生物多样性 ›› 2016, Vol. 24 ›› Issue (10): 1117-1128. DOI: 10.17520/biods.2016164
崔相艳1,2, 王文娟1,2, 杨小强1,2, 李述2, 秦声远1,2, 戎俊1,2,*()
收稿日期:
2016-06-21
接受日期:
2016-08-25
出版日期:
2016-10-20
发布日期:
2016-11-10
通讯作者:
戎俊
基金资助:
Xiangyan Cui1,2, Wenjuan Wang1,2, Xiaoqiang Yang1,2, Shu Li2, Shengyuan Qin1,2, Jun Rong1,2,*()
Received:
2016-06-21
Accepted:
2016-08-25
Online:
2016-10-20
Published:
2016-11-10
Contact:
Rong Jun
摘要:
油茶(Camellia oleifera)是我国第一大木本油料作物, 野生油茶是油茶育种的宝贵遗传资源。本研究从中国数字植物标本馆(CVH, http://www.cvh.org.cn/)获得可靠的野生油茶分布点数据, 结合气象和土壤数据, 分别应用最大熵(MaxEnt)模型和规则集遗传算法(GARP)模型构建了野生油茶的生态位模型, 预测了野生油茶的潜在分布区, 并分析了影响野生油茶分布的主要环境变量。根据生态位模型预测的分布概率值, 对野生油茶的潜在分布区划分适生等级, 并与主要油茶产地的实际分布数据进行比较, 以验证适生等级划分的可靠性。结果表明, 两种模型的预测结果均能较好地反映油茶的分布情况。GARP模型预测的潜在分布区更广, 而MaxEnt模型的预测结果更精确。两种模型的预测结果均显示, 野生油茶的潜在分布区大部分位于中国, 但在中南半岛也有部分分布。MaxEnt模型预测的野生油茶在中国的潜在分布区与我国亚热带常绿阔叶林的分布区基本吻合, 高适生区主要可以分为3大区域: (1)东北-西南走向的武夷山脉及附近的群山区域; (2)东西走向的南岭山脉及附近的群山区域; (3)东北-西南走向的武陵山脉及附近的群山区域。MaxEnt模型分析显示, 影响野生油茶分布的主要环境变量是昼夜温差月均值、最干季降水量与最暖季降水量。油茶生长面积较大的地区绝大部分都位于MaxEnt模型预测的中、高适生区, 说明适生等级的划分较可靠。实地考察显示, 生态位模型的预测结果对于寻找野生油茶资源具有较高的参考价值。此外, 本研究也充分显示, 利用中国数字植物标本馆的植物分布数据, 结合相应的环境数据构建生态位模型, 有助于了解作物野生近缘种的地理分布。
崔相艳, 王文娟, 杨小强, 李述, 秦声远, 戎俊 (2016) 基于生态位模型预测野生油茶的潜在分布. 生物多样性, 24, 1117-1128. DOI: 10.17520/biods.2016164.
Xiangyan Cui, Wenjuan Wang, Xiaoqiang Yang, Shu Li, Shengyuan Qin, Jun Rong (2016) Potential distribution of wild Camellia oleifera based on ecological niche modeling. Biodiversity Science, 24, 1117-1128. DOI: 10.17520/biods.2016164.
环境变量 Environmental variable | 描述 Description |
---|---|
Bio1 | 年平均温度 Annual mean temperature |
Bio2 | 昼夜温差月均值 Mean diurnal range (Mean of monthly (max.temp.–min.temp.)) |
Bio3 | 昼夜温差与年温差比值 Isothermality (Bio2 / Bio7) (× 100) |
Bio4 | 温度季节变化 Temperature seasonality (Standard deviation × 100) |
Bio5 | 最热月份最高温 Max temperature of warmest month |
Bio6 | 最冷月份最低温 Min temperature of coldest month |
Bio7 | 年温度变化范围 Temperature annual range (Bio5 - Bio6) |
Bio8 | 最湿季平均温度 Mean temperature of wettest quarter |
Bi 9 | 最干季平均温度 Mean temperature of driest quarter |
Bio10 | 最暖季平均温度 Mean temperature of warmest quarter |
Bio11 | 最冷季平均温度 Mean temperature of coldest quarter |
Bio12 | 年均降水量 Annual precipitation |
Bio13 | 最湿月降水量 Precipitation of wettest month |
Bio14 | 最干月降水量 Precipitation of driest month |
Bio15 | 降水量季节性变异系数 Coefficient of variation of precipitation seasonality |
Bio16 | 最湿季降水量 Precipitation of wettest quarter |
Bio17 | 最干季降水量 Precipitation of driest quarter |
Bio18 | 最暖季降水量 Precipitation of warmest quarter |
Bio19 | 最冷季降水量 Precipitation of coldest quarter |
Alt | 海拔 Altitude |
OC | 土壤有机碳 Soil organic carbon |
TN | 土壤总氮 Soil total N |
pH | 土壤pH值(以水作为浸出液体) Soil pH value (with water as the leaching liquid) |
EXK | 土壤可交换钾 Soil exchangeable potassium |
SAND | 土壤含沙量 Soil sand content |
GRAV | 土壤碎石含量 Soil gravel content |
BD | 土壤容重 Soil bulk density |
VMC1 | 土壤含水量 Soil volumetric water content at -10 kPa |
表1 图层数据的环境变量
Table 1 Environmental variables in layers
环境变量 Environmental variable | 描述 Description |
---|---|
Bio1 | 年平均温度 Annual mean temperature |
Bio2 | 昼夜温差月均值 Mean diurnal range (Mean of monthly (max.temp.–min.temp.)) |
Bio3 | 昼夜温差与年温差比值 Isothermality (Bio2 / Bio7) (× 100) |
Bio4 | 温度季节变化 Temperature seasonality (Standard deviation × 100) |
Bio5 | 最热月份最高温 Max temperature of warmest month |
Bio6 | 最冷月份最低温 Min temperature of coldest month |
Bio7 | 年温度变化范围 Temperature annual range (Bio5 - Bio6) |
Bio8 | 最湿季平均温度 Mean temperature of wettest quarter |
Bi 9 | 最干季平均温度 Mean temperature of driest quarter |
Bio10 | 最暖季平均温度 Mean temperature of warmest quarter |
Bio11 | 最冷季平均温度 Mean temperature of coldest quarter |
Bio12 | 年均降水量 Annual precipitation |
Bio13 | 最湿月降水量 Precipitation of wettest month |
Bio14 | 最干月降水量 Precipitation of driest month |
Bio15 | 降水量季节性变异系数 Coefficient of variation of precipitation seasonality |
Bio16 | 最湿季降水量 Precipitation of wettest quarter |
Bio17 | 最干季降水量 Precipitation of driest quarter |
Bio18 | 最暖季降水量 Precipitation of warmest quarter |
Bio19 | 最冷季降水量 Precipitation of coldest quarter |
Alt | 海拔 Altitude |
OC | 土壤有机碳 Soil organic carbon |
TN | 土壤总氮 Soil total N |
pH | 土壤pH值(以水作为浸出液体) Soil pH value (with water as the leaching liquid) |
EXK | 土壤可交换钾 Soil exchangeable potassium |
SAND | 土壤含沙量 Soil sand content |
GRAV | 土壤碎石含量 Soil gravel content |
BD | 土壤容重 Soil bulk density |
VMC1 | 土壤含水量 Soil volumetric water content at -10 kPa |
编号 Code | 地点 Location | 纬度 Latitude (°N) | 经度 Longitude (°E) | 海拔 Altitude (m) | 预测分布概率 Predicted probability of presence (MaxEnt/GARP) | 频率 Frequency | 生境 Habitat | 人为干扰 Human disturbances | 备注 Remarks |
---|---|---|---|---|---|---|---|---|---|
1 | 海南澄迈 Chengmai, Hainan | 19.58 | 110.02 | 98 | 0.20/0.99 | 中 Medium | 路边、疏林 Roadside, open forest | 强 Strong | 可能为栽培 Possibly cultivated |
2 | 广东罗浮山 Luofu Mountain, Guangdong | 23.28 | 114.02 | 1,125-1,212 | 0.25/0.65 | 中 Medium | 路边、疏林 Roadside, open forest | 中度 Medium | 野生 Wild |
3 | 广东南岭 Nanling Mountain, Guangdong | 24.90 | 113.06 | 547-861 | 0.60/1.00 | 高 High | 路边、疏林 Roadside, open forest | 弱 Weak | 野生 Wild |
4 | 江西井冈山 Jinggang Mountain, Jiangxi | 26.55 | 114.17 | 412-978 | 0.61/1.00 | 高 High | 路边、疏林 Roadside, open forest | 中度 Medium | 低海拔可能为栽培区 Possibly cultivated at low altitudes |
5 | 江西马头山 Matou Mountain, Jiangxi | 27.73 | 117.16 | 506-515 | 0.62/1.00 | 中 Medium | 路边、疏林 Roadside, open forest | 弱 Weak | 野生 Wild |
6 | 江西庐山 Lushan Mountain, Jiangxi | 29.60 | 115.98 | 256-874 | 0.56/1.00 | 高 High | 路边、疏林 Roadside, open forest | 中度 Medium | 野生 Wild |
7 | 浙江天目山 Tianmu Mountain, Zhejiang | 30.32 | 119.44 | 411-463 | 0.41/1.00 | 极低 Extremely low | 路边、疏林 Roadside, open forest | 强 Strong | 野生 Wild |
8 | 河南白云山 Baiyun Mountain, Henan | 31.66 | 115.07 | 137 | 0.48/1.00 | 极高 Extremely high | 路边、疏林 Roadside, open forest | 极强 Very strong | 栽培 Cultivated |
9 | 贵州梵净山 Fanjing Mountain, Guizhou | 27.91 | 108.63 | 983-1,332 | 0.61/1.00 | 高 High | 路边、疏林 Roadside, open forest | 中度 Medium | 野生 Wild |
表2 野生油茶实地考察点概况
Table 2 Summary of the field investigation sites of wild Camellia oleifera
编号 Code | 地点 Location | 纬度 Latitude (°N) | 经度 Longitude (°E) | 海拔 Altitude (m) | 预测分布概率 Predicted probability of presence (MaxEnt/GARP) | 频率 Frequency | 生境 Habitat | 人为干扰 Human disturbances | 备注 Remarks |
---|---|---|---|---|---|---|---|---|---|
1 | 海南澄迈 Chengmai, Hainan | 19.58 | 110.02 | 98 | 0.20/0.99 | 中 Medium | 路边、疏林 Roadside, open forest | 强 Strong | 可能为栽培 Possibly cultivated |
2 | 广东罗浮山 Luofu Mountain, Guangdong | 23.28 | 114.02 | 1,125-1,212 | 0.25/0.65 | 中 Medium | 路边、疏林 Roadside, open forest | 中度 Medium | 野生 Wild |
3 | 广东南岭 Nanling Mountain, Guangdong | 24.90 | 113.06 | 547-861 | 0.60/1.00 | 高 High | 路边、疏林 Roadside, open forest | 弱 Weak | 野生 Wild |
4 | 江西井冈山 Jinggang Mountain, Jiangxi | 26.55 | 114.17 | 412-978 | 0.61/1.00 | 高 High | 路边、疏林 Roadside, open forest | 中度 Medium | 低海拔可能为栽培区 Possibly cultivated at low altitudes |
5 | 江西马头山 Matou Mountain, Jiangxi | 27.73 | 117.16 | 506-515 | 0.62/1.00 | 中 Medium | 路边、疏林 Roadside, open forest | 弱 Weak | 野生 Wild |
6 | 江西庐山 Lushan Mountain, Jiangxi | 29.60 | 115.98 | 256-874 | 0.56/1.00 | 高 High | 路边、疏林 Roadside, open forest | 中度 Medium | 野生 Wild |
7 | 浙江天目山 Tianmu Mountain, Zhejiang | 30.32 | 119.44 | 411-463 | 0.41/1.00 | 极低 Extremely low | 路边、疏林 Roadside, open forest | 强 Strong | 野生 Wild |
8 | 河南白云山 Baiyun Mountain, Henan | 31.66 | 115.07 | 137 | 0.48/1.00 | 极高 Extremely high | 路边、疏林 Roadside, open forest | 极强 Very strong | 栽培 Cultivated |
9 | 贵州梵净山 Fanjing Mountain, Guizhou | 27.91 | 108.63 | 983-1,332 | 0.61/1.00 | 高 High | 路边、疏林 Roadside, open forest | 中度 Medium | 野生 Wild |
1 | Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1, 73-81. |
2 | Che L, Cao B, Bai CK, Wang JJ, Zhang LL (2014) Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on MaxEnt and ArcGIS. Journal of Ecology, 33, 1623-1628. (in Chinese with English abstract) |
[车乐, 曹博, 白成科, 王娟娟, 张琳琳 (2014) 基于MaxEnt和ArcGIS对太白米的潜在分布预测及适宜性评价. 生态学杂志, 33, 1623-1628.] | |
3 | Chen LL, Yu Y, He XJ (2008) Historical invasion and expansion process of Alternanthera philoxeroides and its potential spread in China. Biodiversity Science, 16, 578-585. (in Chinese with English abstract) |
[陈立立, 余岩, 何兴金 (2008) 喜旱莲子草在中国的入侵和扩散动态及其潜在分布区预测. 生物多样性, 16, 578-585.] | |
4 | Chen WJ (2006) Floristic Phytogeography of Evergreen Broad-leaved Forest (EBLF) in Mid-subtropical China. PhD dissertation, East China Normal University, Shanghai. (in Chinese with English abstract) |
[陈卫娟 (2006) 中亚热带常绿阔叶林植物区系地理研究. 博士学位论文, 华东师范大学, 上海.] | |
5 | Chen XM, Lei YC, Zhang XQ, Jia HY (2012) Effects of sample size on accuracy and stability of maximum entropy model in predicting species distribution. Scientia Silvae Sinicae, 48(1), 53-59. (in Chinese with English abstract) |
[陈新美, 雷渊才, 张雄清, 贾宏炎 (2012) 样本量对MaxEnt模型预测物种分布精度和稳定性的影响. 林业科学, 48(1), 53-59.] | |
6 | Chen YZ (2008) Oil Tea Camellia Superior Germplasm Resources. China Forestry Publishing House, Beijing. (in Chinese) |
[陈永忠 (2008) 油茶优良种质资源. 中国林业出版社, 北京.] | |
7 | Chen YZ, Luo J, Wang R, Chen LS, Wang XN (2013) Current status and prospects for the development of oil tea industry in China. Grain Science and Technology and Economy, (1), 10-12. (in Chinese) |
[陈永忠, 罗健, 王瑞, 陈隆升, 王湘南 (2013) 中国油茶产业发展的现状与前景. 粮食科技与经济, (1), 10-12.] | |
8 | Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156, 1-13. |
9 | Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. |
10 | Hu BL, Wan Y, Wu L, Li X, Zhang JW, Luo XD, Xie JK (2011) Research advances in genetic diversity and its ecological conservation of endangered Dongxiang wild rice (Oryza rufipogon Griff.). Chinese Agricultural Science Bulletin, 27, 5-11. (in Chinese with English abstract) |
[胡标林, 万勇, 邬磊, 李霞, 张金伟, 罗向东, 谢建坤 (2011) 濒危东乡野生稻遗传多样性及其生态保护学研究进展. 中国农学通报, 27, 5-11.] | |
11 | Hu X, Wu FC, Guo W, Liu N (2014) Identification of potential cultivation region for Santalum album in China by the MaxEnt ecologic niche model. Scientia Silvae Sinicae, 50(5), 27-33. (in Chinese with English abstract) |
[胡秀, 吴福川, 郭微, 刘念 (2014) 基于MaxEnt生态学模型的檀香在中国的潜在种植区预测. 林业科学, 50(5), 27-33.] | |
12 | Jing PF, Wu KY, Gong Y, Han LM, Cui LJ (2015) Prediction of potential geological distribution of Asarum in China by MaxEnt model. Plant Diversity and Resource, 37, 349-356. (in Chinese with English abstract) |
[景鹏飞, 武坤毅, 龚晔, 韩立敏, 崔浪军 (2015) 药用植物细辛在中国的潜在适生区分布. 植物分类与资源学报, 37, 349-356.] | |
13 | Lei JC, Xu HG (2010) MaxEnt-based prediction of potential distribution of Solidago canadensis in China. Journal of Ecology and Rural Environment, 26, 137-141. (in Chinese with English abstract) |
[雷军成, 徐海根 (2010) 基于MaxEnt的加拿大一枝黄花在中国的潜在分布区预测. 生态与农村环境学报, 26, 137-141.] | |
14 | Min TL (2000) Monograph of the Genus Camellia. Yunnan Science and Technology Press, Kunming. (in Chinese) |
[闵天禄 (2000) 世界山茶属的研究. 云南科技出版社, 昆明.] | |
15 | Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117. |
16 | Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63-72. |
17 | Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. |
18 | Raxworthy CJ, Martinez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta MA, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426, 837-841. |
19 | Roura-Pascual N, Suarez A V, Gómez C, Pons P, Touyama Y, Wild AL, Peterson AT (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society of London B: Biological Sciences, 271, 2527-2535. |
20 | Sobek-Swant S, Kluza D A, Cuddington K, Lyons DB (2012) Potential distribution of emerald ash borer: what can we learn from ecological niche models using MaxEnt and GARP? Forest Ecology and Management, 281, 23-31. |
21 | USDA-FAS (2015) Oilseeds: world markets and trade, 07. 10.. (accessed on 2016-06- 15 |
22 | Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP (2007) Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE, 2, e563. |
23 | Wang LH, Yang JX, Huang CL (2013) Modelling geographic distribution of Malus hupehensis with MaxEnt. Journal of Anhui Agricultural University, 40, 383-386. (in Chinese with English abstract) |
[王雷宏, 杨俊仙, 黄成林 (2013) 用MaxEnt模拟湖北海棠(Malus hupehensis)地理分布. 安徽农业大学学报, 40, 383-386.] | |
24 | Wang LH, Yang JX, Xu XN (2015) Analysis of suitable bioclimatic characteristics of Pseudolarix amabilis by using MaxEnt model. Scientia Silvae Sinicae, 51, 127-131. (in Chinese with English abstract) |
[王雷宏, 杨俊仙, 徐小牛 (2015) 基于MaxEnt分析金钱松适生的生物气候特征. 林业科学, 51(1), 127-131.] | |
25 | Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007) Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365-372. (in Chinese with English abstract) |
[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007) ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.] | |
26 | Warren DL, Wright AN, Seifert SN, Shaffer HB (2014) Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions, 20, 334-343. |
27 | Wei SG, Dai YJ, Duan QY, Liu BY, Yuan H (2014) A global soil data set for earth system modeling. Journal of Advances in Modeling Earth Systems, 6, 249-263. |
28 | Yin XJ, Zhou GS, Sui XH, He QJ, Li RP (2013) Potential geographical distribution of Quercus wutaishanica forest and its dominant factors. Scientia Silvae Sinicae, 49(8), 10-14. (in Chinese with English abstract) |
[殷晓洁, 周广胜, 隋兴华, 何奇瑾, 李荣平 (2013) 辽东栎林潜在地理分布及其主导因子. 林业科学, 49(8), 10-14.] | |
29 | Yu YB, Wang QL, Kell S, Maxted N, Ford-Lloyd BV, Wei W, Kang DM, Ma KP (2013) Crop wild relatives and their conservation strategies in China. Biodiversity Science, 21, 750-757. (in Chinese with English abstract) |
[于燕波, 王群亮, Kell S, Maxted N, Ford-Lloyd BV, 魏伟, 康定明, 马克平 (2013) 中国栽培植物野生近缘种及其保护对策. 生物多样性, 21, 750-757.] | |
30 | Zhang HJ, Chen Y, Huang LJ, Ni HW (2011) Predicting potential geographic distribution of Mikania micrantha planting based on ecological niche models in China. Transactions of the Chinese Society of Agricultural Engineering, 27, 413-418. (in Chinese with English abstract) |
[张海娟, 陈勇, 黄烈健, 倪汉文 (2011) 基于生态位模型的薇甘菊在中国适生区的预测. 农业工程学报, 27, 413-418.] | |
31 | Zhu GP, Liu GQ, Bu WJ, Gao YB (2013) Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 21, 90-98. (in Chinese with English abstract) |
[朱耿平, 刘国卿, 卜文俊, 高玉葆 (2013) 生态位模型的基本原理及其在生物多样性保护中的应用. 生物多样性, 21, 90-98.] | |
32 | Zhu GP, Liu Q, Gao YB (2014) Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodiversity Science, 22, 223-230. (in Chinese with English abstract) |
[朱耿平, 刘强, 高玉葆 (2014) 提高生态位模型转移能力来模拟入侵物种的潜在分布. 生物多样性, 22, 223-230.] | |
33 | Zhuang RL (2012) Oil-tea Camellia in China, 2nd edn. China Forestry Publishing House, Beijing. (in Chinese) |
[庄瑞林 (2012) 中国油茶, 第2版. 中国林业出版社, 北京.] |
[1] | 董廷玮, 黄美玲, 韦旭, 马硕, 岳衢, 刘文丽, 郑佳鑫, 王刚, 马蕊, 丁由中, 薄顺奇, 王正寰. 上海地区金线侧褶蛙种群的潜在空间分布格局及其景观连通性[J]. 生物多样性, 2023, 31(8): 22692-. |
[2] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[3] | 刘伟, 王濡格, 范天巧, 娜依曼·阿不都力江, 宋新航, 肖书平, 郭宁, 帅凌鹰. 福建省明溪县黑冠鹃隼生境适宜性[J]. 生物多样性, 2023, 31(7): 22660-. |
[4] | 王江, 赵一凡, 屈彦福, 张财文, 张亮, 陈传武, 王彦平. 中国蛇类形态、生活史和生态学特征数据集[J]. 生物多样性, 2023, 31(7): 23126-. |
[5] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[6] | 鲍虞园, 李银康, 林吴颖, 周志琴, 肖晓波, 颉晓勇. 中国南海北部近海鲎资源调查及北部湾潮间带中华鲎幼鲎潜在栖息地评估[J]. 生物多样性, 2023, 31(5): 22407-. |
[7] | 邓昶, 郝杰威, 高德, 任明迅, 张莉娜. 海南受威胁苔藓植物适生热点区域识别与保护[J]. 生物多样性, 2023, 31(4): 22580-. |
[8] | 杜芳, 荣晓莹, 徐鹏, 尹本丰, 张元明. 降水对古尔班通古特沙漠细菌群落多样性和构建过程的影响[J]. 生物多样性, 2023, 31(2): 22492-. |
[9] | 康敏. 论华莱士的人类学思想及其当代价值[J]. 生物多样性, 2023, 31(12): 23304-. |
[10] | 孟宏虎, 宋以刚. 东南亚生物地理格局: 回溯与思考[J]. 生物多样性, 2023, 31(12): 23261-. |
[11] | 梁伟诺, 胡亮. 中国新石器时代以来淡水及河口鱼类考古遗存的地理分布及其生物地理学意义[J]. 生物多样性, 2022, 30(8): 21471-. |
[12] | 袁桃花, 李美君, 任柳伊, 黄榕鑫, 陈益, 白新祥. 中国野生凤仙花属物种多样性和地理分布数据集[J]. 生物多样性, 2022, 30(5): 22019-. |
[13] | 钟雨茜, 陈传武, 王彦平. 中国蜥蜴类生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(4): 22071-. |
[14] | 宋云枫, 陈传武, 王彦平. 中国两栖类生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(3): 22053-. |
[15] | 丁晨晨, 梁冬妮, 信文培, 李春旺, 蒋志刚. 中国哺乳动物形态、生活史和生态学特征数据集[J]. 生物多样性, 2022, 30(2): 21520-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn