生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22269. DOI: 10.17520/biods.2022269
所属专题: 土壤生物与土壤健康
刘萍1, 刘红文1,2, 张淼1,2, 高燕1,2, 张梦亭1,2, 梁爱珍1, 张士秀1,*()
收稿日期:
2022-05-17
接受日期:
2022-10-08
出版日期:
2022-12-20
发布日期:
2023-01-10
通讯作者:
*E-mail: zhangshixiu@iga.ac.cn
基金资助:
Ping Liu1, Hongwen Liu1,2, Miao Zhang1,2, Yan Gao1,2, Mengting Zhang1,2, Aizhen Liang1, Shixiu Zhang1,*()
Received:
2022-05-17
Accepted:
2022-10-08
Online:
2022-12-20
Published:
2023-01-10
Contact:
*E-mail: zhangshixiu@iga.ac.cn
摘要:
东北黑土区是保障我国粮食安全的重要土壤资源, 了解该区域内农田土壤线虫的群落组成及其对环境驱动因子的响应机制, 对于研究黑土区农田土壤生态系统的生物多样性分布格局具有重要意义。2018年9月, 我们在42°50°‒49°08° N的典型黑土区采集了93个农田土壤样品, 利用形态学鉴定技术分析了土壤线虫群落的组成与结构。共鉴定出47个线虫属(相对丰度 > 1%), 其中食细菌线虫中的拟丽突属(Acrobeloides)是典型黑土区农田土壤中的优势属(相对丰度 > 5%)。土壤线虫总丰富度和总多度均随纬度增加而显著增加, 然而类似的变化趋势只出现在食细菌和杂食/捕食线虫中。土壤有机碳是影响土壤线虫丰富度和多度最为重要的环境因子, 其次是月平均温度。典型黑土区农田土壤线虫群落结构以47° N为分界线分为南部和北部两类, 主要归因于线虫群落中植物寄生和杂食/捕食线虫的相对多度在南、北特征属中存在差异。土壤pH值和容重分别是影响南部与北部黑土区线虫群落最重要的环境因子。本研究明确了典型黑土区农田土壤线虫群落的纬度分布格局及其与环境因素的关系, 可为揭示农业活动干扰下土壤生物对环境因子的响应机制提供基础数据和理论参考。
刘萍, 刘红文, 张淼, 高燕, 张梦亭, 梁爱珍, 张士秀 (2022) 典型黑土区农田土壤线虫群落的纬度分布格局及其驱动机制. 生物多样性, 30, 22269. DOI: 10.17520/biods.2022269.
Ping Liu, Hongwen Liu, Miao Zhang, Yan Gao, Mengting Zhang, Aizhen Liang, Shixiu Zhang (2022) Latitude distribution and associated environmental factors of soil nematodes in a typical black soil region. Biodiversity Science, 30, 22269. DOI: 10.17520/biods.2022269.
图2 典型黑土区农田土壤线虫丰富度(a-e)与多度(f-j)沿纬度分布。阴影部分为95%的置信区间。
Fig. 2 The relationship between latitude and the richness (a-e) and abundance (f-j) of soil nematodes community in farmland of the typical black soil region. The shaded areas are 95% confidence intervals.
丰富度 Richness | 环境因子 Environmental factors | %IncMSE | 显著性 Significance | 多度 Abundance | 环境因子 Environmental factors | %IncMSE | 显著性 Significance |
---|---|---|---|---|---|---|---|
Total R | SOC | 8.76 | ** | Total A | SOC | 8.53 | ** |
pH | 8.23 | * | MMR | 6.21 | * | ||
MMT | 6.52 | * | MMT | 5.59 | * | ||
Ba R | SOC | 12.58 | ** | Ba A | SOC | 9.42 | ** |
pH | 11.98 | ** | MMR | 6.50 | * | ||
MMT | 8.73 | ** | MMT | 5.40 | |||
PP R | MMT | 6.83 | * | Fu A | CC | 8.38 | ** |
SOC | 3.48 | MMR | 6.29 | * | |||
SBD | 2.90 | MMT | 4.94 | ||||
OP R | MMT | 8.42 | ** | OP A | SOC | 9.53 | ** |
SOC | 7.68 | ** | SM | 5.71 | |||
DOC | 6.99 | * | pH | 4.80 |
表1 典型黑土区土壤线虫丰富度和多度的环境因素影响重要性排序表
Table 1 The importance ranking of environmental factors affecting soil nematode richness and abundance in the typical black soil region
丰富度 Richness | 环境因子 Environmental factors | %IncMSE | 显著性 Significance | 多度 Abundance | 环境因子 Environmental factors | %IncMSE | 显著性 Significance |
---|---|---|---|---|---|---|---|
Total R | SOC | 8.76 | ** | Total A | SOC | 8.53 | ** |
pH | 8.23 | * | MMR | 6.21 | * | ||
MMT | 6.52 | * | MMT | 5.59 | * | ||
Ba R | SOC | 12.58 | ** | Ba A | SOC | 9.42 | ** |
pH | 11.98 | ** | MMR | 6.50 | * | ||
MMT | 8.73 | ** | MMT | 5.40 | |||
PP R | MMT | 6.83 | * | Fu A | CC | 8.38 | ** |
SOC | 3.48 | MMR | 6.29 | * | |||
SBD | 2.90 | MMT | 4.94 | ||||
OP R | MMT | 8.42 | ** | OP A | SOC | 9.53 | ** |
SOC | 7.68 | ** | SM | 5.71 | |||
DOC | 6.99 | * | pH | 4.80 |
图3 典型黑土区土壤线虫群落差异响应图。A: 典型黑土区农田土壤线虫群落聚类分析图; B: 典型黑土区南部与北部土壤线虫特征属差异(似然比检验, P < 0.05, FDR校正), 红色与蓝色虚线方框内分别为典型黑土区南部与北部线虫特征属名, 功能群后的数字代表线虫的c-p值。Ba: 食细菌线虫; Fu: 食真菌线虫; PP: 植物寄生线虫; OP: 杂食/捕食线虫; South: 南部特征属线虫群落; None: 无统计学差异线虫群落; North: 北部特征属线虫群落。CT1: 昌图一; CT2: 昌图二; LS1: 梨树一; LS2: 梨树二; GZL: 公主岭; CC1: 长春; DH: 德惠; YS: 榆树; SC: 双城; HEB: 哈尔滨; HL1: 呼兰; BY: 巴彦; SH: 绥化; SL: 绥棱; HL: 海伦; BQ: 拜泉; BA: 北安; KD: 克东; NH1: 讷河一; NH2: 讷河二; WDLC1: 五大连池一; WDLC2: 五大连池二; NJ: 嫩江。
Fig. 3 Differential response map of soil nematode community in the typical black soil region. A, Cluster analysis of soil nematode community in farmland of the typical black soil region; B, Characteristic genus of soil nematodes in northern and southern typical black soil regions (likelihood ratio test, P < 0.05, FDR corrected). The name of characteristic genus and their c-p values were listed in the adjacent red and blue dashed line boxes on the right. Ba, Bacterivores; Fu, Fungivores; PP, Plant parasites; OP, Omnivores/predators; South, Nematode community of southern characteristic genus; None, Nematode community with no statistical difference; North, Nematode community of northern characteristic genus. CT1, Changtu1; CT2, Changtu2; LS1, Lishu1; LS2, Lishu2; GZL, Gongzhuling; CC1, Changchun; DH, Dehui; YS, Yushu; SC, Shuangcheng; HEB, Harbin; HL1, Hulan; BY, Bayan; SH, Suihua; SL, Suileng; HL, Hailun; BQ, Baiquan; BA, Bei’an; KD, Kedong; NH1, Nehe1; NH2, Nehe2; WDLC1, Wudalianchi1; WDLC2, Wudalianchi2; NJ, Nenjiang.
图4 典型黑土区土壤线虫营养类群相对多度箱线图。A: 典型黑土区南部与北部线虫群落营养类群相对多度差异; B: 典型黑土区土壤线虫南部与北部特征属线虫群落营养类群相对多度差异。S13代表南部的13个样点, N10代表北部的10个样点。Ba: 食细菌线虫; Fu: 食真菌线虫; PP: 植物寄生线虫; OP: 杂食/捕食线虫。
Fig. 4 Box plot of the relative abundance of soil nematode trophic groups in the typical black soil region. A, Differences in the relative abundance of trophic groups of overall nematode community between southern and northern typical black soil regions; B, Differences in the relative abundance of trophic groups of soil nematode characteristic genera community between southern and northern typical black soil regions. S13 represents 13 samples in the south, and N10 represents 10 samples in the north. Ba, Bacterivores; Fu, Fungivores; PP, Plant parasites; OP, Omnivores/predators.
线虫群落结构 Nematode community structure | 环境因子 Environmental factors | %IncMSE | 显著性 Significance | 特征属线虫群落结构 Characteristic genus community structure | 环境因子 Environmental factors | %IncMSE | 显著性 Significance |
---|---|---|---|---|---|---|---|
南部13个样点 13 samples in the south (S13) | pH | 11.73 | ** | S13 | CC | 15.36 | ** |
CC | 10.68 | ** | pH | 12.30 | ** | ||
DOC | 10.49 | ** | SOC | 11.11 | ** | ||
北部10个样点 10 samples in the north (N10) | SBD | 13.04 | ** | N10 | MMT | 14.20 | ** |
SOC | 12.65 | ** | SBD | 13.07 | ** | ||
pH | 9.42 | ** | MMR | 11.57 | ** |
表2 典型黑土区南部与北部线虫群落结构和特征属群落结构的环境因素影响重要性排序表
Table 2 The importance ranking of environmental factors affecting the nematode and characteristic genus community structure in southern and northern typical black soil regions
线虫群落结构 Nematode community structure | 环境因子 Environmental factors | %IncMSE | 显著性 Significance | 特征属线虫群落结构 Characteristic genus community structure | 环境因子 Environmental factors | %IncMSE | 显著性 Significance |
---|---|---|---|---|---|---|---|
南部13个样点 13 samples in the south (S13) | pH | 11.73 | ** | S13 | CC | 15.36 | ** |
CC | 10.68 | ** | pH | 12.30 | ** | ||
DOC | 10.49 | ** | SOC | 11.11 | ** | ||
北部10个样点 10 samples in the north (N10) | SBD | 13.04 | ** | N10 | MMT | 14.20 | ** |
SOC | 12.65 | ** | SBD | 13.07 | ** | ||
pH | 9.42 | ** | MMR | 11.57 | ** |
[1] | Bongers T (1988) De Nematoden Van Nederland. Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht. (in Dutch) |
[2] |
Bongers T (1990) The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14-19.
DOI PMID |
[3] |
Bongers T, Bongers M (1998) Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251.
DOI URL |
[4] |
Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14, 224-228.
DOI URL |
[5] |
Chan KY (1981) Representative sampling for bulk density in a vertisol. Soil Science Society of America Journal, 45, 668-669.
DOI URL |
[6] | da Rocha MR, de Carvalho Y, Cattini GP, Paolini G (2006) Efeito de doses crescentes de calcário sobre a população de Heterodera glycines em soja. Pesquisa Agropecuária Tropical, 36, 89-94. (in Portuguese) |
[7] |
De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos, 119, 1674-1684.
DOI URL |
[8] |
Du Preez G, Daneel M, De Goede R, Du Toit MJ, Ferris H, Fourie H, Geisen S, Kakouli-Duarte T, Korthals G, Sánchez-Moreno S, Schmidt JH (2022) Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biology and Biochemistry, 169, 108640.
DOI URL |
[9] | Ferris H, Bongers T (2009) Indices developed specifically for analysis of nematode assemblages. In: Nematodesas Environmental Indicators (WilsonMJ,eds Kakouli-Duarte T), pp. 124-145. CAB International, London. |
[10] |
Ferris H, Bongers T,de Goede RGM (2001) A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13-29.
DOI URL |
[11] | Fu SL, Zhang WX, Shao YH, Shi LL, Zhang X, Shi NN, Zhao CC, Zhang CL, Liu ZF, Mao P, Lin YB, Yu SQ, Cao JB, Sun F, Xu GL, Zhao J, Wu JP, Liu SJ, Wang XL, Sun YX, Fang YT, Wan SZ (2019) Soil Ecology:Soil Food Web and Its Ecological Functions. Science Press, Beijing. (in Chinese) |
[ 傅声雷, 张卫信, 邵元虎, 时雷雷, 张晓, 史楠楠, 赵灿灿, 张晨露, 刘占峰, 毛鹏, 林永标, 余世钦, 曹建波, 孙峰, 徐国良, 赵杰, 吴建平, 刘胜杰, 王晓丽, 孙毓鑫, 方运霆, 万松泽 (2019) 土壤生态学——土壤食物网及其生态功能. 科学出版社, 北京.] | |
[12] |
Grömping U (2009) Variable importance assessment in regression: Linear regression versus random forest. The American Statistician, 63, 308-319.
DOI URL |
[13] |
Guo XH, Endler A, Poll C, Marhan S, Ruess L (2021) Independent effects of warming and altered precipitation pattern on nematode community structure in an arable field. Agriculture, Ecosystems and Environment, 316, 107467.
DOI URL |
[14] |
Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser JC, Schlaeppi K (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6, 74.
DOI PMID |
[15] |
Hua E, Sun YT, Zhang ZN, He L, Cui CY, Mu FH (2019) Effects of reduced seawater pH on nematode community composition and diversity in sandy sediments. Marine Environmental Research, 150, 104773.
DOI URL |
[16] |
Hunt HW, Wall DH (2002) Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biology, 8, 33-50.
DOI URL |
[17] |
Karuri H (2022) Root and soil health management approaches for control of plant parasitic nematodes in sub-Saharan Africa. Crop Protection, 152, 105841.
DOI URL |
[18] |
Korthals GW, Bongers T, Kammenga JE, Alexiev AD, Lexmond TM (1996) Long-term effects of copper and pH on the nematode community in an agroecosystem. Environmental Toxicology and Chemistry, 15, 979-985.
DOI URL |
[19] |
Lee MR, Riveros M (2012) Latitudinal trends in the species richness of free-living marine nematode assemblages from exposed sandy beaches along the coast of Chile (18-42° S). Marine Ecology, 33, 317-325.
DOI URL |
[20] | Li Q (2017) Soil Nematodes of Grasslands in Northern China. Elsevier, Amsterdam. |
[21] |
Li XP, Zhu HM, Geisen S, Bellard C, Hu F, Li HX, Chen XY, Liu MQ (2020) Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 26, 919-930.
DOI PMID |
[22] |
Liang WJ, Lou YL, Li Q, Zhong S, Zhang XK, Wang JK (2009) Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41, 883-890.
DOI URL |
[23] |
Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, Liu XB, Wang GH (2014) High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of Northeast China. Soil Biology and Biochemistry, 70, 113-122.
DOI URL |
[24] |
Liu T, Hu F, Li HX (2019) Spatial ecology of soil nematodes: Perspectives from global to micro scales. Soil Biology and Biochemistry, 137, 107565.
DOI URL |
[25] | Liu YB, Zhang GL, Xie Y, Shen B, Gu ZJ, Ding YY (2021) Delineating the black soil region and typical black soil region of northeastern China. Chinese Science Bulletin, 66, 96-106. (in Chinese with English abstract) |
[ 刘宝元, 张甘霖, 谢云, 沈波, 顾治家, 丁迎盈 (2021) 东北黑土区和东北典型黑土区的范围与划界. 科学通报, 66, 96-106.] | |
[26] |
Mueller KE, Blumenthal DM, Carrillo Y, Cesarz S, Ciobanu M, Hines J, Pabst S, Pendall E, de Tomasel M, Wall DH, Eisenhauer N (2016) Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biology and Biochemistry, 103, 46-51.
DOI URL |
[27] |
Pan FJ, Xu YL, McLaughlin NB, Xue AG, Yu Q, Han XZ, Liu W, Zhan LL, Zhao D, Li CJ (2012) Response of soil nematode community structure and diversity to long-term land use in the black soil region in China. Ecological Research, 27, 701-714.
DOI URL |
[28] |
Quist CW, Gort G, Mooijman P, Brus DJ, van den Elsen S, Kostenko O, Vervoort M, Bakker J, van der Putten WH, Helder J (2019) Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biology and Biochemistry, 136, 107542.
DOI URL |
[29] |
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
DOI PMID |
[30] |
Sánchez-Moreno S, Ferris H, Young-Mathews A, Culman SW, Jackson LE (2011) Abundance, diversity and connectance of soil food web channels along environmental gradients in an agricultural landscape. Soil Biology and Biochemistry, 43, 2374-2383.
DOI URL |
[31] |
Shao YH, Fu SL (2007) The diversity and functions of soil nematodes. Biodiversity Science, 15, 116-123. (in Chinese with English abstract)
DOI |
[ 邵元虎, 傅声雷 (2007) 试论土壤线虫多样性在生态系统中的作用. 生物多样性, 15, 116-123.]
DOI |
|
[32] |
Sechi V, de Goede RGM, Rutgers M, Brussaard L, Mulder C (2018) Functional diversity in nematode communities across terrestrial ecosystems. Basic and Applied Ecology, 30, 76-86.
DOI URL |
[33] |
Serna-Chavez HM, Fierer N,van Bodegom PM (2013) Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography, 22, 1162-1172.
DOI URL |
[34] |
Sohlenius B (1980) Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos, 34, 186-194.
DOI URL |
[35] |
Song DG, Pan KW, Tariq A, Sun F, Li ZL, Sun XM, Zhang L, Olusanya OA, Wu XG (2017) Large-scale patterns of distribution and diversity of terrestrial nematodes. Applied Soil Ecology, 114, 161-169.
DOI URL |
[36] | Song XW, Zhang BC, Bai Y, Pan DF, Deng XD, Wang HS, Sun B, Cao XF (2021) Application and review of biotechnology in promoting protective utilization of black soil. Bulletin of Chinese Academy of Sciences, 36, 1488-1496. (in Chinese with English abstract) |
[ 宋显伟, 张保才, 白洋, 潘多峰, 邓向东, 王竑晟, 孙波, 曹晓风 (2021) 生物技术助力黑土地保护性利用的应用与思考. 中国科学院院刊, 36, 1488-1496.] | |
[37] |
Su LX, Bai TY, Qin XW, Yu H, Wu G, Zhao QY, Tan LH (2021) Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting. Applied Soil Ecology, 166, 103994.
DOI URL |
[38] |
van den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD, Bonkowski M, Campos-Herrera R, Cares JE, Caruso T, de Brito Caixeta L, Chen XY, Costa SR, Creamer R,Mauro da Cunha Castro J, Dam M, Djigal D, Escuer M, Griffiths BS, Gutiérrez C, Hohberg K, Kalinkina D, Kardol P, Kergunteuil A, Korthals G, Krashevska V, Kudrin AA, Li Q, Liang WJ, Magilton M, Marais M, Martín JAR, Matveeva E, Mayad EH, Mulder C, Mullin P, Neilson R, Nguyen TAD, Nielsen UN, Okada H, Rius JEP, Pan KW, Peneva V, Pellissier L, Carlos Pereira da Silva J, Pitteloud C, Powers TO, Powers K, Quist CW, Rasmann S, Moreno SS, Scheu S, Setälä H, Sushchuk A, Tiunov AV, Trap J, van der Putten WH, Vestergård M, Villenave C, Waeyenberge L, Wall DH, Wilschut R, Wright DG, Yang JI, Crowther TW (2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194-198.
DOI URL |
[39] |
Wilschut RA, Geisen S (2021) Nematodes as drivers of plant performance in natural systems. Trends in Plant Science, 26, 237-247.
DOI PMID |
[40] | Wilschut RA, Geisen S, Martens H, Kostenko O,de Hollander M, ten Hooven FC, Weser C, Snoek LB, Bloem J, Caković D, Čelik T, Koorem K, Krigas N, Manrubia M, Ramirez K S, Tsiafouli MA, Vreš B, van der Putten WH (2019) Latitudinal variation in soil nematode communities under climate warming-related range-expanding and native plants. Global Change Biology, 5, 2714-2726. |
[41] |
Wu JH, Chen HL, Zhang YZ (2016) Latitudinal variation in nematode diversity and ecological roles along the Chinese coast. Ecology and Evolution, 6, 8018-8027.
DOI PMID |
[42] |
Xiao HF, Wang WT, Xia SW, Li ZP, Gan JM, Yang XD (2021) Distributional patterns of soil nematodes in relation to environmental variables in forest ecosystems. Soil Ecology Letters, 3, 115-124.
DOI |
[43] |
Xiong D, Wei CZ, Wubs ERJ, Veen GJ, Liang WJ, Wang XB, Li Q, van der Putten WH, Han XG (2020) Nonlinear responses of soil nematode community composition to increasing aridity. Global Ecology and Biogeography, 29, 117-126.
DOI |
[44] | Yang L, Zhang F, Luo Y, Tang PF (2022) Continuous cotton cropping affects soil micro-food web. Applied Soil Ecology, 171, 104304. |
[45] |
Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—An outline for soil ecologists. Journal of Nematology, 25, 315-331.
PMID |
[46] |
Zhang GG, Sui X, Li Y, Jia MQ, Wang ZW, Han GD, Wang LC (2020) The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China. Journal of Soils and Sediments, 20, 2166-2180.
DOI URL |
[47] |
Zhang SX, Mclaughlin NB, Cui S, Yang XM, Liu P, Wu DH, Liang AZ (2019) Effects of long-term tillage on carbon partitioning of nematode metabolism in a black soil of Northeast China. Applied Soil Ecology, 138, 207-212.
DOI URL |
[48] |
Zhang XY, Sui YY, Zhang XD, Meng K, Herbert SJ (2007) Spatial variability of nutrient properties in black soil of Northeast China. Pedosphere, 17, 19-29.
DOI URL |
[1] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[2] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[3] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[4] | 张鹤露, 赵美红, 孙世春, 刘晓收. 西藏那曲市高原盐湖自由生活线虫群落多样性与结构特征[J]. 生物多样性, 2023, 31(5): 22533-. |
[5] | 吴浩, 余玉蓉, 王佳钰, 赵媛博, 高娅菲, 李小玲, 卜贵军, 薛丹, 吴林. 低水位增加灌木多样性和生物量但降低土壤有机碳含量: 以鄂西南贫营养泥炭地为例[J]. 生物多样性, 2023, 31(3): 22600-. |
[6] | 刘金花, 李风, 田桃, 肖海峰. 土壤细菌和线虫对热带雨林优势植物凋落物特性和多样性的响应[J]. 生物多样性, 2023, 31(11): 23276-. |
[7] | 胡惠玲, 姚致远, 高世斌, 朱波. 紫色土线虫对长期不同施肥措施的响应[J]. 生物多样性, 2022, 30(12): 22189-. |
[8] | 刘笑彤, 田艺佳, 刘汉文, 梁翠影, 姜思维, 梁文举, 张晓珂. 下辽河平原农田土壤线虫群落组成的季节变化[J]. 生物多样性, 2022, 30(12): 22222-. |
[9] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[10] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
[11] | 吴文佳, 袁也, 张静, 周丽霞, 王俊, 任海, 刘占锋. 南亚热带森林演替过程中土壤线虫群落结构变化[J]. 生物多样性, 2022, 30(12): 22205-. |
[12] | 邱金水, 王亚楠, 庄会富. 中国生物多样性在线数据处理平台的构建[J]. 生物多样性, 2022, 30(11): 22356-. |
[13] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[14] | 宋成军, 孙锋. 干旱对不同花椒种植模式下土壤微生物和线虫群落的影响[J]. 生物多样性, 2021, 29(10): 1348-1357. |
[15] | 王宇彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响[J]. 生物多样性, 2020, 28(6): 707-717. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn