生物多样性 ›› 2016, Vol. 24 ›› Issue (1): 40-47. DOI: 10.17520/biods.2015248
袁春明1,2, 耿云芬1,2, 柴勇1, 郝佳波1,2, 吴涛1,2,*()
收稿日期:
2015-09-15
接受日期:
2015-12-08
出版日期:
2016-01-20
发布日期:
2016-06-12
通讯作者:
吴涛
基金资助:
Chunming Yuan1,2, Yunfen Geng1,2, Yong Chai1, Jiabo Hao1,2, Tao Wu1,2,*()
Received:
2015-09-15
Accepted:
2015-12-08
Online:
2016-01-20
Published:
2016-06-12
Contact:
Wu Tao
摘要:
全球范围内森林片断化现象日益严重。与其他木本植物(乔木和灌木)相比, 木质藤本更趋向于分布在片断化森林的边缘, 因而了解木质藤本对边缘效应的响应对于进一步了解其对森林动态的影响极其必要。本文对哀牢山中山湿性常绿阔叶林林缘到林内环境梯度上木质藤本的变化进行了调查。在形成年龄分别为13年、35年和53年的3种类型的林缘, 设置从林缘向林内连续延伸的长方形样地(20 m × 50 m)各10个(总面积3 ha), 每个样地再划分为5个20 m × 10 m的样方。在每个样方内对胸径≥ 0.2 cm且长度≥ 2.0 m的木质藤本进行了每木调查。在3 ha的林缘样地中共记录到木质藤本植物2,426株, 隶属于14科19属31种。木质藤本的物种丰富度和多度均随距林缘距离的增加而降低, 边缘效应深度在35年林缘的边缘为30 m, 13和53年林缘的边缘则为20 m; 它们的胸高断面积在53年林缘的边缘效应深度为20 m, 但在13和35年林缘的不同距离上差异不显著。木质藤本对边缘效应的响应在物种水平上存在显著差异, 主要呈现正向和中性的响应格局, 包括只分布于林缘的物种, 和从林缘到林内环境梯度上密度逐渐降低的物种; 也有对边缘效应不敏感的物种。典范对应分析(CCA)表明, 林冠开度、边缘形成年龄和土壤水分是决定木质藤本在片断化森林边缘分布的重要影响因子。
袁春明, 耿云芬, 柴勇, 郝佳波, 吴涛 (2016) 哀牢山中山湿性常绿阔叶林木质藤本对边缘效应的响应. 生物多样性, 24, 40-47. DOI: 10.17520/biods.2015248.
Chunming Yuan, Yunfen Geng, Yong Chai, Jiabo Hao, Tao Wu (2016) Response of lianas to edge effects in mid-montane moist evergreen broad- leaved forests in the Ailao Mountains, SW China. Biodiversity Science, 24, 40-47. DOI: 10.17520/biods.2015248.
图1 哀牢山中山湿性常绿阔叶林从林缘到林内环境梯度上木质藤本的变化: (a)物种丰富度、(b)多度和(c)胸高断面积(平均值±标准差)
Fig. 1 Variation of lianas’ species richness (a), abundance (b) and breast height area (c) along the edge-to-interior gradient in the mid-montane moist evergreen broad-leaved forests in the Ailao Mountains (means ± SD)
![]() |
表1 哀牢中山湿性常绿阔叶林丛林缘到林内环境梯度上木质藤本密度的变化(平均值±标准差)
Table 1 Density of lianas along the edge-to-interior gradient in the mid-montane moist evergreen board-leaved forests in Ailao Mountains (mean±SD)
![]() |
项目 Items | 排序轴1 Axis 1 | 排序轴2 Axis 2 | 排序轴3 Axis 3 |
---|---|---|---|
特征值 Eigenvalues | 0.350 | 0.176 | 0.131 |
变化的累积百分比 Cumulative percentage variance | |||
物种数据 Species data | 6.3 | 9.4 | 11.7 |
物种-环境关系 Species-environment relation | 45.8 | 68.7 | 85.9 |
环境变量 Environmental variables | |||
坡向 Aspect | 0.2348 | -0.0557 | 0.8233 |
海拔 Altitude | 0.2724 | -0.2123 | -0.5633 |
林冠开度 Crown illumination | 0.9655 | 0.1555 | -0.0541 |
土壤水分 Soil moisture | -0.3979 | 0.5921 | -0.4261 |
边缘年龄 Edge age | -0.0992 | -0.6194 | -0.0546 |
表2 特征值及环境变量与典范对应分析(CCA)前3个排序轴的相关系数
Table 2 Eigenvalues and correlation coefficients between the first three axes and environmental variables in the canonical correspondence analysis (CCA)
项目 Items | 排序轴1 Axis 1 | 排序轴2 Axis 2 | 排序轴3 Axis 3 |
---|---|---|---|
特征值 Eigenvalues | 0.350 | 0.176 | 0.131 |
变化的累积百分比 Cumulative percentage variance | |||
物种数据 Species data | 6.3 | 9.4 | 11.7 |
物种-环境关系 Species-environment relation | 45.8 | 68.7 | 85.9 |
环境变量 Environmental variables | |||
坡向 Aspect | 0.2348 | -0.0557 | 0.8233 |
海拔 Altitude | 0.2724 | -0.2123 | -0.5633 |
林冠开度 Crown illumination | 0.9655 | 0.1555 | -0.0541 |
土壤水分 Soil moisture | -0.3979 | 0.5921 | -0.4261 |
边缘年龄 Edge age | -0.0992 | -0.6194 | -0.0546 |
图2 基于30个样地木质藤本植物多度的典范对应分析排序图。CII, 林冠开度; SM, 土壤水分; SAI, 坡向; AGE, 边缘年龄; AL, 海拔高度。物种代码见表1。
Fig. 2 Ordination diagrams from the canonical correspondence analysis of liana species abundance data on 30 plots. CII: crown illumination index; SM: soil moisture; SAI: slope aspect index; AGE: edge age; AL: altitude. Species codes are as defined in Table 1.
1 | Carter GA, Teramura AH (1988) Vines photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany, 75, 1011-1018. |
2 | Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 63, 219-237. |
3 | Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications, 5, 74-86. |
4 | DeWalt SJ, Schnitzer SA, Julie S, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology, 16, 1-19. |
5 | Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica, 31, 17-30. |
6 | Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biological Conservation, 81, 117-142. |
7 | Gehlhausen SM, Schwartz MW, Augspurger CK (2000) Vegetation and microclimatic edge effects in two mixed- mesophytic forest fragments. Plant Ecology, 147, 21-35. |
8 | Gerwing JJ (2004) Life history diversity among six species of canopy lianas in an old-growth forest of the eastern Brazilian Amazon. Forest Ecology and Management, 190, 57-72. |
9 | Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt S, Ewango CEN, Foster R, Kenfack D, Martinez-Ramos M, Parren M, Parthasarathy N, Perez-Salicrup D, Putz FE, Thomas DW (2006) A standard protocol for liana censuses. Biotropica, 38, 256-261. |
10 | Gilbert B, Wright SJ, Muller-Landau HC, Kitajima K, Hernandez A (2006) Life history trade-offs in tropical trees and lianas. Ecology, 87, 1281-1288. |
11 | Harper KA, Macdonald SE, Burton PJ, Chen JQ, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen P (2005) Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782. |
12 | Hegarty EE, Caballe G (1991) Distribution and abundance of vines in forest communities. In: The Biology of Vines (eds Putz EF, Mooney HA), pp. 263-282. Cambridge University Press, Cambridge. |
13 | Jin ZZ (1983) On the characteristic and nature of the evergreen broad-leaved forest in Xujiaba region, Ailao Mts. In: Research of Forest Ecosystems on Ailao Mountains (ed. Wu ZY), pp. 204-214. Yunnan Science and Technology Press, Kunming. (in Chinese with English abstract) |
[金振洲 (1983) 论哀牢山徐家坝地区常绿阔叶林的特征和性质. 见: 云南哀牢山森林生态系统研究. 吴征镒主编, pp. 204-214. 云南科技出版社, 昆明.] | |
14 | Keeling HC, Phillips OL (2007) A calibration method for the crown illumination index for assessing forest light environments. Forest Ecology and Management, 242, 431-437. |
15 | Kurzel BP, Schnitzer SA, Carson WP (2006) Predicting liana crown location from stem diameter in three Panamanian lowland forests. Biotropica, 38, 262-266. |
16 | Kusumoto B, Enoki T, Watanabe Y (2008) Community structure and topographic distribution of lianas in a watershed on Okinawa, south-western Japan. Journal of Tropical Ecology, 24, 675-683. |
17 | Laurance WF (1999) Reflections on the tropical deforestation crisis. Biological Conservation, 91, 109-117. |
18 | Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Layrance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16, 605-618. |
19 | Laurance WF, Perez-Salicrup DR, Delamonica P, Fearnside PM, Angelo SD, Jerozolinski A, Pohl L, Lovejoy TE (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82, 105-116. |
20 | Li XS, Liu WY, Chen JW, Tang CQ, Yuan CM (2010) Regeneration pattern of primary forest species across forest-field gradients in the subtropical mountains of southwestern China. Journal of Plant Research, 123, 751-762. |
21 | Liu WJ, Tang JW, Bai KJ (2001) Microclimate edge effects within and between Shorea chinensis forest fragments in Xishuangbanna. Acta Phytoecologica Sinica, 25, 616-622. (in Chinese with English abstract) |
[刘文杰, 唐建维, 白坤甲 (2001) 西双版纳片断化望天树林小气候边缘效应比较研究. 植物生态学报, 25, 616-622.] | |
22 | Londre RA, Schnitzer SA (2006) The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology, 87, 2973-2978. |
23 | Matlack GR (1993) Microenvironmental variation within and among forest edge sites in the eastern United States. Biological Conservation, 66, 185-194. |
24 | Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution, 10, 58-62. |
25 | Palik BJ, Murphy PG (1990) Disturbance versus edge effects in sugar-maple/beech forest fragments. Forest Ecology and Management, 32, 187-202. |
26 | Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65, 1713-1724. |
27 | Qiu XZ, Xie SC (1998) Studies on the Forest Ecosystem in Ailao Mountains. Yunnan Science and Technology Press, Kunming. (in Chinese) |
[邱学忠, 谢寿昌 (1998) 哀牢山森林生态系统研究. 云南科技出版社, 昆明.] | |
28 | Richards PW (1996) The Tropical Rain Forest. Cambridge University Press, Cambridge |
29 | Sanches MC, Válio IFM (2002) Seed and seedling survival of some climber species in a southeast Brazilian tropical forest. Biotropica, 34, 323-327. |
30 | Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 5, 18-32. |
31 | Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends in Ecology and Evolution, 17, 223-230. |
32 | Schnitzer SA, Carson WP (2001) Treefall gaps and the maintainance of species diversity in a tropical forest. Ecology, 82, 913-919. |
33 | Wu YN, Tao JP, Zhao K, Hao JH (2010) Edge effects of a natural secondary forest on liana communities in Bawangling, Hainan Island. Scientia Silvae Sinicae, 46(5), 1-6. (in Chinese with English abstract) |
[乌玉娜, 陶建平, 赵科, 郝建辉 (2010) 海南霸王岭天然次生林边缘效应下木质藤本的变化. 林业科学, 46(5), 1-6.] | |
34 | Yuan CM, Liu WY, Tang CQ, Li XS (2009) Species composition, diversity and abundance of lianas in different secondary and primary forests in a subtropical mountainous area, SW China. Ecological Research, 24, 1361-1370. |
35 | Yuan CM, Liu WY, Yang GP (2015) Diversity and spatial dis- tribution of lianas in a mid-montane moist evergreen broad-leaved forest in the Ailao Mountains, SW China. Biodiversity Science, 23, 332-340. (in Chinese with English abstract) |
[袁春明, 刘文耀, 杨国平 (2015) 哀牢山中山湿性常绿阔叶林木质藤本植物的多样性与空间分布. 生物多样性, 23, 332-340.] | |
36 | Zhang JT (2004) Quantitative Ecology. Science Press, Beijing. |
(in Chinese) [张金屯 (2004) 数量生态学. 科学出版社, 北京.] | |
37 | Zhu H, Xu ZF, Wang H, Li BG (2004) Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunnan. Biodiversity and Conservation, 13, 1355-1372. |
[1] | 肖巍峰 左绿荇 杨文涛 李朝奎. 基于地理环境相似度的长江经济带入侵物种虚拟负样本生成方法[J]. 生物多样性, 2023, 31(1): 22094-. |
[2] | 张超 李娟 程海云 段家充 潘昭. 秦岭西段地区蝴蝶群落多样性与环境因子相关性[J]. 生物多样性, 2023, 31(1): 22272-. |
[3] | 陈敏豪 张超 王嘉栋 湛振杰 陈君帜 栾晓峰. 北美水貂和欧亚水獭在东北地区的分布与生态位重叠关系[J]. 生物多样性, 2023, 31(1): 22289-. |
[4] | 吴科毅 阮文达 周棣锋 陈庆春 张承云 潘新园 余上 刘阳 肖荣波. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性, 2023, 31(1): 22370-. |
[5] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[6] | 郭淳鹏, 钟茂君, 汪晓意, 杨胜男, 唐科, 贾乐乐, 张春兰, 胡军华. 福建省两栖、爬行动物更新名录[J]. 生物多样性, 2022, 30(8): 22090-. |
[7] | 王科, 蔡磊. 世界菌物新命名发表概况(2021年)[J]. 生物多样性, 2022, 30(8): 22277-. |
[8] | 江建平, 蔡波, 王斌, 陈蔚涛, 温知新, 张德志. 中国脊椎动物2021年度新增物种报告[J]. 生物多样性, 2022, 30(8): 22225-. |
[9] | 徐文轩, 徐峰, 马伟, 汪沐阳, 王建成, 杨维康. 基于层次分析法的旗舰物种遴选方法[J]. 生物多样性, 2022, 30(8): 21536-. |
[10] | 刘童祎, 姜立云, 乔格侠. 中国半翅目等29目昆虫新分类单元2021年年度报告[J]. 生物多样性, 2022, 30(8): 22300-. |
[11] | 杨润明, 中村彰宏. 巢居蚂蚁更倾向于在人造光源附近定居繁殖[J]. 生物多样性, 2022, 30(8): 22067-. |
[12] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[13] | 杨科, 丁城志, 陈小勇, 丁刘勇, 黄敏睿, 陈晋南, 陶捐. 怒江流域鱼类多样性及空间分布格局[J]. 生物多样性, 2022, 30(7): 21334-. |
[14] | 姬云瑞, 韦雪蕾, 张国锋, 向明贵, 王永超, 龚仁琥, 胡杨, 李迪强, 刘芳. 湖北五峰后河国家级自然保护区鸟类多样性[J]. 生物多样性, 2022, 30(7): 21475-. |
[15] | 钱宏, 张健, 赵静超. 世界上已知维管植物有多少种? 基于多个全球植物数据库的整合[J]. 生物多样性, 2022, 30(7): 22254-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn