Biodiv Sci ›› 2018, Vol. 26 ›› Issue (2): 191-201. DOI: 10.17520/biods.2017324
• Orginal Article • Previous Articles Next Articles
Yiming Hu1,2,3, Jianchao Liang3,4, Kun Jin5, Zhifeng Ding3, Zhixin Zhou3, Huijian Hu3,*, Zhigang Jiang1,2,*
Received:
2017-12-06
Accepted:
2018-01-26
Online:
2018-02-20
Published:
2018-05-05
Contact:
Hu Huijian,Jiang Zhigang
About author:
# Co-first authors
Yiming Hu, Jianchao Liang, Kun Jin, Zhifeng Ding, Zhixin Zhou, Huijian Hu, Zhigang Jiang. The elevational patterns of mammalian richness in the Himalayas[J]. Biodiv Sci, 2018, 26(2): 191-201.
Fig. 1 Generalized topographic map of the Himalaya Mountains and Tibetan Plateau. The black dashed lines with shadow represent boundaries of the study area. Black dashed lines represent boundaries between the western, central, and eastern Himalaya Mountains. Black dots represent field survey areas, from left to right are: Gyirong County, Nyalam County, Tingri County, Dinggyê County, Yadong County, Lhozhag County, Cona County and Lhünzê County, respectively. NP, Nanga Parbat; NB, Namche Barwa.
Fig. 2 Elevational patterns of mammal species richness for different distribution range subsets in the Himalaya Mountains. a, All mammals; b, Endemic mammals; c, Non-endemic mammals; d-g, Mammals in the first, second, third and fourth range size classes, respectively.
Fig. 3 Elevational patterns of mammal species richness for different biological habits and body size subsets in the Himalaya Mountains. a, All mammals; b, Chiroptera; c, Non-volant mammals; d, Non-volant small mammals; e, Non-volant large and medium mammals.
物种分组 Species groups | 物种数 Number of species | 一阶 Order 1 | 二阶 Order 2 | ||
---|---|---|---|---|---|
R2 | ∆AICc | R2 | ∆AICc | ||
总体 All mammals | 312 | 0.8772 | 12,550 | 0.9215 | 0 |
特有种 Endemic mammals | 72 | 0.2935 | 5,236 | 0.7948 | 0 |
非特有种 Non-endemic mammals | 240 | 0.9030 | 1,573 | 0.9102 | 0 |
分布幅一组 First range | 90 | 0.7380 | 1,594.7 | 0.8478 | 0 |
分布幅二组 Second range | 153 | 0.8287 | 3,201.6 | 0.8726 | 0 |
分布幅三组 Third range | 58 | 0.6379 | 5,977 | 0.8482 | 0 |
分布幅四组 Fourth range | 11 | 0.3018 | 356.537 | 0.9289 | 0 |
飞行哺乳动物 Chiroptera | 80 | 0.8075 | 1,995.6 | 0.8675 | 0 |
非飞行哺乳动物 Non-volant mammals | 232 | 0.7592 | 24,569 | 0.9254 | 0 |
非飞行小型哺乳动物 Non-volant small mammals | 127 | 0.6295 | 9,999.2 | 0.8751 | 0 |
非飞行大中型哺乳动物 Non-volant large and medium mammals | 105 | 0.8619 | 3,453.9 | 0.9557 | 0 |
Table 1 Polynomial regressions for the mammal species richness along the elevational gradients in the Himalaya Mountains for each species subsets
物种分组 Species groups | 物种数 Number of species | 一阶 Order 1 | 二阶 Order 2 | ||
---|---|---|---|---|---|
R2 | ∆AICc | R2 | ∆AICc | ||
总体 All mammals | 312 | 0.8772 | 12,550 | 0.9215 | 0 |
特有种 Endemic mammals | 72 | 0.2935 | 5,236 | 0.7948 | 0 |
非特有种 Non-endemic mammals | 240 | 0.9030 | 1,573 | 0.9102 | 0 |
分布幅一组 First range | 90 | 0.7380 | 1,594.7 | 0.8478 | 0 |
分布幅二组 Second range | 153 | 0.8287 | 3,201.6 | 0.8726 | 0 |
分布幅三组 Third range | 58 | 0.6379 | 5,977 | 0.8482 | 0 |
分布幅四组 Fourth range | 11 | 0.3018 | 356.537 | 0.9289 | 0 |
飞行哺乳动物 Chiroptera | 80 | 0.8075 | 1,995.6 | 0.8675 | 0 |
非飞行哺乳动物 Non-volant mammals | 232 | 0.7592 | 24,569 | 0.9254 | 0 |
非飞行小型哺乳动物 Non-volant small mammals | 127 | 0.6295 | 9,999.2 | 0.8751 | 0 |
非飞行大中型哺乳动物 Non-volant large and medium mammals | 105 | 0.8619 | 3,453.9 | 0.9557 | 0 |
Fig. 4 Dendrograms resulting from UPGMA hierarchical clustering of 100 m elevational band assemblages based on βsim dissimilarity matrices for mammal species richness along the elevational gradient in the Himalayas. The agglomerative coefficient is 0.993. The numerals of x-axis represent the 59 100 m elevational bands. For example, “1” means 100-200 m a.s.l. The values of y-axis are dissimilarity (βsim). Cluster leaves of different colors represent different cluster assignments.
[49] | [王应祥 (2003) 中国哺乳动物种和亚种分类名录与分布大全. 中国林业出版社, 北京.] |
[50] | Wu YJ, Yang QS, Wen ZX, Xia L, Zhang Q, Zhou HM (2013a) What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography, 36, 185-196. |
[51] | Wu Y, Colwell RK, Rahbek C, Zhang C, Quan Q, Wang C, Lei F (2013b) Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40, 2310-2323. |
[52] | Wu YJ, Lei FM (2013) Species richness patterns and mechanisms along the elevational gradients. Chinese Journal of Zoology, 48, 797-807. (in Chinese with English abstract) |
[吴永杰, 雷富民 (2013) 物种丰富度垂直分布格局及影响机制. 动物学杂志, 48, 797-807.] | |
[53] | Zhang RZ (2011) Zoogeography of China. Science Press, Beijing. (in Chinese) |
[1] | Acharya BK, Chettri B, Vijayan L (2011a) Distribution pattern of trees along an elevation gradient of eastern Himalaya, India. Acta Oecologica, 37, 329-336. |
[2] | Acharya BK, Sanders NJ, Vijayan L, Chettri B (2011b) Elevational gradients in bird diversity in the eastern Himalaya: An evaluation of distribution patterns and their underlying mechanisms. PLoS ONE, 6, e29097. |
[3] | Bhattarai KR, Vetaas OR (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 12, 327-340. |
[4] | Blyth S (2002) Mountain Watch: Environmental Change and Sustainable Developmental in Mountains. UNEP/Earthprint, London. |
[5] | Chang CW, Chiang S (1973) Primary study on the vertical vegetation belt of Mount Jolmo-Lungma (Everest) region and its relationship with horizontal zone. Acta Botanica Sinica, 15, 77-94. (in Chinese with English abstract) |
[张经炜, 姜恕 (1973) 珠穆朗玛峰地区的植被垂直分带及其与水平地带关系的初步研究. 植物学报, 15, 77-94.] | |
[6] | Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) Nbclust: An R package for determining the relevant number of clusters in a data set. BMC Health Services Research, 61, 1-36. |
[7] | Chettri B, Bhupathy S, Acharya BK (2010) Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India. Acta Oecologica, 36, 16-22. |
[8] | Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144, 570-595. |
[9] | Colwell RK, Rahbek C, Gotelli NJ (2005) The mid-domain effect: There’s a baby in the bathwater. The American Naturalist, 166, E149-E154. |
[10] | Fu CZ, Hua X, Li J, Chang Z, Pu ZC, Chen JK (2006) Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: Geometric constraints, area and climate effects. Ecography, 29, 919-927. |
[11] | Hammer Ø, Harper DAT, Ryan PD (2001) Past: Paleontological statistics software: Package for education and data analysis. Palaeontologia Electronica, 4, 1-9. |
[12] | Heaney LR (2001) Small mammal diversity along elevational gradients in the Philippines: An assessment of patterns and hypotheses. Global Ecology and Biogeography, 10, 15-39. |
[13] | Hu YM, Jin K, Huang ZW, Ding ZF, Liang JC, Pan XY, Hu HJ, Jiang ZG (2017) Elevational patterns of non-volant small mammal species richness in Gyirong Valley, Central Himalaya: Evaluating multiple spatial and environmental drivers. Journal of Biogeography, 44, 2764-2777. |
[14] | Hu YM, Yao ZJ, Huang ZW, Tian Y, Li HB, Pu Q, Yang DD, Hu HJ (2014) Mammalian fauna and its vertical changes in Mt. Qomolangma National Nature Reserve, Tibet, China. Acta Theriologica Sinica, 34, 28-37. (in Chinese with English abstract) |
[胡一鸣, 姚志军, 黄志文, 田园, 李海滨, 普琼, 杨道德, 胡慧建 (2014) 西藏珠穆朗玛峰国家级自然保护区哺乳动物区系及其垂直变化. 兽类学报, 34, 28-37.] | |
[15] | IUCN (2017) The IUCN Red List of Threatened Species, Version 2017-2. . (accessed on 2017-09-14 |
[16] | Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the National Academy of Sciences, USA, 98, 5661-5666. |
[17] | Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548-1551. |
[18] | Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature, 491, 444-448. |
[19] | Jiang ZG, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Feng ZJ (2015) China’s Mammal Diversity and Geographic Distribution. Science Press, Beijing. (in Chinese) |
[蒋志刚, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 冯祚建 (2015) 中国哺乳动物多样性及地理分布. 科学出版社, 北京.] | |
[20] | Joshi K, Bhatt D (2015) Avian species distribution along elevation at doon valley (foot hills of western Himalayas), Uttarakhand, and its association with vegetation structure. Journal of Asia-Pacific Biodiversity, 8, 158-167. |
[21] | Kratochwil A (1999) Biodiversity in Ecosystems: Principles and Case Studies of Different Complexity Levels. Springer, Dor¬drecht. |
[22] | Krzanowski WJ, Lai YT (1988) A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics, 44, 23-34. |
[23] | Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: Diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979. |
[24] | Li JJ, Han LX, Cao HF, Tian Y, Peng BY, Wang B, Hu HJ (2013) The fauna and vertical distribution of birds in Mount Qomolangma National Nature Reserve. Zoological Research, 34, 531-548. (in Chinese with English abstract) |
[李晶晶, 韩联宪, 曹宏芬, 田园, 彭波涌, 王斌, 胡慧建 (2013) 珠穆朗玛峰国家级自然保护区鸟类区系及其垂直分布特征. 动物学研究, 34, 531-548.] | |
[25] | Li YM, Xu L, Ma Y, Yang JY, Yang YH (2003) The species richness of nonvolant mammals in Shennongjia Nature Reserve, Hubei Province, China: Distribution patterns along elevational gradient. Biodiversity Science, 11, 1-9. (in Chinese with English abstract) |
[李义明, 许龙, 马勇, 杨敬元, 杨玉慧 (2003) 神农架自然保护区非飞行哺乳动物的物种丰富度: 沿海拔梯度的分布格局. 生物多样性, 11, 1-9.] | |
[26] | McCain CM, Beck J (2016) Species turnover in vertebrate communities along elevational gradients is idiosyncratic and unrelated to species richness. Global Ecology and Biogeography, 25, 299-310. |
[27] | McCain CM (2004) The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. Journal of Biogeography, 31, 19-31. |
[28] | McCain CM (2005) Elevational gradients in diversity of small mammals. Ecology, 86, 366-372. |
[29] | McCain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16, 1-13. |
[30] | McCain CM (2009) Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18, 346-360. |
[31] | McCain CM (2010) Global analysis of reptile elevational diversity. Global Ecology and Biogeography, 19, 541-553. |
[32] | Mena JL, Vázquez-Domínguez E (2005) Species turnover on elevational gradients in small rodents. Global Ecology and Biogeography, 14, 539-547. |
[33] | Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. |
[34] | Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests MASS (2007) The vegan package. Community Ecology Package, 10, 631-637. |
[35] | Olson DM, Dinerstein E (1998) The Global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conservation Biology, 12, 502-515. |
[36] | Oommen MA, Shanker K (2005) Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology, 86, 3039-3047. |
[37] | Pan HJ, Yang DD, Qin HH, Zhang L, Jiang K, Hu HJ (2013) Herpetofauna of Mount Qomolangma National Nature Reserve in Tibet, China. Biodiversity Science, 21, 610-615. (in Chinese with English abstract) |
[潘虎君, 杨道德, 覃海华, 张亮, 蒋珂, 胡慧建 (2013) 珠穆朗玛峰国家级自然保护区两栖爬行动物多样性及区系. 生物多样性, 21, 610-615.] | |
[38] | Pan XY, Ding ZF, Hu YM, Liang JC, Wu YJ, Si XF, Guo MF, Hu HJ, Jin K (2016) Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China. PeerJ, 4, e2636. |
[39] | Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P, Olsson P, Ghosh-Harihar M, Ishtiaq F, Gupta SK, Martens J, Harr B, Singh P, Martens J (2014) Niche filling slows the diversification of Himalayan songbirds. Nature, 509, 222-225. |
[40] | Rahbek C (1995) The elevational gradient of species richness: A uniform pattern? Ecography, 18, 200-205. |
[41] | Rahbek C (1997) The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149, 875-902. |
[42] | Rickart EA (2001) Elevational diversity gradients, biogeography and the structure of montane mammal communities in the intermountain region of North America. Global Ecology and Biogeography, 10, 77-100. |
[43] | Rowe RJ, Heaney LR, Rickart EA (2015) Scale effects on the pattern and predictors of small mammal diversity along a local elevational gradient in the Great Basin. Journal of Biogeography, 42, 1964-1974. |
[44] | Sánchez-Cordero V (2001) Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecology and Biogeography, 10, 63-76. |
[45] | Simpson GG (1943) Mammals and the nature of continents. American Journal of Science, 241, 1-31. |
[46] | Singh JS, Singh SP (1987) Forest vegetation of the Himalaya. The Botanical Review, 53, 80-192. |
[47] | The Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Chinese Academy of Sciences(1986) The Mammals of Xizang. Science Press, Beijing. (in Chinese) |
[中国科学院青藏高原综合科学考察队(1986) 西藏哺乳类. 科学出版社, 北京.] | |
[48] | Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291-301. |
[49] | Wang YX (2003) A Complete Checklist of Mammal Species and Subspecies in China: A Taxonomic and Geographic Reference. China Forestry Publishing House, Beijing. (in Chinese) |
[53] | [张荣祖 (2011) 中国动物地理. 科学出版社, 北京.] |
[1] | QI ZHANG. Suggestions on Standardizing Chinese Names of Zoological and Plants Nomenclature Involving the Himalayas [J]. Biodiv Sci, 2023, 31(1): 0-0. |
[2] | Ziyu Ma, Zaixin He, Yiqing Wang, Dazhao Song, Fan Xia, Shiming Cui, Hongxin Su, Jianlin Deng, Ping Li, Sheng Li. An update on the current distribution and key habitats of the clouded leopard (Neofelis nebulosa) populations in China [J]. Biodiv Sci, 2022, 30(9): 22349-. |
[3] | Ke Liu, Sicheng Han, He Yu, Shu-Jin Luo. The evolutionary genetics, taxonomy, and conservation of the Chinese mountain cat [J]. Biodiv Sci, 2022, 30(9): 22396-. |
[4] | Yixiao Zhu, Dawei Wang, Zhilin Li, Jiawei Feng, Tianming Wang. Restoring tiger population in Asia: Challenges, opportunities, and future prospects [J]. Biodiv Sci, 2022, 30(9): 22421-. |
[5] | Bo Wei, Linshan Liu, Changjun Gu, Haibin Yu, Yili Zhang, Binghua Zhang, Bohao Cui, Dianqing Gong, Yanli Tu. The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China [J]. Biodiv Sci, 2022, 30(8): 21443-. |
[6] | Ludan Zhang, Ying Lu, Chang Chu, Qiaoqiao He, Zhiyuan Yao. New spider taxa of the world in 2021 [J]. Biodiv Sci, 2022, 30(8): 22163-. |
[7] | Huanxi Cao, Arong Luo, Zeqing Niu, Yanzhou Zhang, Hui Xiao, Chaodong Zhu. New taxa of the order Hymenoptera in 2021 [J]. Biodiv Sci, 2022, 30(8): 22162-. |
[8] | Weinuo Liang, Liang Hu. Geographical distribution of freshwater and estuarial fish archaeological remains since the Neolithic Age in China and its biogeographical implications [J]. Biodiv Sci, 2022, 30(8): 21471-. |
[9] | Tongyi Liu, Liyun Jiang, Gexia Qiao. Annual report of new insect taxa of Chinese Hemiptera and 28 other orders described in 2021 [J]. Biodiv Sci, 2022, 30(8): 22300-. |
[10] | Weiyue Sun, Jiangping Shu, Yufeng Gu, Morigengaowa, Xiajin Du, Baodong Liu, Yuehong Yan. Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides [J]. Biodiv Sci, 2022, 30(7): 21508-. |
[11] | Huihui Xi, Yiqing Wang, Yuezhi Pan, Tian Xu, Qingqing Zhan, Jian Liu, Xiuyan Feng, Xun Gong. Resources and protection of Cycas plants in China [J]. Biodiv Sci, 2022, 30(7): 21495-. |
[12] | Ruiliang Zhu, Xiaoying Ma, Chang Cao, Ziyin Cao. Advances in research on bryophyte diversity in China [J]. Biodiv Sci, 2022, 30(7): 22378-. |
[13] | Wenbo Yan, Yanni Mo, Zhigao Zeng, Shaoliang Xue, Qi Wang, Chunsheng Liang, Zhuli Huang, Wen Luo, Daye Liu, Shiqin Mo, Xiaoguang Li, Lu Liang, Kunpeng Du. Distribution and conservation status of Chinese pangolin (Manis pentadactyla) in Jianfengling, Hainan [J]. Biodiv Sci, 2022, 30(6): 22106-. |
[14] | Qing Yang, Peng Zhang, Ruizhi An, Nanqian Qiao, Zhen Da, Sang Ba. Spatial and temporal distribution patterns and driving mechanisms of ciliate communities in the midstream and downstream reaches of the Lhasa River [J]. Biodiv Sci, 2022, 30(6): 22012-. |
[15] | Gaohui Liu, Jianguo Cui, Yue Wang, Hongliang Wang, Bao Xiang, Nengwen Xiao. Amphibian diversity and its spatio-temporal distribution patterns in Kangding City, Sichuan Province [J]. Biodiv Sci, 2022, 30(6): 21494-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn