生物多样性 ›› 2024, Vol. 32 ›› Issue (7): 24120. DOI: 10.17520/biods.2024120 cstr: 32101.14.biods.2024120
王瑞武1,*()(), 于云云2(), 朱其凯1, 王超1(), 李敏岚1(), 韩嘉旭1()
收稿日期:
2024-03-29
接受日期:
2024-06-12
出版日期:
2024-07-20
发布日期:
2024-06-18
通讯作者:
*E-mail: wangrw@nwpu.edu.cn
基金资助:
Ruiwu Wang1,*()(), Yunyun Yu2(), Qikai Zhu1, Chao Wang1(), Minlan Li1(), Jiaxu Han1()
Received:
2024-03-29
Accepted:
2024-06-12
Online:
2024-07-20
Published:
2024-06-18
Contact:
*E-mail: wangrw@nwpu.edu.cn
Supported by:
摘要:
进化思想和方法论并行的、相互独立的自然选择理论和中性选择理论是否能够有效统一起来, 一直是理论生物学重点关注的问题, 而路径依赖的选择提供了一种可能。与中性选择理论一致, 路径依赖的选择也采用了完全对称性的前提假设——自然界的突变完全是基于统计随机性, 不具备方向性, 因而突变没有适合度的差异。但是在一些特定的时空环境下, 环境的正反馈效应导致中性选择对称性的破缺, 促使该突变产生递归效应——拉马克的主动选择或者获得性遗传效应, 这种适宜环境正反馈作用下的生物主动选择与环境自然选择压力下的被动选择产生相互拮抗作用, 并因此在多维的空间条件下形成路径。路径依赖的选择认为生物演化的过程将是一个路径频率的选择过程而不是适合度提高的过程, 并强烈依赖于其历史上所经历的事件或者环境变化等外界条件; 由于不同演化路径之间存在转移概率(比如生物演化中的质粒转移、转座子、生态过程相互作用等), 路径的演化会存在加速或者减速效应, 解释了古尔德等主张的间断平衡论。当环境选择压力很小或者为零的时候, 多数或者所有路径都等价(类似中性选择结果); 而随着环境压力的增大, 不同路径的频率将差异化, 且路径频率比较高的更容易被选择。当环境压力很大, 历史事件等外界因素或者演化过程对路径本身的演化没有影响的时候(静态的、均衡状态), 频率最高的那条路径就是演化所用时间最短或者最优的路径——达尔文自然选择理论的结果。在借鉴了现代物理学, 尤其是量子力学所用的路径积分方法, 路径依赖的选择也许为我们提供了一个不同的视角和方法来解释生物的演化过程。
王瑞武, 于云云, 朱其凯, 王超, 李敏岚, 韩嘉旭 (2024) 路径依赖的选择——统一自然选择与中性选择. 生物多样性, 32, 24120. DOI: 10.17520/biods.2024120.
Ruiwu Wang, Yunyun Yu, Qikai Zhu, Chao Wang, Minlan Li, Jiaxu Han (2024) Path-dependent selection—Integrating natural selection and neutral selection. Biodiversity Science, 32, 24120. DOI: 10.17520/biods.2024120.
图1 不同参数标准下的最优演化路径(改编自Traulsen et al, 2007)。演化过程的起始状态为A, 经过一段时间后到达状态B, 其中红线是从A到B最先达到的路经, 即该路径所用时间最短; 蓝线表示两个状态之间距离最短的路径; 绿线表示演化过程中资源利用率最高的路径; 灰线则代表生物状态演化过程中路径依赖选择的路径。
Fig. 1 Optimal evolutionary paths under different parameter criteria (adapted from Traulsen et al, 2007). The starting state of the evolutionary process is A, and after a period of time it arrives at state B. The red line is the first path reached from A to B, i.e. the path that takes the shortest time, the blue line represents the path with the shortest distance between the two states, the green line denotes the path with the highest resource utilization during evolution, and the grey line shows the path of path-dependent selection in the process of evolution of the biological state.
图2 不同选择压力下的路径演化图(改编自Wang et al, 2023), (a)、(b)、(c)分别对应着选择强度为0, 0.5和1的情形。当ω = 0时, 没有选择强度, 种群演化仅受随机漂变的影响, 结果相当于中性选择; 而当ω = 1时, 选择强度非常大, 结果相当于达尔文的自然选择。
Fig. 2 Path evolution diagrams under different selection pressures (adapted from Wang et al, 2023), where (a), (b) and (c) correspond to cases with selection intensity of 0, 0.5, and 1, respectively. When ω = 0, there is no selection intensity and the population evolution is only affected by random drift, resulting in the equivalent of neutral selection, while when ω = 1, the selection intensity is very high, resulting in the equivalent of Darwinian natural selection.
图3 初始点到目标地演化路径示意图(改编自Wang et al, 2023)。在生命的演化过程中, 其路径可能是时间最短, 也可能是距离最短, 还可能是资源利用效率最高等等。尤其是当其演化受历史印迹影响的时候, 路径就可能极为多样。(a)目标地是静态的、固定的。(b)目标地是动态的、不固定的。
Fig. 3 Schematic diagrams of evolutionary paths from the starting point to the target site (adapted from Wang et al, 2023). In the evolution of life, the path may be the shortest in time, the shortest in distance, the most efficient in the use of resources, and so on. Especially when its evolution is influenced by historical imprints, the paths can be extremely diverse. (a) The target site is static and fixed. (b) The target site is dynamic and not fixed.
[1] | Aaron I (translated by Guo JZ) (2002) The Macmillan Encyclopedia. Zhejiang People’s Publishing House, Hangzhou. (in Chinese) |
[郭建中(译) (2002) 麦克米伦百科全书. 浙江人民出版社, 杭州.] | |
[2] | Arthur WB (2009) The Nature of Technology: What It Is and How It Evolves. Penguin Books, London. |
[3] | Arthur WB, Ermoliev YM, Kaniovski YM (1987) Path- dependent processes and the emergence of macro-structure. European Journal of Operational Research, 30, 294-303. |
[4] | Darwin CR (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London. |
[5] | Eldredge N, Gould SJ (1972) Punctuated equilibria:An alternative to phyletic gradualism. In: Models in Paleobiology (ed. Schöpf TJM), pp. 82-115, Freeman Cooper & Company, San Francisco. |
[6] | Feynman RP (1965) Quantum Mechanics and Path Integrals:Emended Edition. McGraw-Hill Companies, New York. |
[7] | Gould SJ (1992) The Panda’s Thumb: More Reflections in Natural History. W. W. Norton & Company, New York. |
[8] | Gould SJ, Eldredge N (1977) Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology, 3, 115-151. |
[9] | Guan H (1994) Selected Lectures on the History of Physics. Higher Education Press, Beijing. (in Chinese) |
[关洪 (1994) 物理学史选讲. 高等教育出版社, 北京.] | |
[10] | Han JX, Wang RW (2024) Effects of environmental feedback on species with finite population. iScience, 27, 109055. |
[11] | Hong DY (2016) Biodiversity pursuits need a scientific and operative species concept. Biodiversity Science, 24, 979-999. (in Chinese with English abstract) |
[洪德元 (2016) 生物多样性事业需要科学、可操作的物种概念. 生物多样性, 24, 979-999.]
DOI |
|
[12] | Hubbell SP, Borda-De-Agua L (2004) The unified neutral theory of biodiversity and biogeography: Reply. Ecology, 85, 3175-3178. |
[13] | Kimura M (1955) Solution of a process of random genetic drift with a continuous model. Proceedings of the National Academy, USA, 41, 144-150. |
[14] | Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge. |
[15] | Li ML, An K, Liu C, Tao Y, Wang C, Wang RW (2023) The path integral formula for the stochastic evolutionary game dynamics. Europhysics Letters, 142, 62001. |
[16] |
Li ML, Wang C, Wang RW (2021) Path-dependent speciation in the process of evolution. Biodiversity Science, 29, 409-418. (in Chinese with English abstract)
DOI |
[李敏岚, 王超, 王瑞武 (2021) 路径依赖下的物种形成机制. 生物多样性, 29, 409-418.]
DOI |
|
[17] | Liu JQ (2016) “The integrative species concept” and “species on the speciation way”. Biodiversity Science, 24, 1004-1008. (in Chinese with English abstract) |
[刘建全 (2016) “整合物种概念”和“分化路上的物种”. 生物多样性, 24, 1004-1008.]
DOI |
|
[18] | Metz JAJ, Nisbet RM, Geritz SAH (1992) How should we define ‘fitness’ for general ecological scenarios? Trends in Ecology & Evolution, 7, 198-202. |
[19] | Mustonen V, Lässig M (2010) Fitness flux and ubiquity of adaptive evolution. Proceedings of the National Academy of Sciences, USA, 107, 4248-4253. |
[20] |
Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009) Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract)
DOI |
[牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
DOI |
|
[21] | Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature, 428, 646-650. |
[22] |
Nowak MA, Sigmund K (2004) Evolutionary dynamics of biological games. Science, 303, 793-799.
PMID |
[23] | Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature, 445, 383-386. |
[24] | Prigogine I (translated by Zhan M) (2009) The End of Certainty. Shanghai Scientific & Technological Education Publishing House, Shanghai. (in Chinese) |
[湛敏译 (2009) 确定性的终结. 上海科技教育出版社, 上海.] | |
[25] | Qiu BT, Dai XQ, Li PY, Larsen RS, Li RY, Price AL, Ding G, Texada MJ, Zhang XF, Zuo DS, Gao QH, Jiang W, Wen TG, Pontieri L, Guo CX, Rewitz K, Li QY, Liu WW, Boomsma JJ, Zhang GJ (2022) Canalized gene expression during development mediates caste differentiation in ants. Nature Ecology & Evolution, 6, 1753-1765. |
[26] | Rouse Ball WW (1960) A Short Account of the History of Mathematics. Dover, New York. |
[27] |
Schraiber JG (2014) A path integral formulation of the Wright-Fisher process with genic selection. Theoretical Population Biology, 92, 30-35.
DOI PMID |
[28] |
Sohail MS, Louie RHY, McKay MR, Barton JP (2021) MPL resolves genetic linkage in fitness inference from complex evolutionary histories. Nature Biotechnology, 39, 472-479.
DOI PMID |
[29] | Steinberg B, Ostermeier M (2016) Environmental changes bridge evolutionary valleys. Science Advances, 2, e1500921. |
[30] |
Taylor C, Fudenberg D, Sasaki A, Nowak MA (2004) Evolutionary game dynamics in finite populations. Bulletin of Mathematical Biology, 66, 1621-1644.
PMID |
[31] |
Traulsen A, Iwasa Y, Nowak MA (2007) The fastest evolutionary trajectory. Journal of Theoretical Biology, 249, 617-623.
DOI PMID |
[32] |
Wang C, Li ML, Wang RW (2022) Path probability selection in nature and path integral. Scientific Reports, 12, 19044.
DOI PMID |
[33] | Wang RW (2021) The End of Rationality and Selfness. China Commerce and Trade Press, Beijing. (in Chinese) |
[王瑞武 (2021) 理性与自私的终结. 中国商务出版社, 北京.] | |
[34] |
Wang RW (2022) On the methodology of Darwinism and non-Darwinism. Biodiversity Science, 30, 22482. (in Chinese with English abstract)
DOI |
[王瑞武 (2022) 达尔文主义与非达尔文主义之方法论辨析. 生物多样性, 30, 22482.]
DOI |
|
[35] |
Wang RW, Li ML, Han JX, Wang C (2022) Fitness relativity and path-dependent selection. Biodiversity Science, 30, 21323. (in Chinese with English abstract)
DOI |
[王瑞武, 李敏岚, 韩嘉旭, 王超 (2022) 适合度的相对性与路径依赖的自然选择. 生物多样性, 30, 21323.]
DOI |
|
[36] | Wang RW, Shi L (2010) The evolution of cooperation in asymmetric systems. Science China: Life Sciences, 53, 139-149. |
[37] | Wang RW, Yu YY, Shi AN, Zhu QK, Li ML, Wang C, Tao Y, Han JX (2023) Path-dependent selection—A bridge between natural selection and neutral selection. Frontiers in Ecology and Evolution, 11, 1326379. |
[38] | Zheng XD, Cressman R, Tao Y (2011) The diffusion approximation of stochastic evolutionary game dynamics: Mean effective fixation time and the significance of the one- third law. Dynamic Games and Applications, 1, 462-477. |
[1] | 金恒镳. 从天择到人择: 在华莱士的肩膀上看地球的未来[J]. 生物多样性, 2023, 31(12): 23267-. |
[2] | 王瑞武, 李敏岚, 韩嘉旭, 王超. 适合度的相对性与路径依赖的自然选择[J]. 生物多样性, 2022, 30(1): 21323-. |
[3] | 李敏岚, 王超, 王瑞武. 路径依赖下的物种形成机制[J]. 生物多样性, 2021, 29(3): 409-418. |
[4] | 李忠虎, 刘占林, 王玛丽, 钱增强, 赵鹏, 祝娟, 杨一欣, 阎晓昊, 李银军, 赵桂仿. 基因流存在条件下的物种形成研究述评:生殖隔离机制进化[J]. 生物多样性, 2014, 22(1): 88-96. |
[5] | 孙海芹, 李昂, 班玮, 郑晓明, 葛颂. 濒危植物独花兰的形态变异及其适应意义[J]. 生物多样性, 2005, 13(5): 376-386. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn