生物多样性 ›› 2024, Vol. 32 ›› Issue (7): 24117. DOI: 10.17520/biods.2024117 cstr: 32101.14.biods.2024117
马骅1(), 李常青1, 余品锋1, 陈杰1, 贺天耀1, 王可洪1,2,*()()
收稿日期:
2024-03-26
接受日期:
2024-05-16
出版日期:
2024-07-20
发布日期:
2024-07-02
通讯作者:
*E-mail: wang018837@hotmail.com
基金资助:
Hua Ma1(), Changqing Li1, Pinfeng Yu1, Jie Chen1, Tianyao He1, Kehong Wang1,2,*()()
Received:
2024-03-26
Accepted:
2024-05-16
Online:
2024-07-20
Published:
2024-07-02
Contact:
*E-mail: wang018837@hotmail.com
Supported by:
摘要:
消落带是水体与陆地之间的过渡区域, 生态过程独特, 生物多样性较高, 对环境变化非常敏感。土壤动物是消落带生态系统的重要组成部分, 发挥着重要的生态功能。研究消落带土壤动物多样性对充分评估大型水利水电工程对生态环境的影响至关重要。本文通过对澎溪河消落带8个地点和4个高程大型土壤动物群落及其环境要素的野外调查, 结合冗余分析(redundancy analysis, RDA)探讨其关键影响因素, 运用扩散生态位连续体指数(dispersal-niche continuum indexes, DNCI)探讨扩散过程和生态位分化在土壤动物群落多样性维持中的相对重要性。结果表明, 澎溪河消落带大型土壤动物共有16目77科57,072只, 以马陆、鼠妇等腐食性类群和蜘蛛、步甲等捕食性类群为主。土壤动物多度和丰度沿河流流向和高程都呈现出先增加后降低的趋势, 多样性指数和优势度指数趋势相反。捕食者相对多度随高程增加而降低, 腐食者变化趋势与此相反。消落带大型土壤动物群落在垂向尺度上表现出明显的空间分布格局, 采样地点对群落结构和功能组成无显著影响。水文情势和土壤理化性质的总解释量分别为31.53%和14.36%, 共同效应分别为15.43%和14.05%, 单独效应分别为16.10%和0.31%。消落带生境(150-170 m)中物种扩散过程的重要性显著高于生态位分化, 陆地生境(180 m)中二者无显著差异。水文情势是消落带土壤动物群落组成、结构及其空间格局的关键影响因素。消落带与陆地之间生物迁移扩散是消落带土壤动物群落多样性维持的主要途径。研究结果可为消落带生物多样性的保护和恢复提供重要的科学依据。
马骅, 李常青, 余品锋, 陈杰, 贺天耀, 王可洪 (2024) 澎溪河消落带大型土壤动物群落分布格局及其影响因素. 生物多样性, 32, 24117. DOI: 10.17520/biods.2024117.
Hua Ma, Changqing Li, Pinfeng Yu, Jie Chen, Tianyao He, Kehong Wang (2024) Distribution patterns and impact factors of soil macrofauna communities in the riparian zone of the Pengxi River. Biodiversity Science, 32, 24117. DOI: 10.17520/biods.2024117.
项目 Items | 样点 Site | 高程(样点) Elevation (Site) |
---|---|---|
丰度 Richness | 1.059 | 3.867*** |
多度 Abundance | 1.662 | 1.814* |
多样性指数 Diversity index (H′) | 1.051 | 2.326** |
优势度指数 Dominance index (C) | 0.969 | 2.451** |
捕食者相对多度 Relative abundance of predator | 0.807 | 3.925*** |
杂食者相对多度 Relative abundance of omnivore | 0.845 | 2.761*** |
腐食者相对多度 Relative abundance of detritivore | 0.357 | 9.377*** |
植食者相对多度 Relative abundance of herbivore | 1.109 | 2.997*** |
表1 样点和高程对消落带大型土壤动物群落结构影响的双因素嵌套方差分析结果
Table 1 Nested two-way ANOVA results of site and elevation on riparian soil macrofauna community structure
项目 Items | 样点 Site | 高程(样点) Elevation (Site) |
---|---|---|
丰度 Richness | 1.059 | 3.867*** |
多度 Abundance | 1.662 | 1.814* |
多样性指数 Diversity index (H′) | 1.051 | 2.326** |
优势度指数 Dominance index (C) | 0.969 | 2.451** |
捕食者相对多度 Relative abundance of predator | 0.807 | 3.925*** |
杂食者相对多度 Relative abundance of omnivore | 0.845 | 2.761*** |
腐食者相对多度 Relative abundance of detritivore | 0.357 | 9.377*** |
植食者相对多度 Relative abundance of herbivore | 1.109 | 2.997*** |
图2 澎溪河消落带不同样点和高程土壤动物群落结构。不同小写字母表示不同分组间差异显著(P < 0.05)。
Fig. 2 Soil fauna community structure of different sites and elevations in riparian zone of the Pengxi River. Different letters indicate significant differences among different groups (P < 0.05).
图3 澎溪河消落带大型土壤动物群落各功能类群的相对多度。不同小写字母表示不同分组间差异显著(P < 0.05)。
Fig. 3 Relative abundance of functional groups of soil macrofauna in riparian zone of the Pengxi River. Different letters indicate significant differences among different groups (P < 0.05).
图4 澎溪河消落带大型土壤动物群落和环境因素的RDA排序图。Lyc: 狼蛛科; Car: 步甲科; Sta: 隐翅虫科; Por: 鼠妇科; Par: 奇马陆科; For: 蚁科。其余缩写表示环境因素, 详见表2。
Fig. 4 RDA ordination of soil macrofauna community and environmental factors in riparian zone of the Pengxi River. Lyc, Lycosidae; Car, Carabidae; Sta, Staphylinidae; Por, Porcellionidae; Par, Paradoxosomatidae; For, Formicidae. Other abbreviations infer the environmental factors in Table 2.
因素 Factors | 解释量 Explanatory (%) | Monte Carlo’s P |
---|---|---|
淹水时间 Flood time (FT) | 6.96 | 0.001 |
淹水深度 Flood depth (FD) | 4.57 | 0.001 |
淹水频率 Flood frequency (FF) | 5.31 | 0.001 |
土壤含水率 Soil moisture (SM) | 12.17 | 0.001 |
坡度 Slope (SL) | 3.29 | 0.001 |
土地利用类型 Land use (LU) | 1.67 | 0.048 |
土壤碳氮比 Soil C-N ratio (C/N) | 2.52 | 0.007 |
溶解性总氮 Dissolved total nitrogen (DTN) | 1.43 | 0.024 |
溶解性有机碳 Dissolved organic carbon (DOC) | 1.36 | 0.095 |
pH | 1.80 | 0.027 |
土壤有机碳 Soil organic carbon (SOC) | 0.54 | 0.549 |
表2 环境因素对消落带大型土壤动物群落组成的解释能力
Table 2 Explanatory of environmental factors to riparian soil macrofauna community composition
因素 Factors | 解释量 Explanatory (%) | Monte Carlo’s P |
---|---|---|
淹水时间 Flood time (FT) | 6.96 | 0.001 |
淹水深度 Flood depth (FD) | 4.57 | 0.001 |
淹水频率 Flood frequency (FF) | 5.31 | 0.001 |
土壤含水率 Soil moisture (SM) | 12.17 | 0.001 |
坡度 Slope (SL) | 3.29 | 0.001 |
土地利用类型 Land use (LU) | 1.67 | 0.048 |
土壤碳氮比 Soil C-N ratio (C/N) | 2.52 | 0.007 |
溶解性总氮 Dissolved total nitrogen (DTN) | 1.43 | 0.024 |
溶解性有机碳 Dissolved organic carbon (DOC) | 1.36 | 0.095 |
pH | 1.80 | 0.027 |
土壤有机碳 Soil organic carbon (SOC) | 0.54 | 0.549 |
水文情势 Hydrological regime | 土壤理化性质 Soil properties | 其他 Others | |
---|---|---|---|
单独效应 Unique effects (%) | 16.10 | 0.31 | 1.51 |
共同效应 Common effects (%) | 15.43 | 14.05 | 4.26 |
总效应 Total effects (%) | 31.53 | 14.36 | 5.77 |
P | 0.001 | 0.001 | 0.007 |
表3 各环境因素组对消落带大型土壤动物群落组成的解释能力
Table 3 Explanatory of environmental factor groups to riparian soil macrofauna community composition
水文情势 Hydrological regime | 土壤理化性质 Soil properties | 其他 Others | |
---|---|---|---|
单独效应 Unique effects (%) | 16.10 | 0.31 | 1.51 |
共同效应 Common effects (%) | 15.43 | 14.05 | 4.26 |
总效应 Total effects (%) | 31.53 | 14.36 | 5.77 |
P | 0.001 | 0.001 | 0.007 |
图5 消落带大型土壤动物群落的组内(a)和组间(b)的扩散-生态位连续体指数(DNCI)
Fig. 5 Dispersal-niche continuum index (DNCI) for riparian soil macrofauna communities within group (a) and between group (b)
[1] | Allen DC (2016) Microclimate modification by riparian vegetation affects the structure and resource limitation of arthropod communities. Ecosphere, 7, e01200. |
[2] | Arif M, Zheng J, Tahir M, Hu X, Li CX (2022) The impact of stress factors on riparian and drawdown zones degradation around dams and reservoirs. Land Degradation & Development, 33, 2127-2141. |
[3] | Babenko A, Touletaev S, Temnikova I (2015) Bio-diversity and population structure of rove beetles (Coleoptera, Staphylinidae) in the flood plain habitats of the Ob and Irtysh Basin. International Journal of Environmental Studies, 72, 516-520. |
[4] | Baruch EM, Bateman HL, Lytle DA, Merritt DM, Sabo JL (2021) Integrated ecosystems: Linking food webs through reciprocal resource reliance. Ecology, 102, e03450. |
[5] | Batzer DP, Noe GB, Lee L, Galatowitsch M (2018) A floodplain continuum for Atlantic coast rivers of the southeastern US: Predictable changes in floodplain biota along a river’s length. Wetlands, 38, 1-13. |
[6] |
Batzer DP, Wu HT (2020) Ecology of terrestrial arthropods in freshwater wetlands. Annual Review of Entomology, 65, 101-119.
DOI PMID |
[7] | Benke AC, Chaubey I, Ward GM, Dunn EL (2000) Flood pulse dynamics of an unregulated river floodplain in the southeastern U.S. coastal plain. Ecology, 81, 2730-2741. |
[8] | Brosofske KD, Chen J, Naiman RJ, Franklin JF (1997) Harvesting effects on microclimatic gradients from small streams to uplands in Western Washington. Ecological Applications, 7, 1188-1200. |
[9] | Butler OM, Ye C, Zhang QF (2022) Dynamics of insect communities across a unique network of hydrologically altered riparian habitats in central China. Ecohydrology, 15, e2462. |
[10] | Cai BH (2017) Insect Taxonomy (Revised Edition). Chemical Industry Press, Beijing. (in Chinese) |
[蔡邦华 (2017) 昆虫分类学(修订版). 化学工业出版社, 北京.] | |
[11] | Chen C, Wu S, Meurk CD, Ma M, Zhao J, Lü M, Tong X (2017) Effects of local and landscape factors on exotic vegetation in the riparian zone of a regulated river: Implications for reservoir conservation. Landscape and Urban Planning, 157, 45-55. |
[12] |
Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract)
DOI |
[储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.]
DOI |
|
[13] | Corti R, Datry T (2014) Drying of a temperate, intermittent river has little effect on adjacent riparian arthropod communities. Freshwater Biology, 59, 666-678. |
[14] | Dixon P (2003) VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927-930. |
[15] | Dong ZR, Zhang J (2009) Ecological effect of flood pulses. Journal of Hydraulic Engineering, 40, 281-288. (in Chinese with English abstract) |
[董哲仁, 张晶 (2009) 洪水脉冲的生态效应. 水利学报, 40, 281-288.] | |
[16] | Dong ZR, Zhao JY, Zhang J (2019) Three types flows via four dimensional connectivity ecological model. Water Resources and Hydropower Engineering, 50(6), 134-141. (in Chinese with English abstract) |
[董哲仁, 赵进勇, 张晶 (2019) 3流4D连通性生态模型. 水利水电技术, 50(6), 134-141.] | |
[17] | Edmonds JW, King KBS, Neely MB, Hensley RT, Goodman KJ, Cawley KM (2022) Using large, open datasets to understand spatial and temporal patterns in lotic ecosystems: NEON case studies. Ecosphere, 13, e4102. |
[18] |
Feng YL, Wang YZ, Lin YY, Zhao WZ, Gao JW, Liu JL (2022) Effects of ant nest microhabitats on the diversity of soil macrofauna in Gobi ecosystems. Biodiversity Science, 30, 22282. (in Chinese with English abstract)
DOI |
[冯怡琳, 王永珍, 林永一, 赵文智, 高俊伟, 刘继亮 (2022) 戈壁生态系统蚁穴微生境对大型土壤动物多样性的影响. 生物多样性, 30, 22282.]
DOI |
|
[19] | Fonseca A, Zina V, Fernandes MR, Froidevaux JSP, Ferreira MT, Duarte G (2023) Can the habitat Ecological Infrastructure’s Diversity Index predict ant and bat biodiversity in Mediterranean agricultural floodplains? A multi-taxon approach using hierarchical modelling. Ecological Indicators, 153, 110446. |
[20] | Framenau VW, Manderbach R, Baehr M (2002) Riparian gravel banks of upland and lowland rivers in Victoria (Southeast Australia): Arthropod community structure and life-history patterns along a longitudinal gradient. Australian Journal of Zoology, 50, 103-123. |
[21] | Gerisch M, Dziock F, Schanowski A, Ilg C, Henle K (2012) Community resilience following extreme disturbances: The response of ground beetles to a severe summer flood in a Central European lowland stream. River Research and Applications, 28, 81-92. |
[22] | Huang ZY, Pan BZ (2020) Research on the impact of flood process on aquatic ecosystem. Journal of Xi’an University of Technology, 36, 300-306. (in Chinese with English abstract) |
[黄振宇, 潘保柱 (2020) 洪水过程对水生态系统影响的研究进展. 西安理工大学学报, 36, 300-306.] | |
[23] | Januschke K, Brunzel S, Haase P, Hering D (2011) Effects of stream restorations on riparian mesohabitats, vegetation and carabid beetles. Biodiversity and Conservation, 20, 3147-3164. |
[24] | Kato C, Iwata T, Nakano S, Kishi D (2003) Dynamics of aquatic insect flux affects distribution of riparian web-building spiders. Oikos, 103, 113-120. |
[25] | Kędzior R, Skalski T, Radecki-Pawlik A (2016) The effect of channel restoration on ground beetle communities in the floodplain of a channelized mountain stream. Periodicum Biologorum, 118, 171-184. |
[26] | Lambeets K, Maelfait JP, Bonte D (2008) Plasticity in flood-avoiding behaviour in two congeneric riparian wolf spiders. Animal Biology, 58, 389-400. |
[27] |
Larsen S, Muehlbauer JD, Marti E (2016) Resource subsidies between stream and terrestrial ecosystems under global change. Global Change Biology, 22, 2489-2504.
DOI PMID |
[28] | Leigh C, Reis TM, Sheldon F (2013) High potential subsidy of dry-season aquatic fauna to consumers in riparian zones of wet-dry tropical rivers. Inland Waters, 3, 411-420. |
[29] | Malmqvist B (2002) Aquatic invertebrates in riverine landscapes. Freshwater Biology, 47, 679-694. |
[30] | Mendelssohn IA, Batzer DP, Holt CR, Graham SA (2014) Abiotic constraints for wetland plants and animals. In: Ecology of Freshwater and Estuarine Wetlands (eds Batzer DP, Sharitz RR), pp. 61-86. University of California Press, Berkeley. |
[31] | Paetzold A, Yoshimura C, Tockner K (2008) Riparian arthropod responses to flow regulation and river channelization. Journal of Applied Ecology, 45, 894-903. |
[32] | Qiu J (2012) Trouble on the Yangtze. Science, 336, 288-291. |
[33] | Raitif J, Roussel JM, Olmos M, Piscart C, Plantegenest M (2022) Assessing spatial deposition of aquatic subsidies by insects emerging from agricultural streams. Science of the Total Environment, 837, 155686. |
[34] | Ralston BE, Cobb NS, Brantley SL, Higgins J, Yackulic CB (2017) Taxonomic and compositional differences of ground-dwelling arthropods in riparian habitats in Glen Canyon, Arizona, USA. Western North American Naturalist, 77, 369-384. |
[35] | Ramey TL, Richardson JS (2017) Terrestrial invertebrates in the riparian zone: Mechanisms underlying their unique diversity. BioScience, 67, 808-819. |
[36] | Sabo JL, Sponseller R, Dixon M, Gade K, Harms T, Heffernan J, Jani A, Katz G, Soykan C, Watts J, Welter J (2005) Riparian zones increase regional species richness by harboring different, not more, species. Ecology, 86, 56-62. |
[37] | Sadler JP, Bell D, Fowles A (2004) The hydroecological controls and conservation value of beetles on exposed riverine sediments in England and Wales. Biological Conservation, 118, 41-56. |
[38] |
Sánchez-Hernández J (2023) Fresh perspectives on the River Continuum Concept require trophic ecology approaches focused on food web structure and energy mobilisation routes. Journal of Animal Ecology, 92, 957-964.
DOI PMID |
[39] | Taylor AN, Batzer DP (2010) Spatial and temporal variation in invertebrate consumer diets in forested and herbaceous wetlands. Hydrobiologia, 651, 145-159. |
[40] | Tockner K, Lorang MS, Stanford JA (2010) River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Research and Applications, 26, 76-86. |
[41] | Tong XX, Chen CD, Wu SJ, Jia ZY, Yi XM, Ma MH (2018) Spatial distribution pattern of plant community and habitat impact analysis of the drawdown zone of Pengxi River in the Three Gorges Reservoir. Acta Ecologica Sinica, 38, 571-580. (in Chinese with English abstract) |
[童笑笑, 陈春娣, 吴胜军, 贾振毅, 易雪梅, 马茂华 (2018) 三峡库区澎溪河消落带植物群落分布格局及生境影响. 生态学报, 38, 571-580.] | |
[42] |
Uno H (2016) Stream thermal heterogeneity prolongs aquatic-terrestrial subsidy and enhances riparian spider growth. Ecology, 97, 2547-2553.
DOI PMID |
[43] | Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137. |
[44] | Vilmi A, Gibert C, Escarguel G, Happonen K, Heino J, Jamoneau A, Passy SI, Picazo F, Soininen J, Tison-Rosebery J, Wang JJ (2021) Dispersal-Niche Continuum Index: A new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly. Ecography, 44, 370-379. |
[45] | Wang KH, Yuan XZ, Zhang GX, Wu SK, Liu SS, Zhang MJ (2020) Maintaining mechanisms of riparian invertebrate biodiversity: A review. Chinese Journal of Applied Ecology, 31, 1043-1054. (in Chinese with English abstract) |
[王可洪, 袁兴中, 张冠雄, 武帅楷, 刘双爽, 张梦婕 (2020) 河岸无脊椎动物多样性维持机制研究进展. 应用生态学报, 31, 1043-1054.]
DOI |
|
[46] |
Wang S, Faeflen SJ, Wright AL, Zhu-Barker X, Jiang X (2019) Redox-driven shifts in soil microbial community structure in the drawdown zone after construction of the Three Gorges Dam. Soil Ecology Letters, 1, 114-125.
DOI |
[47] | Xiao HY, Du CL, Yuan XZ, Li B (2020) Multiple floods affect composition and community structure of the ground-dwelling arthropods in the riparian zone of the Three Gorges Reservoir. Ecological Indicators, 113, 106220. |
[48] | Xiao HY, Li B, Willison JHM, Wang YF (2022) Habitat change and interspecific associations mediate the response of riparian ground-dwelling arthropod assemblages to flooding in the Three Gorges Reservoir. Ecological Engineering, 185, 106812. |
[49] | Yao L, Gong Y, Ye C, Shi W, Zhang K, Du M, Zhang Q (2022) Soil denitrification rates are more sensitive to hydrological changes than restoration approaches in a unique riparian zone. Functional Ecology, 36, 2056-2068. |
[50] | Yin WY (1998) Pictorical Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[51] | Zhang A, Xie Z (2021) C4 herbs dominate the reservoir flood area of the Three Gorges Reservoir. Science of the Total Environment, 755, 142479. |
[52] |
Zhang SN, Tong CF, Wang T, Wang YW (2023) Effects of flooding and vegetation mowing on soil macrofauna community in the Qingcaosha Reservoir beach. Chinese Journal of Ecology, 42, 361-367. (in Chinese with English abstract)
DOI |
[张胜楠, 童春富, 王涛, 王毅伟 (2023) 淹水和植被刈割对青草沙水库边滩大型土壤动物群落的影响. 生态学杂志, 42, 361-367.] | |
[53] | Zhu K, Ma MH, Ran YG, Liu ZM, Wu SJ, Huang P (2020) In mitigating CO2 emission in the reservoir riparian: The influences of land use and the dam-triggered flooding on soil respiration. Soil and Tillage Research, 197, 104522. |
[1] | 苏荣菲, 陈睿山, 俞霖琳, 吴婧彬, 康燕. 基于红外相机调查的上海市长宁区社区生境花园生物多样性[J]. 生物多样性, 2024, 32(8): 24068-. |
[2] | 胡志清, 董路. 城市化对鸟类参与的种间互作的影响[J]. 生物多样性, 2024, 32(8): 24048-. |
[3] | 王艳丽, 张英, 戚春林, 张昌达, 史佑海, 杜彦君, 丁琼. 海南热带雨林国家公园生物多样性热点与保护空缺区域识别: 基于大型真菌与植物视角[J]. 生物多样性, 2024, 32(7): 24081-. |
[4] | 顾燚芸, 薛嘉祈, 高金会, 谢心仪, 韦铭, 雷进宇, 闻丞. 一种基于公众科学数据的区域性鸟类多样性评价方法[J]. 生物多样性, 2024, 32(7): 24080-. |
[5] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[6] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[7] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[10] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[11] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[12] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[13] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[14] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[15] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn