeng D, Wu LB, Ding P ( 2017) Beta-diversity partitioning: Methods, applications and perspectives. Biodiversity Science, 25, 464-480(in Chinese with English abstract).
DOI URL |
[ 斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平 ( 2017) Beta多样性分解: 方法, 应用与展望. 生物多样性, 25, 464-480.] | |
[31] |
Socolar JB, Gilroy JJ, Kunin WE, Edwards DP ( 2016) How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution, 31, 67-80.
DOI URL PMID |
[32] | Sun FL, Wang YS, Wu ML, Wang Y, Li QP ( 2011) Spatial heterogeneity of bacterial community structure in the sediments of the Pearl River estuary. Biologia, 66, 574-584. |
[33] | Swenson NG, Anglada-Cordero P, Barone JA ( 2010) Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B: Biological Sciences, 278, 877-884. |
[34] |
Teittinen A, Kallajoki L, Meier S, Stigzelius T, Soininen J ( 2016) The roles of elevation and local environmental factors as drivers of diatom diversity in subarctic streams. Freshwater Biology, 61, 1509-1521.
DOI URL |
[35] | Vilmi A, Zhao WQ, Picazo F, Li MJ, Heino J, Soininen J, Wang JJ ( 2019) Ecological processes underlying the community assembly of aquatic microscopic and macroscopic organisms under contrasting climates in the Tibetan Plateau biodiversity hotspot. Science of the Total Environment, 134974. |
[36] |
Vitousek PM ( 1994) Beyond global warming: Ecology and global change. Ecology, 75, 1861-1876.
DOI URL |
[37] |
Wang JJ, Meier S, Soininen J, Casamayor EO, Pan FY, Tang XM, Yang XD, Zhang YL, Wu QL, Zhou JZ ( 2017) Regional and global elevational patterns of microbial species richness and evenness. Ecography, 40, 393-402.
DOI URL |
[38] |
Wang JJ, Soininen J, Zhang Y, Wang BX, Yang XD, Shen J ( 2011) Contrasting patterns in elevational diversity between microorganisms and macroorganisms. Journal of Biogeography, 38, 595-603.
DOI URL |
[39] |
Wang JJ, Soininen J, Zhang Y, Wang BX, Yang XD, Shen J ( 2012) Patterns of elevational beta diversity in micro- and macroorganisms. Global Ecology and Biogeography, 21, 743-750.
DOI URL |
[40] |
Wang Q, Garrity GM, Tiedje JM, Cole JR ( 2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267.
DOI URL PMID |
[41] | Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M ( 2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351, 137-147. |
[42] |
Whittaker RH ( 1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
DOI URL |
[43] | Wieczynski DJ, Boyle B, Buzzard V, Duran SM, Henderson AN, Hulshof CM, Kerkhoff AJ, Mccarthy MC, Michaletz ST, Swenson NG ( 2019) Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences, USA, 116, 587-592. |
[44] |
Woodward G, Perkins DM, Brown LE ( 2010) Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B, 365, 2093-2106.
DOI URL |
[45] | Wu YJ, Lei FM ( 2013) Species richness patterns and mechanisms along the elevational gradients. Chinese Journal of Zoology, 48, 797-807(in Chinese with English abstract). |
[ 吴永杰, 雷富民 ( 2013) 物种丰富度垂直分布格局及影响机制. 动物学杂志, 48, 797-807.] | |
[46] |
Zhou JZ, Bruns MA, Tiedje JM ( 1996) DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62, 316-322.
URL PMID |
[1] | Bin Li, Pengfei Song, Haifeng Gu, Bo Xu, Daoxin Liu, Feng Jiang, Chengbo Liang, Meng Zhang, Hongmei Gao, Zhenyuan Cai, Tongzuo Zhang. Bird community diversity patterns and their drivers in the Qinghai region of Kunlun Mountains [J]. Biodiv Sci, 2024, 32(4): 23406-. |
[2] | Qi Wu, Xiaoqing Zhang, Yuting Yang, Yibo Zhou, Yi Ma, Daming Xu, Xingfeng Si, Jian Wang. Spatio-temporal changes in biodiversity of epiphyllous liverworts in Qingyuan Area of Qianjiangyuan-Baishanzu National Park, Zhejiang Province [J]. Biodiv Sci, 2024, 32(4): 24010-. |
[3] | Peng Wang, Jiarong Sui, Xinyao Ding, Weizhong Wang, Xueqian Cao, Haipeng Zhao, Yanping Wang. Nested distribution patterns of bird assemblages and their influencing factors in Zhengzhou urban parks [J]. Biodiv Sci, 2024, 32(3): 23359-. |
[4] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[5] | Li Feng. On synergistic governance of biodiversity and climate change in the perspective of international law [J]. Biodiv Sci, 2023, 31(7): 23110-. |
[6] | Lulu Wei, Tingting Xu, Yuanyuan Li, Zhe Ai, Fei Ma. The common garden environment and genetic differentiation jointly influence the diversity and community structure of nitrogen-fixing bacteria in the rhizosphere soil of three Caragana species [J]. Biodiv Sci, 2023, 31(4): 22477-. |
[7] | Xue Yao, Xing Chen, Zun Dai, Kun Song, Shichen Xing, Hongyu Cao, Lu Zou, Jian Wang. Importance of collection strategy on detection probability and species diversity of epiphyllous liverworts [J]. Biodiv Sci, 2023, 31(4): 22685-. |
[8] | Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song. Phenotypic plasticity and local adaptation of Oryza rufipogon revealed by common garden trials [J]. Biodiv Sci, 2023, 31(3): 22311-. |
[9] | Jiawen Sang, Chuangye Song, Ningxia Jia, Yuan Jia, Changcheng Liu, Xianguo Qiao, Lin Zhang, Weiying Yuan, Dongxiu Wu, Linghao Li, Ke Guo. Vegetation survey and mapping on the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2023, 31(3): 22430-. |
[10] | Jinzhou Wang, Jing Xu. Nature-based solutions for addressing biodiversity loss and climate change: Progress, challenges and suggestions [J]. Biodiv Sci, 2023, 31(2): 22496-. |
[11] | Wang Yanping, Zhang Minchu, Zhan Chengxiu. A review on the nested distribution pattern (nestedness): Analysis methods, mechanisms and conservation implications [J]. Biodiv Sci, 2023, 31(12): 23314-. |
[12] | Zhu Hua. Flora and vegetation of Yunnan are shaped by geological events and monsoon climate [J]. Biodiv Sci, 2023, 31(12): 23262-. |
[13] | Jianming Wang, Xun Lei, Yiming Feng, Bo Wu, Qi Lu, Nianpeng He, Jingwen Li. The ecological uniqueness of plant communities and their determinants across the temperate deserts of China [J]. Biodiv Sci, 2023, 31(10): 23144-. |
[14] | Bo Wei, Linshan Liu, Changjun Gu, Haibin Yu, Yili Zhang, Binghua Zhang, Bohao Cui, Dianqing Gong, Yanli Tu. The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China [J]. Biodiv Sci, 2022, 30(8): 21443-. |
[15] | Jiman Li, Nan Jin, Maogang Xu, Jusong Huo, Xiaoyun Chen, Feng Hu, Manqiang Liu. Effects of earthworm on tomato resistance under different drought levels [J]. Biodiv Sci, 2022, 30(7): 21488-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn