生物多样性 ›› 2025, Vol. 33 ›› Issue (4): 24208. DOI: 10.17520/biods.2024208 cstr: 32101.14.biods.2024208
张明燡1,2,3,#(), 王晓梅1,2,3,4,*(
)(
), 郑言鑫1,2,3,#(
), 吴楠1,2,3,5, 李东浩4,6, 樊恩源4, 李娜7, 单秀娟7, 于涛1,2,3, 赵春暖1,2,3, 李波1,2,3, 徐帅1,2,3, 吴玉萍1,2,3, 任利群1,2,3
收稿日期:
2024-05-30
接受日期:
2024-11-10
出版日期:
2025-04-20
发布日期:
2025-04-11
通讯作者:
*E-mail: wangxiaom@cafs.ac.cn
作者简介:
#共同第一作者
基金资助:
Zhang Mingyi1,2,3,#(), Wang Xiaomei1,2,3,4,*(
)(
), Zheng Yanxin1,2,3,#(
), Wu Nan1,2,3,5, Li Donghao4,6, Fan Enyuan4, Li Na7, Shan Xiujuan7, Yu Tao1,2,3, Zhao Chunnuan1,2,3, Li Bo1,2,3, Xu Shuai1,2,3, Wu Yuping1,2,3, Ren Liqun1,2,3
Received:
2024-05-30
Accepted:
2024-11-10
Online:
2025-04-20
Published:
2025-04-11
Contact:
*E-mail: wangxiaom@cafs.ac.cn
About author:
#Co-first authors
Supported by:
摘要:
受人类活动等因素影响, 黄河口牡蛎礁生态系统退化严重。本文选取该区域典型牡蛎礁分布区, 就牡蛎资源、浮游藻类、浮游动物及底栖动物开展调查, 了解不同分布区牡蛎种类组成、生长特征、环境状况, 分析牡蛎礁生态功能。调查结果显示, 在黄河口各牡蛎礁分布区, 垦利一区(KL1, 平均壳高6.16 ± 1.63 mm)和垦利二区(KL2, 4.70 ± 6.86 mm)基本均为幼体; 无棣(WD, 45.69 ± 22.41 mm)多为成体牡蛎, 河口(HK, 19.68 ± 13.64 mm)牡蛎数量最多; 共采集牡蛎样本147个, 种类以长牡蛎(Crassostrea gigas)、近江牡蛎(C. ariakensis)为主。浮游藻类共采集3门36种, 浮游动物共采集4门12种, 底栖动物共采集5门84种, 有礁区甲壳动物优势种显著高于无礁区(P < 0.05), 丰度生物量比较曲线(ABC曲线)统计量(W值)有礁区(-0.144) > 无礁区(-0.207), 有礁区底栖动物群落结构受扰动程度低于无礁区。研究表明, 与其他区域相比, 黄河口牡蛎资源量整体偏低, 不同区域牡蛎资源量和分布特点不同, 黄河口底栖动物群落结构已受环境和人类活动影响, 牡蛎礁降低底栖动物受干扰程度, 发挥维护生物群落结构稳定的作用。因此, 建议在黄河口根据不同区域牡蛎资源现状, 因地制宜开展科学修复, 通过栖息地功能重建, 促进黄河口区域生态环境恢复, 同时加强宣传, 减少人为破坏和干扰。
张明燡, 王晓梅, 郑言鑫, 吴楠, 李东浩, 樊恩源, 李娜, 单秀娟, 于涛, 赵春暖, 李波, 徐帅, 吴玉萍, 任利群 (2025) 黄河口典型牡蛎礁分布区资源状况和栖息地功能. 生物多样性, 33, 24208. DOI: 10.17520/biods.2024208.
Zhang Mingyi, Wang Xiaomei, Zheng Yanxin, Wu Nan, Li Donghao, Fan Enyuan, Li Na, Shan Xiujuan, Yu Tao, Zhao Chunnuan, Li Bo, Xu Shuai, Wu Yuping, Ren Liqun (2025) Resource status and habitat function of typical oyster reef areas in the Yellow River Estuary. Biodiversity Science, 33, 24208. DOI: 10.17520/biods.2024208.
图1 黄河口牡蛎礁调查站位图。KL1: 东营市垦利一区; KL2: 东营市垦利二区; WD: 滨州市无棣县; ZH:滨州市沾化区; HK: 东营市河口区。
Fig. 1 The survey stations for oyster reefs in the Yellow River Estuary. KL1, Kenli District 1 of Dongying City; KL2, Kenli District 2 of Dongying City; WD, Wudi County of Binzhou City; ZH, Zhanhua District of Binzhou City; HK, Hekou District of Dongying City.
指标 Indicators | 垦利一区 KL1 | 垦利二区 KL2 | 无棣 WD | 沾化 ZH | 河口 HK | |||||
---|---|---|---|---|---|---|---|---|---|---|
范围 Range | 平均 Mean | 范围 Range | 平均 Mean | 范围 Range | 平均 Mean | 范围 Range | 平均 Mean | 范围 Range | 平均 Mean | |
水深 Depth (m) | 1.2-1.8 | 1.4 | 3.0-3.3 | 3.2 | 2.0-3.1 | 2.6 | 1.4-2.6 | 2.0 | 0.0-0.5 | 0.2 |
水温 Water temperature (℃) | 26.3-26.7 | 26.5 | 25.0-25.7 | 25.3 | 24.6-25.0 | 24.9 | 25.4-25.9 | 25.7 | 23.9-26.3 | 24.6 |
盐度 Salinity | 20.9-21.6 | 21.3 | 18.5-22.1 | 19.8 | 13.1-19.1 | 16.5 | 18.2-19.7 | 19.0 | 24.4-29.3 | 28.2 |
溶解氧 Dissolved oxygen (mg/L) | 3.2-4.3 | 3.5 | 4.1-8.4 | 5.6 | 4.6-5.3 | 5.0 | 6.6-9.2 | 7.7 | 4.3-5.4 | 5.1 |
表1 黄河口各牡蛎礁区环境指标比较
Table 1 Comparison of environmental indicators in each oyster reef area of the Yellow River Estuary
指标 Indicators | 垦利一区 KL1 | 垦利二区 KL2 | 无棣 WD | 沾化 ZH | 河口 HK | |||||
---|---|---|---|---|---|---|---|---|---|---|
范围 Range | 平均 Mean | 范围 Range | 平均 Mean | 范围 Range | 平均 Mean | 范围 Range | 平均 Mean | 范围 Range | 平均 Mean | |
水深 Depth (m) | 1.2-1.8 | 1.4 | 3.0-3.3 | 3.2 | 2.0-3.1 | 2.6 | 1.4-2.6 | 2.0 | 0.0-0.5 | 0.2 |
水温 Water temperature (℃) | 26.3-26.7 | 26.5 | 25.0-25.7 | 25.3 | 24.6-25.0 | 24.9 | 25.4-25.9 | 25.7 | 23.9-26.3 | 24.6 |
盐度 Salinity | 20.9-21.6 | 21.3 | 18.5-22.1 | 19.8 | 13.1-19.1 | 16.5 | 18.2-19.7 | 19.0 | 24.4-29.3 | 28.2 |
溶解氧 Dissolved oxygen (mg/L) | 3.2-4.3 | 3.5 | 4.1-8.4 | 5.6 | 4.6-5.3 | 5.0 | 6.6-9.2 | 7.7 | 4.3-5.4 | 5.1 |
图2 黄河口各调查区的牡蛎组成。KL1: 东营市垦利一区; KL2: 东营市垦利二区; WD: 滨州市无棣县; HK: 东营市河口区。
Fig. 2 Composition of oysters in each survey area of the Yellow River Estuary. KL1: Kenli District 1 of Dongying City; KL2: Kenli District 2 of Dongying City; WD: Wudi County of Binzhou City; HK: Hekou District of Dongying City.
调查区 Survey area | 浮游藻类 Phytoplankton | 浮游动物 Zooplankton | 底栖动物 Macrobenthos | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
多样性指数 Diversity index | 均匀度指数 Evenness index | 多样性指数 Diversity index | 均匀度指数 Evenness index | 多样性指数 Diversity index | 均匀度指数 Evenness index | |||||||
有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | |
KL1 | 1.377 | 0.632 | 0.468 | 0.233 | 0.690 | 0.920 | 0.500 | 0.660 | 1.790 | 0.550 | 0.720 | 0.290 |
KL2 | 1.681 | 1.653 | 0.701 | 0.644 | 0.690 | 1.390 | 1.000 | 1.000 | 1.790 | 1.460 | 0.910 | 0.570 |
WD | 0.912 | 1.136 | 0.469 | 0.431 | 0.000 | 1.040 | - | 0.950 | 1.650 | 1.300 | 0.680 | 0.660 |
ZH | 1.220 | 0.009 | 0.530 | 0.004 | 1.340 | 0.000 | 0.970 | - | 0.560 | 0.430 | 0.300 | 0.610 |
HK | 1.303 | 1.611 | 0.443 | 0.595 | 0.690 | 0.000 | - | - | 1.690 | 1.450 | 0.820 | 0.660 |
表2 黄河口浮游藻类、浮游动物、底栖动物多样性指数及均匀度指数分布
Table 2 Distribution of diversity indices and evenness indices of phytoplankton, zooplankton and macrobenthos in the Yellow River Estuary
调查区 Survey area | 浮游藻类 Phytoplankton | 浮游动物 Zooplankton | 底栖动物 Macrobenthos | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
多样性指数 Diversity index | 均匀度指数 Evenness index | 多样性指数 Diversity index | 均匀度指数 Evenness index | 多样性指数 Diversity index | 均匀度指数 Evenness index | |||||||
有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | 有礁区 Reef area | 无礁区 Reef-free area | |
KL1 | 1.377 | 0.632 | 0.468 | 0.233 | 0.690 | 0.920 | 0.500 | 0.660 | 1.790 | 0.550 | 0.720 | 0.290 |
KL2 | 1.681 | 1.653 | 0.701 | 0.644 | 0.690 | 1.390 | 1.000 | 1.000 | 1.790 | 1.460 | 0.910 | 0.570 |
WD | 0.912 | 1.136 | 0.469 | 0.431 | 0.000 | 1.040 | - | 0.950 | 1.650 | 1.300 | 0.680 | 0.660 |
ZH | 1.220 | 0.009 | 0.530 | 0.004 | 1.340 | 0.000 | 0.970 | - | 0.560 | 0.430 | 0.300 | 0.610 |
HK | 1.303 | 1.611 | 0.443 | 0.595 | 0.690 | 0.000 | - | - | 1.690 | 1.450 | 0.820 | 0.660 |
类群 Group | 有礁区 Reef area | 无礁区 Reef-free area | |||
---|---|---|---|---|---|
优势种 Dominant species | 优势度 Dominance value | 优势种 Dominant species | 优势度 Dominance value | ||
甲壳动物 Crustacean | 中华蜾蠃蜚 Sinocorophium sinensis | 0.0482 | |||
中华近方蟹 Hemigrapsus sinensis | 0.0285 | ||||
多毛类 Polychaeta | 长叶索沙蚕 Lumbrineris longiforlia | 0.0415 | 红刺尖锥虫 Scoloplos rubra | 0.0304 | |
背蚓虫 Notomastus latericeus | 0.0209 | ||||
软体动物 Mollusca | 光滑篮蛤 Potamocorbula laevis | 0.0232 | 光滑篮蛤 Potamocorbula laevis | 0.0263 | |
彩虹蛤 Mactra iridecens | 0.0523 | ||||
日本镜蛤 Dosinia japonica | 0.0455 | ||||
介形虫 Ostracoda | 介形虫纲 Ostracoda | 0.0587 |
表3 黄河口有礁区和无礁区底栖动物优势种
Table 3 Dominant species of macrobenthos in reef and reef-free areas of the Yellow River Estuary
类群 Group | 有礁区 Reef area | 无礁区 Reef-free area | |||
---|---|---|---|---|---|
优势种 Dominant species | 优势度 Dominance value | 优势种 Dominant species | 优势度 Dominance value | ||
甲壳动物 Crustacean | 中华蜾蠃蜚 Sinocorophium sinensis | 0.0482 | |||
中华近方蟹 Hemigrapsus sinensis | 0.0285 | ||||
多毛类 Polychaeta | 长叶索沙蚕 Lumbrineris longiforlia | 0.0415 | 红刺尖锥虫 Scoloplos rubra | 0.0304 | |
背蚓虫 Notomastus latericeus | 0.0209 | ||||
软体动物 Mollusca | 光滑篮蛤 Potamocorbula laevis | 0.0232 | 光滑篮蛤 Potamocorbula laevis | 0.0263 | |
彩虹蛤 Mactra iridecens | 0.0523 | ||||
日本镜蛤 Dosinia japonica | 0.0455 | ||||
介形虫 Ostracoda | 介形虫纲 Ostracoda | 0.0587 |
图4 黄河口有礁区和无礁区底栖动物群落的丰度生物量比较曲线以及W值。W值用于量化底栖动物群落的受扰动程度。
Fig. 4 Abundance biomass comparison (ABC) curve and W values of macrobenthos communities in reef and reef-free areas of the Yellow River Estuary. W values are used to quantify the degree of disturbance of macrobenthos communities.
[1] | An XL, Gu JG, Li YC, Zhang ZM, Li XM (2023) A review of types, functions and ecological restoration of marine biogenic reefs. Acta Ecologica Sinica, 43, 7874-7885. (in Chinese with English abstract) |
[安鑫龙, 顾继光, 李元超, 张志敏, 李雪梅 (2023) 海洋生物礁类型、生态功能及其生态修复. 生态学报, 43, 7874-7885.] | |
[2] | Arnold WS, Meyers SD, Geiger SP, Luther ME, Narváez D, Frischer ME, Hofmann E (2017) Applying a coupled biophysical model to predict larval dispersal and source/sink relationships in a depleted metapopulation of the eastern oyster Crassostrea virginica. Journal of Shellfish Research, 36, 101-118. |
[3] | Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD, Crawford C, Defeo O, Edgar JG, Hancock B, Kay M, Lenihan H, Luckenbach MW, Toropova CL, Zhang GF (2009) Shellfish Reefs at risk: A global Analysis of Problems and Solutions. Nature Conservancy, Arlington. |
[4] | Breitburg DL, Coen LD, Luckenbach M, Mann RL, Posey M, Wesson JA (2000) Oyster reef restoration: Convergence of harvest and conservation strategies. Journal of Shellfish Research, 19, 371-377. |
[5] | Deng JY, Jin XS (2000) Study on fishery biodiversity and its conservation in Laizhou Bay and Yellow River estuary. Zoological Research, 21, 76-82. (in Chinese with English abstract) |
[邓景耀, 金显仕 (2000) 莱州湾及黄河口水域渔业生物多样性及其保护研究. 动物学研究, 21, 76-82.] | |
[6] | Ermgassen PSEZ, Spalding MD, Grizzle RE, Brumbaugh RD (2013) Quantifying the loss of a marine ecosystem service: Filtration by the eastern oyster in US estuaries. Estuaries and Coasts, 36, 36-43. |
[7] | Ezgeta-Balić D, Najdek M, Peharda M, Blažina M (2012) Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aquaculture, 334-337, 89-100. |
[8] | Ferraro SP, Cole FA (2007) Benthic macrofauna-habitat associations in Willapa Bay, Washington, USA. Estuarine, Coastal and Shelf Science, 71, 491-507. |
[9] | Geng XS, Fu MZ, Xu XS, Li PY (1991) Development, ecological characteristics and paleoenvironmental significance of modern oyster reefs. Sciences in China: Series B, 21, 867-875. (in Chinese) |
[耿秀山, 傅命佐, 徐孝诗, 李培英 (1991) 现代牡蛎礁发育与生态特征及古环境意义. 中国科学(B辑), 21, 867-875.] | |
[10] | Gillies CL, Castine SA, Alleway HK, Crawford C, Fitzsimons JA, Hancock B, Koch P, Mcafee D, Mcleod IM,Ermgassen PSEZ ( 2020) Conservation status of the oyster reef ecosystem of southern and eastern Australia. Global Ecology and Conservation, 22, e00988. |
[11] | Gillies CL, Mcleod IM, Alleway HK, Cook P, Crawford C, Creighton C, Diggles B, Ford J, Harmer P, Hellar-Wagner G, Lebrault E, Port AL, Russell K, Sheaves M, Warnock B (2018) Australian shellfish ecosystems: Past distribution, current status and future direction. PLoS ONE, 13, e0190914. |
[12] | Gong JX, Wang YF, Xu GJ, Li Z, Chen XL, Zhang ML, Zheng HL, Wang ZZ, Tian GT, Du XH, Zhang JL (2020) Community characteristics of zooplankton and assessment of environment quality in oyster spawning ground in Yellow River Estuary and adjacent waters. Chinese Journal of Fisheries, 33(5), 52-57. (in Chinese with English abstract) |
[巩俊霞, 王玉芳, 许国晶, 李壮, 陈秀丽, 张明磊, 郑慧丽, 王志忠, 田功太, 杜兴华, 张金路 (2020) 黄河口牡蛎产卵场及邻近海域浮游动物的群落结构特征与环境质量评价. 水产学杂志, 33(5), 52-57.] | |
[13] | Gong JX, Wang ZZ, Zhang ML, Xu GJ, Chen XL, Li Z, Zhang JL, Du XH, Tian GT, Zheng HL (2018) Community structure of phytoplankton in oyster spawning ground in Yellow River Estuary and adjacent waters. Chinese Journal of Fisheries, 31(2), 36-40, 45. (in Chinese with English abstract) |
[巩俊霞, 王志忠, 张明磊, 许国晶, 陈秀丽, 李壮, 张金路, 杜兴华, 田功太, 郑慧丽 (2018) 黄河口牡蛎产卵场及邻近海域浮游植物的群落结构特征. 水产学杂志, 31(2), 36-40, 45.] | |
[14] | Grabowski JH, Peterson CH (eds Elsevier, 2007) Restoring oyster reefs to recover ecosystem services. In Ecosystem Engineers. In: Plants to Protists (Cuddington K, Byers J, Wilson W, Hastings A), pp. 281-298. Burlington, MA. |
[15] | Guo JT, Huang XY (2021) A new giant oyster reef discovered in the waters of Binzhou. Dazhong Daily, 2021-06-21. (in Chinese) |
[郭九涛, 黄新宇 (2021) 滨州海域新发现一处巨型牡蛎礁. 大众日报, 2021-06-21.] | |
[16] | Harwell HD, Kingsley-Smith PR, Kellogg ML, Allen SM, Allen SK Jr, Meritt DW, Paynter KT Jr, Luckenbach MW (2010) A comparison of Crassostrea virginica and C. Ariakensis in Chesapeake Bay: Does oyster species affect habitat function? Journal of Shellfish Research, 29, 253-269. |
[17] | Hernández AB, Brumbaugh RD, Frederick P, Grizzle R, Luckenbach MW, Peterson CH, Angelini C (2018) Restoring the eastern oyster: How much progress has been made in 53 years? Frontiers in Ecology and the Environment, 16, 463-471. |
[18] | Howie AH, Bishop MJ (2021) Contemporary oyster reef restoration: Responding to a changing world. Frontiers in Ecology and Evolution, 9, 689915. |
[19] | Howie AH, Reeves SE, Gillies CL, Bishop MJ (2024) Integration of social data into restoration suitability modelling for oyster reefs. Ecological Indicators, 158, 111531. |
[20] | Hu GK, Qin LL, Li YY, Cai PF, Liu YS, Shen YY, Zhang QT (2019) Disturbance status of intertidal macrobenthos in Tianjin based on ABC curves. Journal of Tianjin University of Science & Technology, 34(5), 57-62. (in Chinese with English abstract) |
[胡桂坤, 秦璐璐, 李郁郁, 蔡鹏飞, 刘亚顺, 申怡园, 张青田 (2019) 基于ABC曲线的天津潮间带生物群落受扰动的分析. 天津科技大学学报, 34(5), 57-62.] | |
[21] | Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629-637. |
[22] | Li BQ, Jiang SY, Lü JZ, Chen LL, Yan L, Liu CY, Li XJ, Song B, Li XZ (2020) Species composition and long-term variation of macrobenthos in intertidal zone and offshore areas of the Yellow River Delta. Biodiversity Science, 28, 1511-1522. (in Chinese with English abstract) |
[李宝泉, 姜少玉, 吕卷章, 陈琳琳, 闫朗, 刘春云, 李晓静, 宋博, 李新正 (2020) 黄河三角洲潮间带及近岸浅海大型底栖动物物种组成及长周期变化. 生物多样性, 28, 1511-1522.] | |
[23] | Li SW, Ren ZH, Wang TT (2017) Ecological characteristics of macrobenthos at the Yellow River Estuary in summer. Progress in Fishery Sciences, 38(6), 9-17. (in Chinese with English abstract) |
[李少文, 任中华, 王田田 (2017) 黄河口海域夏季大型底栖动物的生态学特征. 渔业科学进展, 38(6), 9-17.] | |
[24] | Li YQ, Zhang Q, Yang SM (2024) Phytoplankton community structure and its seasonal variation in the Bohai Sea in 2021. Advances in Marine Science, 42, 337-348. (in Chinese with English abstract) |
[李亚倩, 张倩, 杨世民 (2024) 2021年渤海浮游植物群落结构及其季节性变化. 海洋科学进展, 42, 337-348.] | |
[25] | Liu Q, Jiang WX, Chen LZ, Ye CY, Cheng YW, Han Y, Zeng J, Zhang WK, Fan RL, Li NN, Ouyang LL, Chen YG, Quan WM (2023) Larval recruitment and substrate selection for restoration of oyster reef in Jiantiao Bay, Zhejiang Province. Biotic Resources, 45, 375-381. (in Chinese with English abstract) |
[刘琦, 姜伟行, 陈丽芝, 叶春宇, 程岩维, 韩宇, 曾剑, 张文考, 范瑞良, 李楠楠, 欧阳珑玲, 陈渊戈, 全为民 (2023) 浙江健跳港牡蛎礁的幼体补充量和附着底物筛选. 生物资源, 45, 375-381.] | |
[26] | Mann RL (2000) Restoring the oyster reef communities in the Chesapeake Bay: A commentary. Journal of Shellfish Research, 19, 335-339. |
[27] | McAfee D, Connell SD (2021) The global fall and rise of oyster reefs. Frontiers in Ecology and the Environment, 19, 118-125. |
[28] | Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. Journal of Shellfish Research, 23, 51-61. |
[29] | Niu MX, Zuo T, Wang J, Chen RS, Zhang JX (2022) Egg and larval distribution of Liza haematocheila and their relationship with environmental factors in the coastal waters of the Yellow River Estuary. Journal of Fishery Sciences of China, 29, 377-387. (in Chinese with English abstract) |
[牛明香, 左涛, 王俊, 陈瑞盛, 张家旭 (2022) 黄河口近岸海域鮻鱼卵、仔稚鱼分布及其与环境因子的关系. 中国水产科学, 29, 377-387.] | |
[30] | Paul LJ (2012) A History of the Firth of Thames Dredge Fishery for Mussels: Use and Abuse of a Coastal Resource. New Zealand Aquatic Environment and Biodiversity Report No. 94. Ministry of Agriculture and Forestry, Wellington. |
[31] | Pawhestri SW, Hidayat JW, Putro SP (2015) Assessment of water quality using macrobenthos as bioindicator and its application on abundance-biomass comparison (ABC) curves. International Journal of Science and Engineering, 8, 84-87. |
[32] | Peharda M, Ezgeta-Balić D, Davenport J, Bojanić N, Vidjak O, Ninčević-Gladan Ž (2012) Differential ingestion of zooplankton by four species of bivalves (Mollusca) in the Mali Ston Bay, Croatia. Marine Biology, 159, 881-895. |
[33] | Pielou EC (1975) Ecological Diversity. Wiley, New York. |
[34] | Pogoda B, Boudry P, Bromley C, Cameron TC, Colsoul B, Donnan D, Hancock B, Hugh-Jones T, Preston J, Sanderson WG, Sas H, Brown J, Bonacic K, Nordheim HV, Ermgassen PSEZ(2020) NORA moving forward: Developing an oyster restoration network in Europe to support the Berlin Oyster Recommendation. Aquatic Conservation: Marine and Freshwater Ecosystems, 30, 2031-2037. |
[35] | Quan WM, An CG, Ma CY, Huang HJ, Cheng W, Wang YL, Shen XQ, Chen YQ (2012) Biodiversity and community structure of benthic macroinvertebrates on the Xiaomiaohong oyster reef in Jiangsu Province, China. Oceanologia et Limnologia Sinica, 43, 992-1000. (in Chinese with English abstract) |
[全为民, 安传光, 马春艳, 黄厚见, 成伟, 王云龙, 沈新强, 陈亚瞿 (2012) 江苏小庙洪牡蛎礁大型底栖动物多样性及群落结构. 海洋与湖沼, 43, 992-1000. ] | |
[36] | Quan WM, Zhang YL, Qi ZL, Xu M, Fan RL, Wang TN, Li NN, Sun ZY, Zhou HS, Li C, Zhang XW (2022) Distribution and ecological status of natural oyster reefs on the coast of Caofeidian-Leting, Tangshan, Hebei Province. Acta Ecologica Sinica, 42, 1142-1152. (in Chinese with English abstract) |
[全为民, 张云岭, 齐遵利, 许敏, 范瑞良, 王桃妮, 李楠楠, 孙兆跃, 周海生, 李春, 张秀文 (2022) 河北唐山曹妃甸-乐亭海域自然牡蛎礁分布及生态意义. 生态学报, 42, 1142-1152.] | |
[37] | Richkus WA, Menzie CA (2013) Application of an ecological risk assessment for evaluation of alternatives considered for restoration of oysters in Chesapeake Bay: Background and approach. Human and Ecological Risk Assessment, 19, 1172-1186. |
[38] | Shen GY, Shi BZ (2002) Marine Ecology. Xiamen University Press, Xiamen, Fujian. (in Chinese) |
[沈国英, 施并章 (2002) 海洋生态学. 厦门大学出版社, 福建厦门.] | |
[39] | Sun WS, Wen GY, Bai M, Li T, Zhang P, Dong XP, Yu J (2014) Investigation and analysis of biological resources in shallow sea living oyster reef area of Dashentang, Tianjin. Hebei Fisheries, (9), 23-26, 76. (in Chinese) |
[孙万胜, 温国义, 白明, 李彤, 张萍, 董学鹏, 于洁 (2014) 天津大神堂浅海活牡蛎礁区生物资源状况调查分析. 河北渔业, (9), 23-26, 76.] | |
[40] | Tang ML, Chen Y, Xian HY, Lian ZW, Jiang R, Huang HY, Peng XW, Hu DL (2021) An investigation of plankton and assessment of water quality in a typical reservoir of Guangzhou. Environmental Ecology, 3(9), 8-12. (in Chinese with English abstract) |
[唐美琳, 陈颖, 冼鸿仪, 连圳炜, 姜燃, 黄浩宇, 彭晓武, 胡大林 (2021) 广州市典型水库浮游生物调查与水质评价. 环境生态学, 3(9), 8-12]. | |
[41] | The Nature Conservancy (2022) Research Report on Habitat Protection and Restoration of Oyster Reefs in China. (in Chinese) |
[大自然保护协会 (2022) 中国牡蛎礁栖息地保护与修复研究报告.] http://www.tnc.org.cn/edm/China_Oyster_Reef_Research_Report.pdf. (accessed on 2022-06-09) | |
[42] | Wang XX, Gao YJ, Zuo M, Zhang XM, Li SW, Yang YY, Xu BQ, Li F, Wang YH (2022) Interannual variation and influencing factors of zooplankton in the Yellow River estuary before and after water and sediment discharge regulation from 2011 to 2020. Marine Sciences, 46(12), 115-127. (in Chinese with English abstract) |
[王秀霞, 高彦洁, 左明, 张孝民, 李少文, 杨艳艳, 徐炳庆, 李凡, 王育红 (2022) 2011-2020年调水调沙前后黄河口海域浮游动物年间变化及影响因子. 海洋科学, 46(12), 115-127.] | |
[43] | Wang Y, Mu XJ, Xu CF (2021) Preliminary study on marine ecological environment and pollution prevention in Laizhou Bay. Marine Environmental Science, 40, 823-831, 837. (in Chinese with English abstract) |
[王琰, 牟秀娟, 徐承芬 (2021) 莱州湾海洋生态环境状况与污染防治策略初探. 海洋环境科学, 40, 823-831, 837.] | |
[44] | Wang ZZ, Zhang JL, Gu HD, Li Z, Gong JX, Xu GJ, Ke H (2017) Evaluation on the macrozoobenthos status of oysters spawning ground in Yellow River Estuary and adjacent waters. Journal of Yangtze University (Natural Science Edition), 14(22), 37-44, 4-5. (in Chinese with English abstract) |
[王志忠, 张金路, 顾汉东, 李壮, 巩俊霞, 许国晶, 客涵 (2017) 黄河口牡蛎产卵场及邻近海域大型底栖动物现状评价. 长江大学学报(自科版), 14(22), 37-44, 4-5.] | |
[45] | Ward JE, Shumway SE (2004) Separating the grain from the chaff: Particle selection in suspension- and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology, 300, 83-130. |
[46] | Warwick RM (1986) A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology, 92, 557-562. |
[47] | Warwick RM, Clarke KR (1994) Relearning the ABC: Taxonomic changes and abundance/biomass relationships in disturbed benthic communities. Marine Biology, 118, 739-744. |
[48] | Wilhm JL (1968) Use of biomass units in Shannon’s formula. Ecology, 49, 153-156. |
[49] | Wong MC, Peterson CH, Piehler MF (2011) Evaluating estuarine habitats using secondary production as a proxy for food web support. Marine Ecology Progress Series, 440, 11-25. |
[50] | Yao GY, Zhang H, Xiong PP, Jia HX, Shi Y, He MX (2022) Community characteristics and genetic diversity of macrobenthos in Haima cold seep. Frontiers in Marine Science, 9, 920327. |
[51] | Yu MB, Zhu WB, Wang JX, Zhang QY, Wei HY, Mou DD (2022) Generation and elimination characteristics of Noctiluca scientillans inhabiting Rizhao near coast and their associations with seawater temperature and nutrients. Transactions of Oceanology and Limnology, 44(3), 65-70. (in Chinese with English abstract) |
[于美波, 朱文博, 王君霞, 张倩玉, 魏海英, 牟丹丹 (2022) 日照市近岸夜光藻生消特征及其与水温和营养盐的关联. 海洋湖沼通报, 44(3), 65-70.] | |
[52] | Zhang Y, Lü ZB, Xu ZF, Chen W, Chen JQ (2012) Impacts of environmental pollution on macrobenthos diversity in Xiaoqing estuary of Shandong Province, East China. Chinese Journal of Ecology, 31, 381-387. (in Chinese with English abstract) |
[张莹, 吕振波, 徐宗法, 陈玮, 陈建强 (2012) 环境污染对小清河口大型底栖动物多样性的影响. 生态学杂志, 31, 381-387.] | |
[53] | Zuo T, Zhang BY, Wang J, Zuo M, Wang AD (2024) Population structure of oysters in the natural oyster reef near the mouth of the Xiaodaohe River, southwest of the Yellow River Estuary. Acta Ecologica Sinica, 44, 3086-3097. (in Chinese with English abstract) |
[左涛, 张贝叶, 王俊, 左明, 王安东 (2024) 黄河口西南侧小岛河河口天然牡蛎礁的牡蛎种群结构. 生态学报, 44, 3086-3097.] |
[1] | 仝淼, 王欢, 张文双, 王超, 宋建潇. 重金属污染土壤中细菌抗生素抗性基因分布特征[J]. 生物多样性, 2025, 33(3): 24101-. |
[2] | 陈丁松, 刘子恺, 贺子洋, 陈伟东. 缓步动物多样性、分布特征和生态功能研究进展[J]. 生物多样性, 2025, 33(2): 24406-. |
[3] | 李艳朋, 陈洁, 卢春洋, 许涵. 海南尖峰岭热带山地雨林64 ha次生林动态监测样地群落结构特征[J]. 生物多样性, 2025, 33(2): 24445-. |
[4] | 魏诗雨, 宋天骄, 罗佳宜, 张燕, 赵子萱, 茹靖雯, 易华, 林雁冰. 秦岭火地塘针叶林土壤细菌群落的海拔分布格局[J]. 生物多样性, 2024, 32(9): 24180-. |
[5] | 时永强, 栾青杉, 单秀娟, 韦超, 赵永松, 孙策策, 金显仕. 长岛南部海域浮游动物多样性周年变化[J]. 生物多样性, 2024, 32(7): 23428-. |
[6] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[7] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
[8] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[9] | 吴芳芳, 刘娜, 何春梅, 原作强, 郝占庆, 尹秋龙. 秦岭山地木本植物群落结构及多样性的海拔梯度格局[J]. 生物多样性, 2024, 32(12): 24239-. |
[10] | 单航, 雷祖培, 郑方东, 韦博良, 仲磊, 于明坚. 2013-2023年浙江乌岩岭次生常绿阔叶林群落动态变化[J]. 生物多样性, 2024, 32(12): 24372-. |
[11] | 冯嘉谊, 练琚愉, 冯瑜莙, 张东旭, 曹洪麟, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直分层对群落结构及功能的影响[J]. 生物多样性, 2024, 32(12): 24306-. |
[12] | 王兴煜, 孟京辉, 任思远, 祝燕. 北京东灵山暖温带落叶阔叶林群落生物多样性与地上生物量的关系[J]. 生物多样性, 2024, 32(12): 24230-. |
[13] | 杜晴晴, 任思远, Nicole Tsz Shun Yuan, 祝燕. 北京东灵山暖温带落叶阔叶林幼树及成树生产力的影响因素[J]. 生物多样性, 2024, 32(12): 24284-. |
[14] | 黄骏涵, 余梵冬, 王裕祥, 黄哲, 张铭斯, 房苗, 舒璐, 徐猛, 韦慧, 汪学杰, 顾党恩, 罗思. 花地河中下游外来鱼类入侵现状及其与环境因子的关系[J]. 生物多样性, 2024, 32(11): 24249-. |
[15] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn