生物多样性 ›› 2024, Vol. 32 ›› Issue (2): 23201. DOI: 10.17520/biods.2023201 cstr: 32101.14.biods.2023201
钟超(), 廖亚琴(), 刘伟杰(), 隋昊志(), 陈清华*()()
收稿日期:
2023-06-15
接受日期:
2023-11-14
出版日期:
2024-02-20
发布日期:
2023-11-21
通讯作者:
E-mail: 基金资助:
Chao Zhong(), Yaqin Liao(), Weijie Liu(), Haozhi Sui(), Qinghua Chen*()()
Received:
2023-06-15
Accepted:
2023-11-14
Online:
2024-02-20
Published:
2023-11-21
Contact:
E-mail: 摘要:
海草床是地球上最具价值的生态系统之一, 为人类提供广泛的生态系统服务。我国乃至全球范围内海草床面临着人类活动威胁, 且呈退化趋势。广东海草研究起步较晚, 近年来涌现的一些研究成果将广东海草分布特征清晰地呈现在世人面前, 并发现海草床受到的威胁来源多样, 但缺乏系统的总结。基于广东滨海地区未来一段时间将持续面临高强度人类活动压力的背景下, 为有效保护海草床及其生物多样性, 亟需进一步深入了解广东海草床存在的问题, 从而提出针对性的保护建议。本文通过回顾21世纪以来广东海草床研究成果, 汇总了广东海草分布信息, 并结合现场调研和国内外海草床的研究报道, 梳理了广东海草床面临的威胁。结果表明广东沿岸海草分布广泛, 现有海草床面积约1,540 ha。海草种类共5种, 以卵叶喜盐草(Halophila ovalis)和贝克喜盐草(H. beccarii)为主, 日本鳗草(Zostera japonica)、单脉二药草(Halodule uninervis)和短柄川蔓草(Ruppia brevipedunculata)分布较少。本文阐明了人为因素和自然因素如何影响海草的生长和分布, 并指出了广东海草床主要面临着海水养殖、渔业捕捞、陆源污染、海洋工程等人类活动的威胁。此外, 物种入侵和全球气候变化的影响也不容忽视。针对上述威胁, 在现有的保护基础之上, 建议加强海草床生态系统研究、提升海草调查监测能力、建立健全海草保护监管体系、管控污染物排放、强化海草床生态修复并开展海草科普宣传等工作。
钟超, 廖亚琴, 刘伟杰, 隋昊志, 陈清华 (2024) 广东沿海海草床的现状、面临的威胁与保护建议. 生物多样性, 32, 23201. DOI: 10.17520/biods.2023201.
Chao Zhong, Yaqin Liao, Weijie Liu, Haozhi Sui, Qinghua Chen (2024) Status, threats and conservation suggestions on seagrass beds in Guangdong. Biodiversity Science, 32, 23201. DOI: 10.17520/biods.2023201.
研究区域 Study area | 序号 No. | 海草床 Seagrass bed | 种类 Species | 面积 Area (ha) | 茎枝密度 Shoot density (shoots/m2) | 生物量 Biomass (g/m2) | 文献来源 References |
---|---|---|---|---|---|---|---|
潮州 Chaozhou | 1 | 柘林湾 Zhelin Bay* | 卵叶喜盐草 Halophila ovalis | 40 | 6,540.08 | 35.52 | 黄小平等, |
汕头 Shantou | 2 | 义丰溪 Yifengxi | 贝克喜盐草 H. beccarii | 417.95 | 11,066 | 50.3 | Jiang et al, |
3 | 莲下 Lianxia | 贝克喜盐草 H. beccarii | 36.85 | 11,764 | 69.2 | Jiang et al, | |
汕尾 Shanwei | 4 | 白沙湖 Baisha Lake* | 卵叶喜盐草 H. ovalis | <1 | 10,542 | 118.24 | 黄小平等, |
惠州 Huizhou | 5 | 考洲洋 Kaozhouyang* | 卵叶喜盐草 H. ovalis | 6.95 | 5,952.38 | 12.86 | 黄小平等, |
深圳 Shenzhen | 6 | 大亚湾 Daya Bay | 卵叶喜盐草 H. ovalis 短柄川蔓草 Ruppia brevipedunculata | 3.05 | ‒ | ‒ | Jiang et al, |
7 | 南澳 Nanao | 卵叶喜盐草 H. ovalis 日本鳗草 Zostera japonica | 1.77 | 6,935.5 | 58.25 | Jiang et al, | |
珠海 Zhuhai | 8 | 横琴 Hengqin | 贝克喜盐草 H. beccarii | 25.28 | 10,750 | 37.05 | Jiang et al, |
9 | 三灶 Sanzao | 贝克喜盐草 H. beccarii | 1.84 | 18,000 | 23.5 | Jiang et al, | |
10 | 香洲(唐家湾) Xiangzhou (Tangjiawan) | 贝克喜盐草 H. beccarii | 2.85 | ‒ | ‒ | Jiang et al, | |
江门 Jiangmen | 11 | 上川岛湾仔角 Wanzaijiao, Shangchuan Island* | 日本鳗草 Z. japonica | 7 | 4,690.48 | 117.86 | 黄小平等, |
12 | 上川岛沙塘 Shatang, Shangchuan Island | 日本鳗草 Z. japonica | 0.011 | 2,256 | 161.8 | Jiang et al, | |
13 | 下川岛荔枝湾 Lizhiwan, Xiachuan Island | 日本鳗草 Z. japonica 贝克喜盐草 H. beccarii | 0.17 | ‒ | ‒ | Jiang et al, | |
阳江 Yangjiang | 14 | 海陵岛 Hailing Island* | 卵叶喜盐草 H. ovalis | 1 | ‒ | ‒ | 黄小平等, |
15 | 新丰 Xinfeng | 卵叶喜盐草 H. ovalis 贝克喜盐草 H. beccarii | 128.82 | 4,869 | 16.32 | Jiang et al, | |
16 | 溪头 Xitou | 贝克喜盐草 H. beccarii | 2.18 | 14,688 | 52.3 | Jiang et al, | |
茂名 Maoming | 17 | 水东湾 Shuidong Bay | 卵叶喜盐草 H. ovalis | 1.66 | 1,224 | 5.1 | Jiang et al, |
湛江 Zhanjiang | 18 | 南三岛 Nansan Island | 贝克喜盐草 H. beccarii | 2.3 | 5,618 | 25.5 | Jiang et al, |
19 | 东海岛 Donghai Island* | 贝克喜盐草 H. beccarii | 9 | ‒ | ‒ | 黄小平等, | |
20 | 东山 Dongshan | 卵叶喜盐草 H. ovalis 贝克喜盐草 H. beccarii | 54.23 | 5,309 | 26.21 | Jiang et al, | |
21 | 新寮 Xinliao | 卵叶喜盐草 H. ovalis 贝克喜盐草 H. beccarii | 4.62 | 2,668.5 | 8.04 | Jiang et al, | |
22 | 海安 Haian | 短柄川蔓草 R. brevipedunculata | 1.63 | 6,496 | 6.37 | Jiang et al, | |
23 | 流沙湾 Liusha Bay | 卵叶喜盐草 H. ovalis 单脉二药草 H. uninervis | 852.6 | ‒ | ‒ | Jiang et al, | |
24 | 企水湾 Qishui Bay* | 卵叶喜盐草 H. ovalis | <1 | 3,428.57 | 26.9 | 黄小平等, | |
25 | 英罗湾 Yingluo Bay | 贝克喜盐草 H. beccarii | 2.5 | ‒ | ‒ | 熊卉等, | |
总面积 Total area | 1,540 |
表1 广东海草床面积和生物学特征
Table 1 Areas and biological characteristics of seagrass beds in Guangdong Province
研究区域 Study area | 序号 No. | 海草床 Seagrass bed | 种类 Species | 面积 Area (ha) | 茎枝密度 Shoot density (shoots/m2) | 生物量 Biomass (g/m2) | 文献来源 References |
---|---|---|---|---|---|---|---|
潮州 Chaozhou | 1 | 柘林湾 Zhelin Bay* | 卵叶喜盐草 Halophila ovalis | 40 | 6,540.08 | 35.52 | 黄小平等, |
汕头 Shantou | 2 | 义丰溪 Yifengxi | 贝克喜盐草 H. beccarii | 417.95 | 11,066 | 50.3 | Jiang et al, |
3 | 莲下 Lianxia | 贝克喜盐草 H. beccarii | 36.85 | 11,764 | 69.2 | Jiang et al, | |
汕尾 Shanwei | 4 | 白沙湖 Baisha Lake* | 卵叶喜盐草 H. ovalis | <1 | 10,542 | 118.24 | 黄小平等, |
惠州 Huizhou | 5 | 考洲洋 Kaozhouyang* | 卵叶喜盐草 H. ovalis | 6.95 | 5,952.38 | 12.86 | 黄小平等, |
深圳 Shenzhen | 6 | 大亚湾 Daya Bay | 卵叶喜盐草 H. ovalis 短柄川蔓草 Ruppia brevipedunculata | 3.05 | ‒ | ‒ | Jiang et al, |
7 | 南澳 Nanao | 卵叶喜盐草 H. ovalis 日本鳗草 Zostera japonica | 1.77 | 6,935.5 | 58.25 | Jiang et al, | |
珠海 Zhuhai | 8 | 横琴 Hengqin | 贝克喜盐草 H. beccarii | 25.28 | 10,750 | 37.05 | Jiang et al, |
9 | 三灶 Sanzao | 贝克喜盐草 H. beccarii | 1.84 | 18,000 | 23.5 | Jiang et al, | |
10 | 香洲(唐家湾) Xiangzhou (Tangjiawan) | 贝克喜盐草 H. beccarii | 2.85 | ‒ | ‒ | Jiang et al, | |
江门 Jiangmen | 11 | 上川岛湾仔角 Wanzaijiao, Shangchuan Island* | 日本鳗草 Z. japonica | 7 | 4,690.48 | 117.86 | 黄小平等, |
12 | 上川岛沙塘 Shatang, Shangchuan Island | 日本鳗草 Z. japonica | 0.011 | 2,256 | 161.8 | Jiang et al, | |
13 | 下川岛荔枝湾 Lizhiwan, Xiachuan Island | 日本鳗草 Z. japonica 贝克喜盐草 H. beccarii | 0.17 | ‒ | ‒ | Jiang et al, | |
阳江 Yangjiang | 14 | 海陵岛 Hailing Island* | 卵叶喜盐草 H. ovalis | 1 | ‒ | ‒ | 黄小平等, |
15 | 新丰 Xinfeng | 卵叶喜盐草 H. ovalis 贝克喜盐草 H. beccarii | 128.82 | 4,869 | 16.32 | Jiang et al, | |
16 | 溪头 Xitou | 贝克喜盐草 H. beccarii | 2.18 | 14,688 | 52.3 | Jiang et al, | |
茂名 Maoming | 17 | 水东湾 Shuidong Bay | 卵叶喜盐草 H. ovalis | 1.66 | 1,224 | 5.1 | Jiang et al, |
湛江 Zhanjiang | 18 | 南三岛 Nansan Island | 贝克喜盐草 H. beccarii | 2.3 | 5,618 | 25.5 | Jiang et al, |
19 | 东海岛 Donghai Island* | 贝克喜盐草 H. beccarii | 9 | ‒ | ‒ | 黄小平等, | |
20 | 东山 Dongshan | 卵叶喜盐草 H. ovalis 贝克喜盐草 H. beccarii | 54.23 | 5,309 | 26.21 | Jiang et al, | |
21 | 新寮 Xinliao | 卵叶喜盐草 H. ovalis 贝克喜盐草 H. beccarii | 4.62 | 2,668.5 | 8.04 | Jiang et al, | |
22 | 海安 Haian | 短柄川蔓草 R. brevipedunculata | 1.63 | 6,496 | 6.37 | Jiang et al, | |
23 | 流沙湾 Liusha Bay | 卵叶喜盐草 H. ovalis 单脉二药草 H. uninervis | 852.6 | ‒ | ‒ | Jiang et al, | |
24 | 企水湾 Qishui Bay* | 卵叶喜盐草 H. ovalis | <1 | 3,428.57 | 26.9 | 黄小平等, | |
25 | 英罗湾 Yingluo Bay | 贝克喜盐草 H. beccarii | 2.5 | ‒ | ‒ | 熊卉等, | |
总面积 Total area | 1,540 |
研究区域 Study area | 海草床 Seagrass bed | 海草种类 Seagrass species | 大型底栖动物 Macrozoobenthos | 文献来源 References | |||||
---|---|---|---|---|---|---|---|---|---|
种类数 Species number | 丰度 Abundance (ind./m2) | 生物量 Biomass (g/m2) | Shannon- Wiener 多样性 指数 H' | 均匀度 指数 J | 物种丰富度指数 d | ||||
广东 Guangdong | 义丰溪 Yifengxi | 贝克喜盐草 Halophila beccarii | 5 | 101.3 | 5.80 | 0.67 | 0.88 | 0.29 | 郭治明等, |
唐家湾 Tangjiawan | 贝克喜盐草 H. beccarii | 17 | 42.6 | 13.56 | 0.58 | 0.48 | 0.37 | 郭治明等, | |
流沙湾 Liusha Bay | 卵叶喜盐草 H. ovalis | 47 | 280.0 | 189.31 | 0.92 | 0.49 | 1.71 | 郭治明等, | |
海南 Hainan | 新村港 Xincun Lagoon | 泰来草 Thalassia hemprichii 海菖蒲 Enhalus acoroides | 15 | 292.6 | 81.82 | 0.81 | 0.61 | 0.93 | 郭治明等, |
黎安港 Li’an Lagoon | 海菖蒲 E. acoroides | 17 | 133.4 | 102.22 | 0.95 | 0.58 | 1.03 | 郭治明等, | |
东寨港 Dongzhai Harbor | 卵叶喜盐草 H. ovalis | 20 | 63.8 | 71.86 | 1.22 | 0.72 | 0.79 | 郭治明等, | |
黄沙港 Huangsha Harbor | 泰来草 T. hemprichii | 18 | 69.3 | 46.47 | 1.59 | 0.73 | 1.34 | 郭治明等, | |
花场湾 Huachang Bay | 贝克喜盐草 H. beccarii | 11 | 250.7 | 80.88 | 1.14 | 0.52 | 0.92 | 郭治明等, | |
高隆湾-长圮港 Gaolong Bay-Changpi Harbor | 泰来草 T. hemprichii 海菖蒲 E. acoroides | 22 | 52.7 | 163.14 | 0.89 | 0.66 | 0.58 | 郭治明等, | |
青葛-龙湾 Qingge-Longwan | 泰来草 T. hemprichii 海菖蒲 E. acoroides | 21 | 36.6 | 244.20 | 0.91 | 0.78 | 0.54 | 郭治明等, | |
广西 Guangxi | 合浦 Hepu | 卵叶喜盐草 H. ovalis 日本鳗草 Zostera japonica | 216 | 166.7‒327.3 | ‒ | 1.7‒2.9* | 0.6‒0.9* | ‒ | 张景平等, |
铁山港 Tieshan Harbor | 卵叶喜盐草 H. ovalis | 52 | 109.0 | 75.81 | 2.42 | 0.79 | 1.77 | 郭治明等, | |
珍珠湾 Zhenzhu Bay | 日本鳗草 Z. japonica | 32 | 436.0 | 345.21 | 1.31 | 0.41 | 1.35 | 郭治明等, | |
山东 Shandong | 广饶 Guangrao | 日本鳗草 Z. japonica | 41 | 661.3 | ‒ | ‒ | — | ‒ | 孟周等, |
辽宁 Liaoning | 觉华岛 Juehua Island | 鳗草 Z. marina | 32 | 336.7‒408.3 | 67.28‒10.89 | 1.2‒1.7* | 0.8‒0.9* | 0.7‒1.3* | 张兆衡等, |
表2 国内部分海草床大型底栖动物主要群落特征参数
Table 2 Community structure parameters of macrobenthos in several domestic seagrass beds
研究区域 Study area | 海草床 Seagrass bed | 海草种类 Seagrass species | 大型底栖动物 Macrozoobenthos | 文献来源 References | |||||
---|---|---|---|---|---|---|---|---|---|
种类数 Species number | 丰度 Abundance (ind./m2) | 生物量 Biomass (g/m2) | Shannon- Wiener 多样性 指数 H' | 均匀度 指数 J | 物种丰富度指数 d | ||||
广东 Guangdong | 义丰溪 Yifengxi | 贝克喜盐草 Halophila beccarii | 5 | 101.3 | 5.80 | 0.67 | 0.88 | 0.29 | 郭治明等, |
唐家湾 Tangjiawan | 贝克喜盐草 H. beccarii | 17 | 42.6 | 13.56 | 0.58 | 0.48 | 0.37 | 郭治明等, | |
流沙湾 Liusha Bay | 卵叶喜盐草 H. ovalis | 47 | 280.0 | 189.31 | 0.92 | 0.49 | 1.71 | 郭治明等, | |
海南 Hainan | 新村港 Xincun Lagoon | 泰来草 Thalassia hemprichii 海菖蒲 Enhalus acoroides | 15 | 292.6 | 81.82 | 0.81 | 0.61 | 0.93 | 郭治明等, |
黎安港 Li’an Lagoon | 海菖蒲 E. acoroides | 17 | 133.4 | 102.22 | 0.95 | 0.58 | 1.03 | 郭治明等, | |
东寨港 Dongzhai Harbor | 卵叶喜盐草 H. ovalis | 20 | 63.8 | 71.86 | 1.22 | 0.72 | 0.79 | 郭治明等, | |
黄沙港 Huangsha Harbor | 泰来草 T. hemprichii | 18 | 69.3 | 46.47 | 1.59 | 0.73 | 1.34 | 郭治明等, | |
花场湾 Huachang Bay | 贝克喜盐草 H. beccarii | 11 | 250.7 | 80.88 | 1.14 | 0.52 | 0.92 | 郭治明等, | |
高隆湾-长圮港 Gaolong Bay-Changpi Harbor | 泰来草 T. hemprichii 海菖蒲 E. acoroides | 22 | 52.7 | 163.14 | 0.89 | 0.66 | 0.58 | 郭治明等, | |
青葛-龙湾 Qingge-Longwan | 泰来草 T. hemprichii 海菖蒲 E. acoroides | 21 | 36.6 | 244.20 | 0.91 | 0.78 | 0.54 | 郭治明等, | |
广西 Guangxi | 合浦 Hepu | 卵叶喜盐草 H. ovalis 日本鳗草 Zostera japonica | 216 | 166.7‒327.3 | ‒ | 1.7‒2.9* | 0.6‒0.9* | ‒ | 张景平等, |
铁山港 Tieshan Harbor | 卵叶喜盐草 H. ovalis | 52 | 109.0 | 75.81 | 2.42 | 0.79 | 1.77 | 郭治明等, | |
珍珠湾 Zhenzhu Bay | 日本鳗草 Z. japonica | 32 | 436.0 | 345.21 | 1.31 | 0.41 | 1.35 | 郭治明等, | |
山东 Shandong | 广饶 Guangrao | 日本鳗草 Z. japonica | 41 | 661.3 | ‒ | ‒ | — | ‒ | 孟周等, |
辽宁 Liaoning | 觉华岛 Juehua Island | 鳗草 Z. marina | 32 | 336.7‒408.3 | 67.28‒10.89 | 1.2‒1.7* | 0.8‒0.9* | 0.7‒1.3* | 张兆衡等, |
图3 海草床面临的威胁。(a)、(b)和(c): 柘林湾、海陵岛和南三岛底播贝类养殖; (d): 东海岛海草床旁的池塘养殖排口; (e): 义丰溪的定置网; (f)和(g): 唐家湾和下川岛滩涂上的地笼; (h)和(i): 义丰溪和下川岛的群众在耙螺挖贝; (j): 破坏力极强的沙虫采集工具; (k): 考洲洋停靠的渔船和远处挖菜的群众; (l): 上川岛原海草分布区域正在实施海洋工程; (m): 义丰溪海草床上的红树林种植修复工程; (n): 下川岛日本鳗草(近处深绿色)和互花米草(远处浅绿色)竞争生存空间; (o): 流沙湾海草床上的大型藻类; (p): 溪头滩涂的海滩垃圾; (q): 东海岛海草床上的红树林幼苗。
Fig. 3 Threats to seagrass beds. (a), (b) and (c): Shellfish culture at Zhelin Bay, Hailing Island and Nansan Island, respectively; (d) Outfalls of mariculture ponds near seagrass bed at Donghai Island; (e): Fixed net at Yifengxi; (f) and (g): Fish caging on the beach at Tangjiawan and Xiachuan Island, respectively; (h) and (i): Fishermen were collecting shellfish at Yifengxi and Xiachuan Island, respectively; (j): Sipunculus nudus collection tool with destructive power; (k): Docked fishing boat and fishermen collecting benthic macroalgae in the distance at Kaozhouyang; (l): Marine engineering was under implementation at original seagrass distribution area in Shangchuan Island; (m): Mangrove cultivation and restoration project at seagrass bed in Yifengxi; (n): Zostera japonica(dark green nearby) and Spartina alterniflora (light green faraway) were competing for living space; (o): Macroalgae at seagrass bed in Liusha Bay; (p): Beach litter at tidal flat in Xitou; (q): Mangrove seedling were growing at seagrass bed in Donghai Island.
[1] |
Antón A, Cebrian J, Heck KL, Duarte CM, Sheehan KL, Miller ME C, Foster CD (2011) Decoupled effects (positive to negative) of nutrient enrichment on ecosystem services. Ecological Applications, 21, 991-1009.
PMID |
[2] |
Atwood TB, Connolly RM, Ritchie EG, Lovelock CE, Heithaus MR, Hays GC, Fourqurean JW, Macreadie PI (2015) Predators help protect carbon stocks in blue carbon ecosystems. Nature Climate Change, 5, 1038-1045.
DOI |
[3] |
Atwood TB, Hammill E (2018) The importance of marine predators in the provisioning of ecosystem services by coastal plant communities. Frontiers in Plant Science, 9, 1289.
DOI PMID |
[4] |
Atwood TB, Madin EMP, Harborne AR, Hammill E, Luiz OJ, Ollivier QR, Roelfsema CM, Macreadie PI, Lovelock CE (2018) Predators shape sedimentary organic carbon storage in a coral reef ecosystem. Frontiers in Ecology and Evolution, 6, 110.
DOI URL |
[5] |
Balmford A, Bond W (2005) Trends in the state of nature and their implications for human well-being. Ecology Letters, 8, 1218-1234.
DOI PMID |
[6] | Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience, 51, 633-641. |
[7] |
Bricker SB, Ferreira JG, Simas T (2003) An integrated methodology for assessment of estuarine trophic status. Ecological Modelling, 169, 39-60.
DOI URL |
[8] |
Brun FG, Olivé I, Malta E, Vergara JJ, Hernández I, Pérez-Lloréns JL (2008) Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Marine Ecology Progress Series, 365, 67-75.
DOI URL |
[9] |
Campbell SJ, McKenzie LJ, Kerville SP (2006) Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. Journal of Experimental Marine Biology and Ecology, 330, 455-468.
DOI URL |
[10] | Cancemi G, De Falco G, Pergent G (2000) Impact of a fish farming facility on a Posidonia oceanica meadow. Biologia Marina Mediterranea, 7, 341-344. |
[11] | Chen SQ, Wang DR, Wu ZJ, Zhang GX, Li YC, Tu ZG, Yao HJ, Cai ZF (2015a) Discussion of the change trend of the seagrass beds in the east coast of Hainan Island in nearly a decade. Marine Environmental Science, 34(1), 48-53. (in Chinese with English abstract) |
[陈石泉, 王道儒, 吴钟解, 张光星, 李元超, 涂志刚, 姚海君, 蔡泽富 (2015a) 海南岛东海岸海草床近10a变化趋势探讨. 海洋环境科学, 34(1), 48-53.] | |
[12] | Chen SQ, Wu ZJ, Chen XH, Li YC, Cai ZF, Zhang GX, Yao HJ, Huang JY (2015b) Investigation and analysis of the distribution status of seagrass resources in the southern part of Hainan Island. Haiyang Xuebao, 37(6), 106-113. (in Chinese with English abstract) |
[陈石泉, 吴钟解, 陈晓慧, 李元超, 蔡泽富, 张光星, 姚海君, 黄洁英 (2015b) 海南岛南部海草资源分布现状调查分析. 海洋学报, 37(6), 106-113.] | |
[13] | Chen Y, Guo YM (2022) Effects of Spartina alterniflora on temporal and spatial pattern of Ronggen Mountain beach in Guangxi from 2009 to 2018. Journal of Agricultural Catastrophology, 12(7), 7-9, 12. (in Chinese with English abstract) |
[陈莹, 郭宇明 (2022) 2009-2018年互花米草对广西榕根山滩涂时空格局的影响. 农业灾害研究, 12(7), 7-9, 12.] | |
[14] |
Chin DW, de Fouw J, van der Heide T, Cahill BV, Katcher K, Paul VJ, Campbell JE, Peterson BJ (2021) Facilitation of a tropical seagrass by a chemosymbiotic bivalve increases with environmental stress. Journal of Ecology, 109, 204-217.
DOI URL |
[15] |
Collier CJ, Waycott M (2014) Temperature extremes reduce seagrass growth and induce mortality. Marine Pollution Bulletin, 83, 483-490.
DOI PMID |
[16] |
Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature, 387, 253-260.
DOI |
[17] |
Couwenberg J, Dommain R, Joosten H (2010) Greenhouse gas fluxes from tropical peatlands in southeast Asia. Global Change Biology, 16, 1715-1732.
DOI URL |
[18] | Coverdale TC, Brisson CP, Young EW, Yin SF, Donnelly JP, Bertness MD (2014) Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion. PLoS ONE, 9, e93296. |
[19] |
Cullen-Unsworth LC, Nordlund LM, Paddock J, Baker S, McKenzie LJ, Unsworth RKF (2014) Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Marine Pollution Bulletin, 83, 387-397.
DOI PMID |
[20] |
Cullen-Unsworth LC, Unsworth RKF (2016) Strategies to enhance the resilience of the world’s seagrass meadows. Journal of Applied Ecology, 53, 967-972.
DOI URL |
[21] |
Daru BH, Rock BM (2023) Reorganization of seagrass communities in a changing climate. Nature Plants, 9, 1034-1043.
DOI PMID |
[22] |
Davidson IC, Cott GM, Devaney JL, Simkanin C (2018) Differential effects of biological invasions on coastal blue carbon: A global review and meta-analysis. Global Change Biology, 24, 5218-5230.
DOI PMID |
[23] |
de Boer WF (2007) Seagrass-sediment interactions, positive feedbacks and critical thresholds for occurrence: A review. Hydrobiologia, 591, 5-24.
DOI URL |
[24] |
de la Torre-Castro M, Fröcklin S, Börjesson S, Okupnik J, Jiddawi NS (2017) Gender analysis for better coastal management—Increasing our understanding of social-ecological seascapes. Marine Policy, 83, 62-74.
DOI URL |
[25] |
Delgado O, Ruiz J, Pérez M, Romero J, Ballesteros E (1999) Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean Bay: Seagrass decline after organic loading cessation. Oceanologica Acta, 22, 109-117.
DOI URL |
[26] | Du JG, Chen B, Nagelkerken I, Chen SQ, Hu WJ (2023) Protect seagrass meadows in China’s waters. Science, 379, 447-447. |
[27] | Duarte C, Borum J, Short FT, Walker D (2008a) Seagrass ecosystems:Their global status and prospects. In: Aquatic Ecosystems: Trends and Global Prospects (ed. Polunin NVC), pp. 281-294. Cambridge University Press, Cambridge. |
[28] |
Duarte CM (1991) Allometric scaling of seagrass form and productivity. Marine Ecology Progress Series, 77, 289-300.
DOI URL |
[29] |
Duarte CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia, 41, 87-112.
DOI URL |
[30] |
Duarte CM (2002) The future of seagrass meadows. Environmental Conservation, 29, 192-206.
DOI URL |
[31] |
Duarte CM, Dennison WC, Orth RJW, Carruthers TJB (2008b) The Charisma of coastal ecosystems: Addressing the imbalance. Estuaries and Coasts, 31, 233-238.
DOI |
[32] |
Duarte CM, Terrados J, Agawin NSR, Fortes MD, Bach S, Kenworthy WJ (1997) Response of a mixed Philippine seagrass meadow to experimental burial. Marine Ecology Progress Series, 147, 285-294.
DOI URL |
[33] |
Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Marine Ecology Progress Series, 311, 233-250.
DOI URL |
[34] |
Durako MJ, Kunzelman JI (2002) Photosynthetic characteristics of Thalassia testudinum measured in situ by pulse-amplitude modulated (PAM) fluorometry: Methodological and scale-based considerations. Aquatic Botany, 73, 173-185.
DOI URL |
[35] |
Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet earth. Science, 333, 301-306.
DOI PMID |
[36] | Fonseca MS, Kenworthy WJ, Whitfield PE (2000) Temporal dynamics of seagrass landscapes: A preliminary comparison of chronic and extreme disturbance events. Biologia Marina Mediterranea, 7, 373-376. |
[37] |
Goodman JL, Moore KA, Dennison WC (1995) Photosynthetic responses of eelgrass (Zostera marina L.) to light and sediment sulfide in a shallow barrier island lagoon. Aquatic Botany, 50, 37-47.
DOI URL |
[38] |
Greve TM, Borum J, Pedersen O (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnology and Oceanography, 48, 210-216.
DOI URL |
[39] | Guo ZM, Yang X, Yu W, Yang ZX, Lü YH (2023) Preliminary study on characteristics of macrobenthic communities in seagrass bed areas in South China Coast. Journal of Applied Oceanography, 42, 469-478. (in Chinese with English abstract) |
[郭治明, 杨熙, 余威, 杨振雄, 吕意华 (2023) 华南沿海海草床分布区大型底栖动物群落特征初探. 应用海洋学学报, 42, 469-478.] | |
[40] |
Hammill E, Atwood TB, Srivastava DS (2015) Predation threat alters composition and functioning of bromeliad ecosystems. Ecosystems, 18, 857-866.
DOI URL |
[41] |
Heck KL Jr, Hays G, Orth RJ (2003) Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series, 253, 123-136.
DOI URL |
[42] | Hemminga MA, Duarte CM (2000) Seagrass Ecology. Cambridge University Press, Cambridge. |
[43] |
Herbeck LS, Unger D, Krumme U, Liu SM, Jennerjahn TC (2011) Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuarine, Coastal and Shelf Science, 93, 375-388.
DOI URL |
[44] | Honda K, Nakamura Y, Nakaoka M, Uy WH, Fortes MD (2013) Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE, 8, e65735. |
[45] | Huang XP, Huang LM, Li YH, Xu ZZ, Fang JW, Huang DJ, Han QY, Huang H, Tan YH, Liu S (2006) Main seagrass beds along the coast of South China and their habitat threats. Chinese Science Bulletin, 51(S3), 114-119. (in Chinese) |
[黄小平, 黄良民, 李颖虹, 许战洲, 方静威, 黄道建, 韩秋影, 黄晖, 谭烨辉, 刘胜 (2006) 华南沿海主要海草床及其生境威胁. 科学通报, 51(S3), 114-119.] | |
[46] | Huang XP, Jiang ZJ, Zhang JP, Shi Z, Wang F, Ye F, Li L (2010) Newly discovered seagrass beds in the coastal seas of Guangdong Province. Journal of Tropical Oceanography, 29(1), 132-135. (in Chinese with English abstract) |
[黄小平, 江志坚, 张景平, 施震, 汪飞, 叶丰, 李磊 (2010) 广东沿海新发现的海草床. 热带海洋学报, 29(1), 132-135.]
DOI |
|
[47] |
Huntington BE, Boyer KE (2008) Effects of red macroalgal (Gracilariopsis sp.) abundance on eelgrass Zostera marina in Tomales Bay, California, USA. Marine Ecology Progress Series, 367, 133-142.
DOI URL |
[48] | Jackson EL, Rowden AA, Attrill MJ, Bossey SJ, Jones MB (2001) The importance of seagrass beds as a habitat for fishery species. Oceanography and Marine Biology, 39, 269-304. |
[49] | Jiang ZJ, Cui LJ, Liu SL, Zhao CY, Wu YC, Chen QM, Yu S, Li JL, He JL, Fang Y, Premarathne MRCI, Huang XP (2020) Historical changes in seagrass beds in a rapidly urbanizing area of Guangdong Province: Implications for conservation and management. Global Ecology and Conservation, 22, e01035. |
[50] |
Kendrick GA, Eckersley J, Walker DI (1999) Landscape-scale changes in seagrass distribution over time: A case study from Success Bank, Western Australia. Aquatic Botany, 65, 293-309.
DOI URL |
[51] |
Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Science of the Total Environment, 534, 97-109.
DOI URL |
[52] | Larkum AWD, Orth RJ, Duarte CM (2006) Seagrasses: Biology, Ecology and Conservation. Springer, Berlin. |
[53] |
Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae. II. Evolution of marine angiosperms (seagrasses) and hydrophily. Systematic Botany, 22, 443-463.
DOI URL |
[54] |
Lewis LS, Anderson TW (2012) Top-down control of epifauna by fishes enhances seagrass production. Ecology, 93, 2746-2757.
PMID |
[55] |
Li Q, Jin RJ, Ye ZJ, Gu JL, Dan L, He JY, Christakos G, Agusti S, Duarte CM, Wu JP (2022) Mapping seagrass meadows in coastal China using GEE. Geocarto International, 37, 12602-12617.
DOI URL |
[56] | Li YH, Huang XP, Xu ZZ, Huang LM (2007) Threat and protection measurement of Hepu seagrass beds in Guangxi. Marine Environmental Science, 26, 587-590. (in Chinese with English abstract) |
[李颖虹, 黄小平, 许战洲, 黄良民 (2007) 广西合浦海草床面临的威胁与保护对策. 海洋环境科学, 26, 587-590.] | |
[57] |
Li YQ, Bai JW, Zhang L, Yang ZH (2022) Mapping and spatial variation of seagrasses in Xincun, Hainan Province, China, based on satellite images. Remote Sensing, 14, 2373.
DOI URL |
[58] |
Lin ML, Turvey ST, Han CT, Huang XY, Mazaris AD, Liu MM, Ma HD, Yang ZX, Tang XM, Li SH (2022) Functional extinction of dugongs in China. Royal Society Open Science, 9, 211994.
DOI URL |
[59] |
Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312, 1806-1809.
DOI PMID |
[60] |
Lovelock CE, Feller IC, Reef R, Ruess RW (2014) Variable effects of nutrient enrichment on soil respiration in mangrove forests. Plant and Soil, 379, 135-148.
DOI URL |
[61] | Macreadie PI, Hughes AR, Kimbro DL (2013) Loss of ‘blue carbon’ from coastal salt marshes following habitat disturbance. PLoS ONE, 8, e69244. |
[62] |
Macreadie PI, Nielsen DA, Kelleway JJ, Atwood TB, Seymour JR, Petrou K, Connolly RM, Thomson AC, Trevathan- Tackett SM, Ralph PJ (2017) Can we manage coastal ecosystems to sequester more blue carbon? Frontiers in Ecology and the Environment, 15, 206-213.
DOI URL |
[63] | Macreadie PI, Trevathan-Tackett SM, Skilbeck CG, Sanderman J, Curlevski N, Jacobsen G, Seymour JR (2015) Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proceedings of the Royal Society B: Biological Sciences, 282, 20151537. |
[64] |
Marbà N, Santiago R, Díaz-Almela E, Álvarez E, Duarte CM (2006) Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Science, 67, 475-483.
DOI URL |
[65] |
Massa SI, Arnaud-Haond S, Pearson GA, Serrão EA (2009) Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia, 619, 195-201.
DOI URL |
[66] |
McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552-560.
DOI URL |
[67] | Meng Z, Yan RX, Han QX (2021) Effects of patchy seagrass meadow on macrobenthic community. Marine Science Bulletin, 40, 425-432. (in Chinese with English abstract) |
[孟周, 严润玄, 韩庆喜 (2021) 斑块状海草床对大型底栖动物群落的影响. 海洋通报, 40, 425-432.] | |
[68] |
Micheli F, Bishop MJ, Peterson CH, Rivera J (2008) Alteration of seagrass species composition and function over two decades. Ecological Monographs, 78, 225-244.
DOI URL |
[69] |
Miyajima T, Hori M, Hamaguchi M, Shimabukuro H, Yoshida G (2017) Geophysical constraints for organic carbon sequestration capacity of Zostera marina seagrass meadows and surrounding habitats. Limnology and Oceanography, 62, 954-972.
DOI URL |
[70] | Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (2009) Blue Carbon: A UNEP Rapid Response Assessment. United Nations Environment Programme, Grid-Arendal. |
[71] |
Nordlund LM, de la Torre-Castro M, Erlandsson J, Conand C, Muthiga N, Jiddawi N, Gullström M (2014) Intertidal zone management in the western Indian Ocean: Assessing current status and future possibilities using expert opinions. AMBIO, 43, 1006-1019.
DOI PMID |
[72] | Nordlund LM, Koch EW, Barbier EB, Creed JC (2016) Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE, 11, e0163091. |
[73] |
Nordlund LM, Unsworth RKF, Gullström M, Cullen-Unsworth LC (2018) Global significance of seagrass fishery activity. Fish and Fisheries, 19, 399-412.
DOI URL |
[74] |
Olesen B (1999) Reproduction in Danish eelgrass (Zostera marina L.) stands: Size-dependence and biomass partitioning. Aquatic Botany, 65, 209-219.
DOI URL |
[75] |
Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. BioScience, 56, 987-996.
DOI URL |
[76] |
Orth RJ, Harwell MC, Bailey EM, Bartholomew A, Jawad JT, Lombana AV, Moore KA, Rhode JM, Woods HE (2000) A review of issues in seagrass seed dormancy and germination: Implications for conservation and restoration. Marine Ecology Progress Series, 200, 277-288.
DOI URL |
[77] |
Pasqualini V, Pergent-Martini C, Pergent G (1999) Environmental impact identification along the Corsican coast (Mediterranean sea) using image processing. Aquatic Botany, 65, 311-320.
DOI URL |
[78] |
Pauly D, Zeller D (2016) Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications, 7, 10244.
DOI PMID |
[79] |
Pérez M, Romero J (1992) Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquatic Botany, 43, 51-62.
DOI URL |
[80] |
Pergent G, Mendez S, Pergent-Martini C, Pasqualini V (1999) Preliminary data on the impact of fish farming facilities on Posidonia oceanica meadows in the Mediterranean. Oceanologica Acta, 22, 95-107.
DOI URL |
[81] |
Preen AR, Lee Long WJ, Coles RG (1995) Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquatic Botany, 52, 3-17.
DOI URL |
[82] | Qiu GL, Pan LH, Wang X, Su ZN, Fang C, Fan HQ (2021) Distribution and community structure of subtidal seagrasses, mangroves and Spartina alterniflora on the coastal wetlands of Weizhou Island, Guangxi. Journal of Applied Oceanography, 40(1), 56-64. (in Chinese with English abstract) |
[邱广龙, 潘良浩, 王欣, 苏治南, 方超, 范航清 (2021) 广西涠洲岛滨海湿地潮下带海草、红树林与互花米草的分布和群落结构特征. 应用海洋学学报, 40(1), 56-64.] | |
[83] | Qiu GL, Su ZN, Fan HQ, Fang C, Chen ST (2020) Biological and ecological characteristics of intertidal seagrass Halophila beccarii and its conservation countermeasures. Marine Environmental Science, 39(1), 121-126. (in Chinese with English abstract) |
[邱广龙, 苏治南, 范航清, 方超, 陈思婷 (2020) 贝克喜盐草的生物学和生态学特征及其保护对策. 海洋环境科学, 39(1), 121-126.] | |
[84] |
Ralph PJ (1998) Photosynthetic response of laboratory-cultured Halophila ovalis to thermal stress. Marine Ecology Progress Series, 171, 123-130.
DOI URL |
[85] |
Ralph PJ, Durako MJ, Enríquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on seagrasses. Journal of Experimental Marine Biology and Ecology, 350, 176-193.
DOI URL |
[86] |
Rasheed MA, Unsworth R (2011) Long-term climate-associated dynamics of a tropical seagrass meadow: Implications for the future. Marine Ecology Progress Series, 422, 93-103.
DOI URL |
[87] |
Ricart AM, Pérez M, Romero J (2017) Landscape configuration modulates carbon storage in seagrass sediments. Estuarine, Coastal and Shelf Science, 185, 69-76.
DOI URL |
[88] |
Robblee MB, Barber TR, Carlson PR Jr, Durako MJ, Fourqurean JW, Muehlstein LK, Porter D, Yarbro LA, Zieman RT, Zieman JC (1991) Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series, 71, 297-299.
DOI URL |
[89] |
Shi YJ, Fan HQ, Cui XJ, Pan LH, Li S, Song XK (2010) Overview on seagrasses and related research in China. Chinese Journal of Oceanology and Limnology, 28, 329-339.
DOI URL |
[90] |
Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 350, 3-20.
DOI URL |
[91] | Short FT, Coles R (2001) Protecting seagrass—Approaches and methods. In: Global Seagrass Research Methods (eds Coles R, Fortes M), pp. 445-463. Elsevier Science, Amsterdam. |
[92] |
Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquatic Botany, 63, 169-196.
DOI URL |
[93] |
Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Judson Kenworthy W, La Nafie YA, Nasution IM, Orth RJ, Prathep A, Sanciangco JC, van Tussenbroek B, Vergara SG, Waycott M, Zieman JC (2011) Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144, 1961-1971.
DOI URL |
[94] |
Terrados J, Duarte CM, Kamp-Nielsen L, Agawin NSR, Gacia E, Lacap D, Fortes MD, Borum J, Lubanski M, Greve T (1999) Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquatic Botany, 65, 175-197.
DOI URL |
[95] |
Unsworth R, De León PS, Garrard SL, Jompa J, Smith DJ, Bell JJ (2008) High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Marine Ecology Progress Series, 353, 213-224.
DOI URL |
[96] |
Unsworth RKF, Collier CJ, Henderson GM, McKenzie LJ (2012) Tropical seagrass meadows modify seawater carbon chemistry: Implications for coral reefs impacted by ocean acidification. Environmental Research Letters, 7, 024026.
DOI URL |
[97] |
Unsworth RKF, Cullen LC (2010) Recognising the necessity for Indo-Pacific seagrass conservation. Conservation Letters, 3, 63-73.
DOI URL |
[98] | Unsworth RKF, McKenzie LJ, Nordlund LM, Cullen-Unsworth LC (2018) A changing climate for seagrass conservation? Current Biology, 28, R1229-R1232. |
[99] | Unsworth RKF, Nordlund LM, Cullen-Unsworth LC (2019) Seagrass meadows support global fisheries production. Conservation Letters, 12, e12566. |
[100] |
Unsworth RKF, van Keulen M, Coles RG (2014) Seagrass meadows in a globally changing environment. Marine Pollution Bulletin, 83, 383-386.
DOI PMID |
[101] |
van Katwijk MM, Thorhaug A, Marbà N, Orth RJ, Duarte CM, Kendrick GA, Althuizen IHJ, Balestri E, Bernard G, Cambridge ML, Cunha A, Durance C, Giesen W, Han QY, Hosokawa S, Kiswara W, Komatsu T, Lardicci C, Lee KS, Meinesz A, Nakaoka M, O’Brien KR, Paling EI, Pickerell C, Ransijn AMA, Verduin JJ (2016) Global analysis of seagrass restoration: The importance of large-scale planting. Journal of Applied Ecology, 53, 567-578.
DOI URL |
[102] |
van Katwijk MM, Vergeer L, Schmitz G, Roelofs J (1997) Ammonium toxicity in eelgrass Zostera marina. Marine Ecology Progress Series, 157, 159-173.
DOI URL |
[103] |
Verweij MC, Nagelkerken I, Hans I, Ruseler SM, Mason PRD (2008) Seagrass nurseries contribute to coral reef fish populations. Limnology and Oceanography, 53, 1540-1547.
DOI URL |
[104] |
Villazán B, Pedersen MF, Brun FG, Vergara JJ (2013) Elevated ammonium concentrations and low light form a dangerous synergy for eelgrass Zostera marina. Marine Ecology Progress Series, 493, 141-154.
DOI URL |
[105] |
Walker DI, Lukatelich RJ, Bastyan G, McComb AJ (1989) Effect of boat moorings on seagrass beds near Perth, Western Australia. Aquatic Botany, 36, 69-77.
DOI URL |
[106] | Wang DR, Wu ZJ, Chen CH, Lan JX, Wu R, Chen XH, Zhang GX, Li YC (2012) Distribution of sea-grass resources and existing threat in Hainan Island. Marine Environmental Science, 31(1), 34-38. (in Chinese with English abstract) |
[王道儒, 吴钟解, 陈春华, 兰建新, 吴瑞, 陈晓慧, 张光星, 李元超 (2012) 海南岛海草资源分布现状及存在威胁. 海洋环境科学, 31(1), 34-38.] | |
[107] | Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, USA, 106, 12377-12381. |
[108] | Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science, 314, 787-790. |
[109] | Wu YJ, Zhang HK (2018) Changes of seagrass bed in Hepu, Guangxi and its protection countermeasures. China Science and Technology Information, (22), 68-69. (in Chinese) |
[吴沅珈, 张宏科 (2018) 广西合浦海草床变化情况及保护对策. 中国科技信息, (22), 68-69.] | |
[110] |
Xiao X, Huang YZ, Holmer M (2020) Current trends in seagrass research in China (2010-2019). Aquatic Botany, 166, 103266.
DOI URL |
[111] | Xiong H, Peng YS, Chen YC, Chen Z, Xu FH, Chen GZ (2013) New record of sea grass bed in Zhanjiang Mangrove National Nature Reserve. Wetland Science & Management, 9(2), 61-62. (in Chinese with English abstract) |
[熊卉, 彭逸生, 陈粤超, 陈钟, 许方宏, 陈桂珠 (2013) 湛江红树林国家级自然保护区海草床分布点新记录. 湿地科学与管理, 9(2), 61-62.] | |
[112] |
Yamamuro M, Chirapart A (2005) Quality of the seagrass Halophila ovalis on a Thai intertidal flat as food for the Dugong. Journal of Oceanography, 61, 183-186.
DOI URL |
[113] | Yue SD, Xu SC, Zhang Y, Qiao YL, Liu MJ, Zhang XM, Wang Q, Zhou Y (2021) New discovery of larger seagrass beds with area >50 ha in the temperate waters of China. IV. Distribution status and ecological characteristics of seagrass in the coastal waters of Yantai. Marine Sciences, 45(10), 61-70. (in Chinese with English abstract) |
[岳世栋, 徐少春, 张玉, 乔永亮, 刘明杰, 张晓梅, 王清, 周毅 (2021) 中国温带海域新发现较大面积(大于50 ha)海草床. IV. 烟台沿海海草分布现状及生态特征. 海洋科学, 45(10), 61-70.] | |
[114] | Zhang JP, Huang XP, Jiang ZJ (2010) Differences of benthic macrofauna community among three types of seagrass beds in Hepu Guangxi, South China. In:Proceedings of 2010 International Conference on Remote Sensing (ICRS 2010), 4, 62-67. (in Chinese with English abstract) |
[张景平, 黄小平, 江志坚 (2010) 广西合浦不同类型海草床中大型底栖动物的差异性研究. 2010年遥感与测绘国际学术会议录, 4, 62-67.] | |
[115] |
Zhang MJ, Li H, Zhang LT, Liu JG (2023) Heat stress, especially when coupled with high light, accelerates the decline of tropical seagrass (Enhalus acoroides) meadows. Marine Pollution Bulletin, 192, 115043.
DOI URL |
[116] | Zhang ZH, Yang W, Zhang ZY, Sun T, Liu HF (2022) Characteristics of typical biological communities and identification of key environmental factors in the seagrass bed of Xingcheng-Juehua Island, Bohai Sea. Journal of Beijing Normal University (Natural Science), 58(1), 90-98. (in Chinese with English abstract) |
[张兆衡, 杨薇, 张子玥, 孙涛, 刘海飞 (2022) 渤海兴城-觉华岛海域海草床典型生物群落特征及其关键环境因子识别. 北京师范大学学报(自然科学版), 58(1), 90-98.] | |
[117] |
Zheng FY, Qiu GL, Fan HQ, Zhang W (2013) Diversity, distribution and conservation of Chinese seagrass species. Biodiversity Science, 21, 517-526. (in Chinese with English abstract)
DOI |
[郑凤英, 邱广龙, 范航清, 张伟 (2013) 中国海草的多样性、分布及保护. 生物多样性, 21, 517-526.]
DOI |
|
[118] | Zhong C, Sun KF, Liao Y, Qi SB, Chen QH, Yin QT, Xu M (2019) Distribution status of seagrass and its relationship with different habitat types in Liusha Bay of Guangdong Province. Marine Environmental Science, 38, 521-527. (in Chinese with English abstract) |
[钟超, 孙凯峰, 廖岩, 綦世斌, 陈清华, 尹倩婷, 徐敏 (2019) 广东流沙湾海草分布现状及其与不同养殖生境的关系. 海洋环境科学, 38, 521-527.] | |
[119] | Zhou Y, Xu S, Xu SC, Yue SD, Gu RT, Zhang XM, Xu M, Zhang Y, Zhang YL, Zhang ZH (2019) New discovery of larger seagrass beds with areas >0.50 km2 in temperate waters of China. II. The largest Zostera marina bed in China discovered in the coastal waters of Tangshan in the Bohai Sea by sonar detection technology. Marine Sciences, 43(8), 50-55. (in Chinese with English abstract) |
[周毅, 许帅, 徐少春, 岳世栋, 顾瑞婷, 张晓梅, 许敏, 张玉, 张云岭, 张振海 (2019) 中国温带海域新发现较大面积(大于0.5 km2)海草床. II. 声呐探测技术在渤海唐山沿海海域发现中国面积最大的鳗草海草床. 海洋科学, 43(8), 50-55.] | |
[120] | Zhou Y, Zhang XM, Xu SC, Song XY, Lin HY, Wang PM, Gu RT (2016) New discovery of larger seagrass beds with areas >50 ha in temperate waters of China: An unusual large seagrass (Zostera japonica) bed in the Yellow River Estuary. Marine Sciences, 40(9), 95-97. (in Chinese with English abstract) |
[周毅, 张晓梅, 徐少春, 宋肖跃, 林海英, 王朋梅, 顾瑞婷 (2016) 中国温带海域新发现较大面积(大于50 ha)的海草床. Ⅰ. 黄河河口区罕见大面积日本鳗草海草床. 海洋科学, 40(9), 95-97.] |
[1] | 宋柱秋, 叶文, 董仕勇, 金梓超, 钟星杰, 王震, 张步云, 徐晔春, 陈文俐, 李世晋, 姚纲, 徐洲锋, 廖帅, 童毅华, 曾佑派, 曾云保, 陈又生. 广东省高等植物多样性编目和分布数据集[J]. 生物多样性, 2023, 31(9): 23177-. |
[2] | 席辉辉, 王祎晴, 潘跃芝, 许恬, 湛青青, 刘健, 冯秀彦, 龚洵. 中国苏铁属植物资源和保护[J]. 生物多样性, 2022, 30(7): 21495-. |
[3] | 马星, 王浩, 余蔚, 杜勇, 梁健超, 胡慧建, 邱胜荣, 刘璐. 基于MaxEnt模型分析广东省鸟类多样性热点分布及保护空缺[J]. 生物多样性, 2021, 29(8): 1097-1107. |
[4] | 王昱熙, 谢彦波, NyambayarBatbayar, 朱宝光, 董树斌, AnnaBarma, AntonSasin, 曹垒. 基于卫星追踪探讨黄河流域自然保护区对3种水鸟栖息地的保护现状[J]. 生物多样性, 2020, 28(12): 1483-1495. |
[5] | 宋博,陈琳琳,闫朗,姜少玉,刘春云,李秉钧,李宝泉. 山东东营和烟台潮间带海草床食物网结构特征[J]. 生物多样性, 2019, 27(9): 984-992. |
[6] | 杨蕾蕾,王文广,郎校安,张苏州,姚张秀,徐婷,李远球,严丹峰,杨建芬,王亚玲,张寿洲. 极小种群广东含笑野外资源现状[J]. 生物多样性, 2019, 27(9): 1016-1020. |
[7] | 陈立军,束祖飞,肖治术. 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例[J]. 生物多样性, 2019, 27(3): 266-272. |
[8] | 黄勋和, 余哲琪, 翁茁先, 何丹林, 易振华, 李威娜, 陈洁波, 张细权, 杜炳旺, 钟福生. 广东省地方鸡线粒体遗传多样性与母系起源[J]. 生物多样性, 2018, 26(3): 238-247. |
[9] | 平晓鸽, 李春旺, 李春林, 汤宋华, 方红霞, 崔绍朋, 陈静, 王恩光, 何玉邦, 蔡平, 张毓, 吴永林, 蒋志刚. 普氏原羚分布、种群和保护现状[J]. 生物多样性, 2018, 26(2): 177-184. |
[10] | 王德元, 彭婕, 陈雅静, 吕国胜, 张小平, 邵剑文. 毛茛叶报春的遗传多样性及遗传结构[J]. 生物多样性, 2013, 21(5): 601-609. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn