生物多样性 ›› 2016, Vol. 24 ›› Issue (12): 1381-1389. DOI: 10.17520/biods.2015365
闫静1, 张晓亚1, 陈雪2, 王月1, 张风娟1,,A;*(), 万方浩3,,A;*()
收稿日期:
2015-12-23
接受日期:
2016-05-16
出版日期:
2016-12-20
发布日期:
2017-01-10
通讯作者:
张风娟,万方浩
基金资助:
Jing Yan1, Xiaoya Zhang1, Xue Chen2, Yue Wang1, Fengjuan Zhang1,*(), Fanghao Wan3,*()
Received:
2015-12-23
Accepted:
2016-05-16
Online:
2016-12-20
Published:
2017-01-10
Contact:
Zhang Fengjuan,Wan Fanghao
摘要:
入侵植物三叶鬼针草(Bidens pilosa)对我国农牧业生产造成了重大的损失。本文主要研究三叶鬼针草入侵与不同本地植物竞争对土壤微生物群落结构和土壤养分的影响。利用磷脂脂肪酸方法(phospholipid fatty acids, PLFAs)测定土壤微生物群落组成, 同时测定土壤养分和酶活性, 并利用Canoco4.5软件分析了土壤微生物、土壤养分和土壤酶活性的相关性。结果表明: (1)三叶鬼针草对革兰氏阳性菌、革兰氏阴性菌、丛枝菌根真菌等土壤微生物具有较强的聚集能力, 且其根际土壤聚集的微生物类群与本地植物种类密切相关。(2)三叶鬼针草入侵显著增加了入侵地土壤的有机碳含量, 降低了铵态氮的含量; 土壤中的速效钾、速效磷和硝态氮的含量则与本地植物种类密切相关。(3)相关性分析表明, 16:00和16:1 ω5c对铵态氮的含量影响较大, 而三叶鬼针草入侵地16:00和16:1 ω5c的含量显著高于裸土对照, 进而推测这一状况导致了铵态氮含量的降低。(4) 15:1 anteiso A和18:1 ω5c与速效钾的含量呈显著正相关, 而其含量在狗尾草(Setaria viridis)中显著高于其他处理, 三叶鬼针草与狗尾草混种处理中土壤中速效钾的含量高于其他处理。以上结果说明, 三叶鬼针草通过改变土壤微生物群落结构影响了土壤酶活性和土壤养分, 且这种改变与入侵地本地植物种类有关。
闫静, 张晓亚, 陈雪, 王月, 张风娟, 万方浩 (2016) 三叶鬼针草与不同本地植物竞争对土壤 微生物和土壤养分的影响. 生物多样性, 24, 1381-1389. DOI: 10.17520/biods.2015365.
Jing Yan, Xiaoya Zhang, Xue Chen, Yue Wang, Fengjuan Zhang, Fanghao Wan (2016) Effects of rhizosphere soil microorganisms and soil nutrients on competitiveness of Bidens pilosa with different native plants. Biodiversity Science, 24, 1381-1389. DOI: 10.17520/biods.2015365.
处理 Treatment | 植物 Plant | 密度 Density (inds./m2) | 生物量 Biomass (kg/m2) |
---|---|---|---|
B | B | 274.00 ± 62.12 | 0.92±0.22 |
B+S | B | 180.00 ± 72.04 | 0.48 ± 0.16 |
S | 56.00 ± 35.68 | 0.17 ± 0.05 | |
B+C | B | 148.00 ± 36.00 | 0.43 ± 0.11 |
C | 208.00 ± 9.64 | 0.59 ± 0.09 | |
B+M | B | 144.00 ± 36.00 | 0.51 ± 0.01 |
M | 192.00 ± 6.08 | 0.55 ± 0.01 |
表1 不同处理样方的植物生长状况(平均值 ± 标准差)。B: 三叶鬼针草; S: 狗尾草; C: 藜; M: 草木樨。
Table 1 Plant growth in different plots (mean ± SD). B, Bidens pilosa; S, Setaria viridis; C, Chenopodium serotinum; M, Melilotus suaveolens.
处理 Treatment | 植物 Plant | 密度 Density (inds./m2) | 生物量 Biomass (kg/m2) |
---|---|---|---|
B | B | 274.00 ± 62.12 | 0.92±0.22 |
B+S | B | 180.00 ± 72.04 | 0.48 ± 0.16 |
S | 56.00 ± 35.68 | 0.17 ± 0.05 | |
B+C | B | 148.00 ± 36.00 | 0.43 ± 0.11 |
C | 208.00 ± 9.64 | 0.59 ± 0.09 | |
B+M | B | 144.00 ± 36.00 | 0.51 ± 0.01 |
M | 192.00 ± 6.08 | 0.55 ± 0.01 |
图1 不同处理三叶鬼针草根际土壤微生物PLFAs总量的变化(P<0.05)。CK: 裸土, 其他各处理的代号见表1。
Fig. 1 Change of total PLFAs from rhizosphere soils under Bidens pilosa individuals in different treatments (P<0.05). CK, Bare soil. Other treatments correspond to those in Table 1.
图2 三叶鬼针草不同处理根际土壤微生物群落PLFA的主成分分析及载荷因子贡献。各处理的代号见表1。
Fig. 2 Principle components analysis (PCA) of PLFA profiles from rhizosphere soil microbial communities and loadings factors of PLFA contributing to soil microbial communities ordination pattern of the different treatments of Bidens pilosa. The treatments correspond to those in Table 1.
处理 Treatment | A | AMF | F | G- | G+ | P | F/B | G-/G+ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 1.21±0.04c | 1.48±0.44b | 3.63±0.67b | 4.01±0.47d | 5.04±0.67d | 0.37±0.10c | 0.80±0.04a | 0.12±0.00d | ||||
B | 1.82±0.07b | 14.87±6.69ab | 6.28±0.43ab | 6.66±0.32b | 7.71±0.44b | 1.19±0.33ab | 0.91±0.06a | 0.14±0.00b | ||||
B+S | 2.29±0.17a | 16.96±4.20a | 8.40±2.19a | 9.11±0.32a | 9.73±0.58a | 1.41±0.79a | 0.92±0.19a | 0.15±0.00a | ||||
B+C | 1.70±0.06b | 4.97±1.26ab | 4.78±0.05ab | 5.32±0.06c | 7.35±0.08bc | 0.54±0.06bc | 0.74±0.00a | 0.14±0.00b | ||||
B+M | 1.73±0.18b | 9.08±4.78ab | 8.01±4.00a | 5.65±0.84c | 6.63±0.12c | 1.04±0.16abc | 1.38±0.33a | 0.13±0.00c |
表2 不同处理对三叶鬼针草根际不同类群微生物PLFAs量的影响(单位μg/g) (平均值±标准差,)。A: 放线菌; AMF: 丛枝菌根真菌; F: 真菌; G-: 格兰氏阴性菌; G+: 格兰氏阳性菌; P: 放线菌; F/B: 真菌和细菌的比值; G-/G+: 革兰氏阴性菌和革兰氏阳性菌的比值。CK: 裸土, 各处理的代号见表1。不同字母表示多重比较差异显著(P < 0.05)
Table 2 The change of PLFAs extracted from rhizosphere soils of Bidens pilosa in different treatments (unit μg/g) (mean ± SD, P<0.05). A, Actinomycetes; AMF, Arbuscular mycorrhizal fungi; F, Fungi; G-, Gram-negative bacterium; G+, Gram-positive bacterium; P, Actinomycetes; F/B, Ratio of fungi and bacterium; G-/G+, Ratio of gram-negative bacterium and gram-positive bacterium. CK, Bare soil. The treatments correspond to those in Table 1. The different superscripts indicate significant difference between treatments after multiplicative comparison (P < 0.05).
处理 Treatment | A | AMF | F | G- | G+ | P | F/B | G-/G+ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 1.21±0.04c | 1.48±0.44b | 3.63±0.67b | 4.01±0.47d | 5.04±0.67d | 0.37±0.10c | 0.80±0.04a | 0.12±0.00d | ||||
B | 1.82±0.07b | 14.87±6.69ab | 6.28±0.43ab | 6.66±0.32b | 7.71±0.44b | 1.19±0.33ab | 0.91±0.06a | 0.14±0.00b | ||||
B+S | 2.29±0.17a | 16.96±4.20a | 8.40±2.19a | 9.11±0.32a | 9.73±0.58a | 1.41±0.79a | 0.92±0.19a | 0.15±0.00a | ||||
B+C | 1.70±0.06b | 4.97±1.26ab | 4.78±0.05ab | 5.32±0.06c | 7.35±0.08bc | 0.54±0.06bc | 0.74±0.00a | 0.14±0.00b | ||||
B+M | 1.73±0.18b | 9.08±4.78ab | 8.01±4.00a | 5.65±0.84c | 6.63±0.12c | 1.04±0.16abc | 1.38±0.33a | 0.13±0.00c |
速效钾 Available K | 有机碳 Organic carbon | pH | 速效磷 Available P | 硝态氮 Nitrate N | 铵态氮 Ammonium N | |
---|---|---|---|---|---|---|
CK | 221.67±8.62a | 6.7.0±0.07c | 7.94±0.01c | 1.13±0.18c | 21.72±1.96c | 71.50±1.54a |
B | 201.33±4.93b | 10.34±0.3a | 8.26±0.04a | 1.77±0.09b | 23.65±2.01ab | 66.07±0.71bc |
B+S | 221.67±0.58a | 9.46±0.53b | 8.09±0.06b | 2.52±0.10a | 21.51±1.19c | 66.41±2.68b |
B+C | 205.00±1.73b | 9.75±0.24b | 8.07±0.02b | 1.73±0.06b | 25.05±0.73a | 63.93±1.53c |
B+M | 198.00±2.65b | 9.29±0.09b | 7.97±0.09c | 2.48±0.28a | 20.85±0.71c | 64.45±2.13c |
表3 三叶鬼针草不同处理根际土壤的养分含量。不同字母表示多重比较差异显著(P < 0.05)。CK: 裸土, 各处理的代号见表1。
Table 3 Change of total nutrient extracted from rhizosphere soils of Bidens pilosa in different treatments. The different superscripts indicate significant difference between treatments after multiplicative comparison (P < 0.05). CK, Bare soil. The treatments correspond to those in Table 1.
速效钾 Available K | 有机碳 Organic carbon | pH | 速效磷 Available P | 硝态氮 Nitrate N | 铵态氮 Ammonium N | |
---|---|---|---|---|---|---|
CK | 221.67±8.62a | 6.7.0±0.07c | 7.94±0.01c | 1.13±0.18c | 21.72±1.96c | 71.50±1.54a |
B | 201.33±4.93b | 10.34±0.3a | 8.26±0.04a | 1.77±0.09b | 23.65±2.01ab | 66.07±0.71bc |
B+S | 221.67±0.58a | 9.46±0.53b | 8.09±0.06b | 2.52±0.10a | 21.51±1.19c | 66.41±2.68b |
B+C | 205.00±1.73b | 9.75±0.24b | 8.07±0.02b | 1.73±0.06b | 25.05±0.73a | 63.93±1.53c |
B+M | 198.00±2.65b | 9.29±0.09b | 7.97±0.09c | 2.48±0.28a | 20.85±0.71c | 64.45±2.13c |
处理 Treatment | 蔗糖酶 Invertase | 脲酶 Urease | 酸性磷酸酶 Acid phosphatase | 碱性磷酸酶 Alkaline phosphatase |
---|---|---|---|---|
CK | 42.74±0.15d | 10.99±0.49e | 64.41±0.87d | 23.04±0.55d |
B | 66.13±3.78bc | 18.46±0.14a | 100.63±1.41b | 74.05±1.03a |
B+S | 61.83±0.65c | 12.68±0.57d | 103.00±1.87b | 66.9±4.65b |
B+C | 73.33±5.52a | 16.02±0.22c | 108.67±1.51a | 66.32±1.02b |
B+M | 69.77±3.88ab | 16.92±0.09b | 96.89±0.62c | 59.50±3.03c |
表4 三叶鬼针草不同处理根际土壤酶的活性。不同字母表示多重比较差异显著(P < 0.05)。CK: 裸土, 各处理的代号见表1。
Table 4 Enzyme activity extracted from rhizosphere soils of Bidens pilosa in different treatments. The different superscripts indicate significant difference between treatments after multiplicative comparison (P < 0.05). CK, Bare soil. The treatments correspond to those in Table 1.
处理 Treatment | 蔗糖酶 Invertase | 脲酶 Urease | 酸性磷酸酶 Acid phosphatase | 碱性磷酸酶 Alkaline phosphatase |
---|---|---|---|---|
CK | 42.74±0.15d | 10.99±0.49e | 64.41±0.87d | 23.04±0.55d |
B | 66.13±3.78bc | 18.46±0.14a | 100.63±1.41b | 74.05±1.03a |
B+S | 61.83±0.65c | 12.68±0.57d | 103.00±1.87b | 66.9±4.65b |
B+C | 73.33±5.52a | 16.02±0.22c | 108.67±1.51a | 66.32±1.02b |
B+M | 69.77±3.88ab | 16.92±0.09b | 96.89±0.62c | 59.50±3.03c |
图3 三叶鬼针草入侵地PLFAs与土壤养分的典范对应分析(CCA)二维排序
Fig. 3 Canoninal correspondence analysis (CCA) ordination of the relationship of PLFAs and soil nutrients in Bidens pilosa invasion region
图4 三叶鬼针草入侵地PLFAs与土壤酶活性典范对应分析(CCA)二维排序, ALP, 碱性磷酸酶; ACP, 酸性磷酸酶。
Fig. 4 Canoninal correspondence analysis (CCA) ordination of the relationship of PLFAs and soil enzyme activities in Bidens pilosa invasion region. ALP, Alkaline phosphatase; ACP, Acid phosphatase.
[1] | ADe LJ, He B, Wang CT, Hu L, Zi HB (2015) Effects of Chenopodium ambrosioides on soil enzyme activity, microorganism quantity and soil nutrient content of three cultivated pastures of rhizosphere soil in northwestern Sichuan. Southwest China Journal of Agricultural Sciences, 28, 815-821.(in Chinese with English abstract) |
[阿的鲁骥, 何兵, 王长庭, 胡雷, 字洪标 (2015) 入侵植物土荆芥对川西北高寒草甸3种培育牧草根际土壤酶活性、微生物数量及土壤养分的影响. 西南农业学报,28, 815-821.] | |
[2] | Bååth E, Díaz-Raviña M, Frostegård A, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Applied and Environmental Microbiology, 64, 238-245. |
[3] | Bannert A, Kleineidam K, Wissing L, Mueller-Niggemann C, Vogelsang V, Welzl G, Cao ZH, Schloter M (2011) Changes in diversity and functional gene abundances of microbial communities involved in nitrogen fixation, nitrification, and denitrification in a tidal wetland versus paddy soils cultivated for different time periods. Applied and Environmental Microbiology, 77, 6109-6116. |
[4] | Bao SD (2000) Soil Assay on Properties of Agro Chemistry, 3rd edn, pp. 207-237. China Agriculture Press, Beijing.(in Chinese) |
[鲍士旦 (2000) 土壤农化分析(第3版), 207-237页. 中国农业出版社, 北京.] | |
[5] | Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20, 634-641. |
[6] | Belnap J, Philips SL (2001) Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecological Applications, 11, 1261-1275. |
[7] | Ben G, Kris F (2015) Impacts of alien plant invasion on native plant communities are mediated by functional identity of resident species, not resource availability. Oikos, 124, 298-306. |
[8] | Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature, 427, 731-733. |
[9] | Cantarel AAM, Pommier T, Desclos-Theveniau M, Diquélou S, Dumont M, Grassein F, Kastl E-M, Grigulis K, Laîné P, Lavorel S, Lemauviel-Lavenant S, Personeni E, Schloter M, Poly F (2015) Using plant traits to explain plant-microbe relationships involved in nitrogen acquisition. Ecology, 96, 788-799. |
[10] | Chen L, Li HN, Yang MH, Wan FH (2011) Influence of invasion of Mikania micrantha and Bidens pilosa to the bacterial community in the root soils. Chinese Agricultural Science Bulletin, 27(8), 63-68.(in Chinese with English abstract) |
[陈亮, 李会娜, 杨民和, 万方浩 (2011) 入侵植物薇甘菊和三叶鬼针草对土壤细菌群落的影响.中国农学通报,27(8), 63-68.] | |
[11] | Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology and Biochemistry, 32, 1419-1430. |
[12] | Du FY, Zhang MM, Ma DW (2007) Preliminary study on the allelopathic effects of Bidens pilosa. China Plant Protection, 27(9), 8-11.(in Chinese with English abstract) |
[杜凤移, 张苗苗, 马丹炜 (2007) 三叶鬼针草化感作用的初步研究. 中国植保导刊,27(9), 8-11.] | |
[13] | Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedbacks in the plant-soil system. Annual Review of Environment and Resource, 30, 75-115. |
[14] | Frostegård Å, Bååth E (1996) The use of phospholipids fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65. |
[15] | Godoy O, Valladares F, Castro-Díez P (2011) Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology, 25, 1248-1259. |
[16] | Godoy O, Valladares F, Castro-Díez P (2012) The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. New Phytologist, 195, 912-922. |
[17] | Grubb PJ (1994) Root competition in soil of different fertility: A paradox resolved? Phytocoenologia, 24, 495-505. |
[18] | Guan SY (1986) Soil Enzyme and Its Research Methods, pp. 274-339. Agriculture Press, Beijing.(in Chinese) |
[关松荫 (1986) 土壤酶及其研究方法,274-339页. 农业出版社, 北京.] | |
[19] | He B, Li RY, Luo MY, Wei HM, Zhang H, Ma DW (2013) Effects of Bidens pilosa of invasive plant on soil ecological system at different developmental stages. Southwest China Journal of Agricultural Sciences, 26, 1953-1956.(in Chinese with English abstract) |
[何兵, 李睿玉, 罗曼元, 魏豪梅, 张红, 马丹炜 (2013) 入侵植物三叶鬼针草不同发育期对土壤生态系统的影响.西南农业学报,26, 1953-1956.] | |
[20] | Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 15, 25-36. |
[21] | Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology, 78, 1966-1975. |
[22] | Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149. |
[23] | Hou YP, Liu L, Chu H, Ma SJ, Zhao D, Liang RR (2015) Effects of exotic plant Rhus typhina invasion on soil properties in different forest types. Acta Ecologica Sinica, 35, 5324-5330.(in Chinese with English abstract) |
[侯玉平, 柳林, 初航, 马淑杰, 赵丹, 梁荣荣 (2015) 外来植物火炬树入侵对不同林型土壤性质的影响. 生态学报,35, 5324-5330.] | |
[24] | Huenneke L, Hamburg SP, Koide R (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology, 71, 478-491. |
[25] | Jia YY, Zhang XY, Yan J, Yin JL, Zhang FJ (2015) Effect of three Asteraceae invasive plants on soil fertility of invaded domain. Journal of Hebei University, 35, 494-502.(in Chinese with English abstract) |
[贾月月, 张晓亚, 闫静, 殷吉林, 张风娟 (2015) 3种入侵菊科植物对入侵域土壤肥力的影响. 河北大学学报,35, 494-502.] | |
[26] | Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67-70. |
[27] | Kourtev PS, Ehrenfeld JG, Häggelom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152-3166. |
[28] | Kourtev PS, Huang WZ, Ehrenfeld JG (1999) Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. Biological Invasions, 1, 237-245. |
[29] | Li WH, Zhang CB, Jiang HB, Xin GR, Yang ZY (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant and Soil, 281, 309-324. |
[30] | Ma J, Huangfu CH, Yi J, Yang DL (2011) Effects of four replacement plants on nutrient and enzymatic activities of soil invaded by Flaveria bidentis. Ecology and Environmental Sciences, 20, 805-812.(in Chinese with English abstract) |
[马杰, 皇甫超河, 易津, 杨殿林 (2011) 4种替代植物对黄顶菊入侵土壤养分和酶活性的影响. 生态环境学报,20, 805-812.] | |
[31] | Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893. |
[32] | Moreau D, Pivato B, Bru D, Busset H, Deau F, Faivre C, Matejicek A, Strbik F, Philippot L, Mougel C (2015) Plant traits related to nitrogen uptake influence plant-microbe competition. Ecology, 96, 2300-2310. |
[33] | Niu HB, Liu WX, Wan FH (2007) Invasive effects of Ageratina adenophora Sprengel (Asteraceae) on soil microbial community and physical and chemical properties. Acta Ecologica Sinica, 27, 3051-3060.(in Chinese with English abstract) |
[牛红榜, 刘万学, 万方浩 (2007) 紫茎泽兰入侵对土壤微生物群落和理化性质的影响. 生态学报,27, 3051-3060.] | |
[34] | Olsson S and Alström S (2000) Characterisation of bacteria in soils under barley monoculture and crop rotation. Soil Biology and Biochemistry, 32, 1443-1451. |
[35] | Reinhart KO, Callaway RM (2004) Soil biota facilitate exotic Acer invasions in Europe and North America. Ecological Applications, 14, 1737-1745. |
[36] | Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 15, 1230-1239. |
[37] | Wagg C, Jansa J, Schmid B, van der Heijden MGA (2011b) Belowground biodiversity effects of plant support aboveground productivity. Ecology Letters, 14, 1001-1009. |
[38] | Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011a) Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 92, 1303-1313. |
[39] | Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology, 36, 59-69. |
[40] | Xiao B, Zhou W, Liu WX, Jiang ZL, Wan FH (2014) Feedback of Ageratina adenophora soil microbe on A. adenophora and native plants. Journal of Agricultural Science and Technology, 16, 151-158.(in Chinese with English abstract) |
[肖博, 周文, 刘万学, 蒋智霖, 万方浩 (2014) 紫茎泽兰入侵地土壤微生物对紫茎泽兰和本地植物的反馈. 中国农业科技导报,16, 151-158.] | |
[41] | Yan Q, Liu WX, Li HN, Wan FH (2009) Effects of Ageratina adenophora-invaded soil and its extract on upland rice Oryza sativa seed germination and seedling growth. Chinese Journal of Ecology, 28, 879-883.(in Chinese with English abstract) |
[严琦, 刘万学, 李会娜, 万方浩 (2009) 紫茎泽兰不同入侵程度的土壤及其提取物对旱稻生长的影响. 生态学杂志,28, 879-883.] | |
[42] | Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in South African fynbos. Restoration Ecology, 12, 44-51. |
[43] | Yu XJ, Yu D, Lu ZJ, Ma KP (2005) A possible plant invasive mechanism: the invasive species affected the growth of native species by changing microbial communities in his invasive range. Chinese Science Bulletin, 50, 896-903.(in Chinese) |
[于兴军, 于丹, 卢志军, 马克平 (2005) 一个可能的植物入侵机制: 入侵种通过改变入侵地土壤微生物群落影响本地种的生长. 科学通报,50, 896-903.] | |
[44] | Zhang Q, Yang RY, Tang JJ, Yang HS, Hu SJ, Chen X (2010) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE, 5, e12380.] |
[45] | Zhang TR, Huangfu CH, Bai XM, Yang DL, Li G, Lai X, Zhao JN (2010) Effect of Flaveria bidentis invasion on soil nutrient contents and enzyme activities. Chinese Journal of Ecology, 29, 1353-1358.(in Chinese with English abstract) |
[张天瑞, 皇甫超河, 白小明, 杨殿林, 李刚, 赖欣, 赵建宁 (2010) 黄顶菊入侵对土壤养分和酶活性的影响. 生态学杂志,29, 1353-1358.] |
[1] | 朱晓华, 高程, 王聪, 赵鹏. 尿素对土壤细菌与真菌多样性影响的研究进展[J]. 生物多样性, 2023, 31(6): 22636-. |
[2] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[3] | 杨预展, 余建平, 钱海源, 陈小南, 陈声文, 袁志林. 钱江源国家公园体制试点区水稻田土壤微生物群落的格局及其驱动机制[J]. 生物多样性, 2023, 31(2): 22392-. |
[4] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[5] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[6] | 肖宇珊, 杨昌娆, 郑国, 武鹏峰, 张士秀, 崔淑艳. 降水格局对北方温带草原土壤微食物网结构的影响[J]. 生物多样性, 2022, 30(12): 22208-. |
[7] | 王爱霞, 马婧婧, 龚会蝶, 范国安, 王茂, 赵红梅, 程军回. 北疆一年生早春短命植物物种丰富度分布格局及其影响因素[J]. 生物多样性, 2021, 29(6): 735-745. |
[8] | 朱杰, 吴安驰, 邹顺, 熊鑫, 刘世忠, 褚国伟, 张倩媚, 刘菊秀, 唐旭利, 闫俊华, 张德强, 周国逸. 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素[J]. 生物多样性, 2021, 29(11): 1435-1446. |
[9] | 王亚, 王玮倩, 王钦克, 李晓霞, 刘延, 黄乔乔. 土壤养分对菊科一年生入侵种和本地种繁殖性状的影响[J]. 生物多样性, 2021, 29(1): 1-9. |
[10] | 李婷婷, 张西美. 全球变化背景下内蒙古草原土壤微生物多样性维持机制研究进展[J]. 生物多样性, 2020, 28(6): 749-758. |
[11] | 谭一波,申文辉,付孜,郑威,欧芷阳,谭长强,彭玉华,庞世龙,何琴飞,黄小荣,何峰. 环境因子对桂西南蚬木林下植被物种多样性变异的解释[J]. 生物多样性, 2019, 27(9): 970-983. |
[12] | 雷学明, 沈芳芳, 雷学臣, 刘文飞, 段洪浪, 樊后保, 吴建平. 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响[J]. 生物多样性, 2018, 26(9): 962-971. |
[13] | 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987. |
[14] | 张媚, 林马水, 曹秀秀, 赵树民, 蒋达青, 王冰璇, 汪石莹, 樊炎迪, 郭明, 林海萍. 不同经营模式山核桃林地土壤pH值、养分与细菌多样性的差异[J]. 生物多样性, 2018, 26(6): 611-619. |
[15] | 毕艳孟, 孙振钧. 蚯蚓调控土壤微生态缓解连作障碍的作用机制[J]. 生物多样性, 2018, 26(10): 1103-1115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn