生物多样性 ›› 2025, Vol. 33 ›› Issue (4): 25019. DOI: 10.17520/biods.2025019 cstr: 32101.14.biods.2025019
收稿日期:
2025-01-13
接受日期:
2025-03-13
出版日期:
2025-04-20
发布日期:
2025-03-25
通讯作者:
*E-mail: chuxl@bnu.edu.cn
基金资助:
Chu Xiaolin*()(
), Zhang Quanguo(
)
Received:
2025-01-13
Accepted:
2025-03-13
Online:
2025-04-20
Published:
2025-03-25
Contact:
*E-mail: chuxl@bnu.edu.cn
Supported by:
摘要:
生物多样性的地理格局及其成因备受生态学家关注。演化速率假说(evolutionary speed hypothesis)是生物多样性纬度格局的主要解释之一。该假说认为低纬度地区物种形成速率更快, 并且温度是决定演化速率的主要环境因素。具体机制包括: (1)热带地区的高温能够缩短生物世代时间而增加物种的有效演化时间(单位时间内的有效世代数); (2)高温可以提高突变速率, 进而增加遗传变异——自然选择的原材料; (3)高温能够加速自然选择过程。尽管人们广泛地使用这一假说讨论野外观测数据, 严格的实验检验工作却很少。近期研究基于实验演化途径, 在精准控制环境温度的情形下, 对演化速率假说的具体机制进行了检验。本文对相关研究进行了全面总结, 对温度影响突变速率、选择和适应分化的实验演化研究进展进行了详细阐述, 并提出这些结论的普适性仍需要在更复杂的系统中进行验证。本文旨在为理解演化速率假说和生物多样性地理格局的形成机制提供帮助, 为预测气候变暖背景下的物种保护和疾病防控工作提供参考。
褚晓琳, 张全国 (2025) 演化速率假说的实验验证研究进展. 生物多样性, 33, 25019. DOI: 10.17520/biods.2025019.
Chu Xiaolin, Zhang Quanguo (2025) A review of experimental evidence for the evolutionary speed hypothesis. Biodiversity Science, 33, 25019. DOI: 10.17520/biods.2025019.
图3 高温增强选择作用示意图(改自Chu等(2020))。虚线代表祖先型菌株的适合度所在位置; 红线代表高温下的有利突变的适合度频率分布; 蓝线代表低温下的有利突变适合度频率分布。(a)高温通过增加有利突变的数量增强选择作用, (b)高温通过提高有利突变适合度后果增强选择作用。
Fig. 3 A diagram of the enhancement of selection by high temperature (Adapted by Chu et al (2020)). The vertical dashed line in each panel indicates the fitness of the wild type; red and blue lines represent the frequency distribution of fitness effects of beneficial mutations at high and low temperature, respectively. (a) High temperature increases the strength of selection by increasing the amount of beneficial mutations. (b) High temperature increases the strength of selection by enhancing the fitness effects of beneficial mutations.
[1] | Agrawal AF, Whitlock MC (2010) Environmental duress and epistasis: How does stress affect the strength of selection on new mutations? Trends in Ecology and Evolution, 25, 450-458. |
[2] | Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecology Letters, 9, 947-954. |
[3] | Allen AP, Gillooly JF, Brown James H (2007) Recasting the species-energy hypothesis:The different roles of kinetic and potential energy in regulating biodiversity. In: Scaling Biodiversity (eds Storch D, Marquet PA, Brown JH), pp. 283-299. Cambridge, UK. |
[4] | Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336-340. |
[5] | Anderson JT, Lee CR, Rushworth CA, Colautti RI, Mitchell-Olds T (2013) Genetic trade-offs and conditional neutrality contribute to local adaptation. Molecular Ecology, 22, 699-708. |
[6] | Arrhenius SA (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie, 4, 226-248. |
[7] | Baer CF, Phillips N, Ostrow D, Avalos A, Blanton D, Boggs A, Keller T, Levy L, Mezerhane E (2006) Cumulative effects of spontaneous mutations for fitness in Caenorhabditis: Role of genotype, environment and stress. Genetics, 174, 1387-1395. |
[8] | Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics, 2, e106. |
[9] | Belfield EJ, Brown C, Ding ZJ, Chapman L, Luo M, Hinde E, van Es SW, Johnson S, Ning Y, Zheng SJ, Mithani A, Harberd NP (2021) Thermal stress accelerates Arabidopsis thaliana mutation rate. Genome Research, 31, 40-50. |
[10] | Bell G (1990) The ecology and genetics of fitness in Chamydomonas. I. Genotype-by-environment interaction among pure strains. Proceedings of the Royal Society B: Biological Sciences, 240, 295-321. |
[11] | Bennett AF, Lenski RE (1993) Evolutionary adaptation to temperature II. Thermal niches of experimental lines of Escherichia coli. Evolution, 47, 1-12. |
[12] | Berger D, Stångberg J, Baur J, Walters RJ (2021) Elevated temperature increases genome-wide selection on de novo mutations. Proceedings of the Royal Society B: Biological Sciences, 288, 20203094. |
[13] | Bestion E, García-Carreras B, Schaum CE, Pawar S, Yvon-Durocher G (2018) Metabolic traits predict the effects of warming on phytoplankton competition. Ecology Letters, 21, 655-664. |
[14] | Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proceedings of the National Academy of Sciences, USA, 105, 7899-7906. |
[15] | Brown JH (1981) Two decades of homage to Santa Rosalia: Toward a general theory of diversity. American Zoologist, 21, 877-888. |
[16] | Çaglayan M, Bilgin N (2012) Temperature dependence of accuracy of DNA polymerase I from Geobacillus anatolicus. Biochimie, 94, 1968-1973. |
[17] | Chu XL, Buckling A, Zhang QG (2023) Source-sink migration of natural enemies drives maladaptation of victim populations in sink habitats. Evolution, 77, 1902-1909. |
[18] | Chu XL, Zhang BW, Zhang QG, Zhu BR, Lin K, Zhang DY (2018) Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC Evolutionary Biology, 18, 126. |
[19] | Chu XL, Zhang DY, Buckling A, Zhang QG (2020) Warmer temperatures enhance beneficial mutation effects. Journal of Evolutionary Biology, 33, 1020-1027. |
[20] | Chu XL, Zhang QG (2021) Consequences of mutation accumulation for growth performance are more likely to be resource-dependent at higher temperatures. BMC Ecology and Evolution, 21, 109. |
[21] | Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rainforest trees. In: Dynamics of Populations (eds den Boer PJ, Gradwell GR), pp. 298-312. Centre for Agricultural Publishing and Documentation, Wageningen. |
[22] | Cooper VS, Bennett AF, Lenski RE (2001) Evolution of thermal dependence of growth rate of Escherichia coli populations during 20,000 generations in a constant environment. Evolution, 55, 889-896. |
[23] | Cossins AR, Bowler K (1987) Temperature Biology of Animals. Chapman & Hall, New York. |
[24] | Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D (2015) Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology, 21, 1025-1040. |
[25] | Dandage R, Pandey R, Jayaraj G, Rai M, Berger D, Chakraborty K (2018) Differential strengths of molecular determinants guide environment specific mutational fates. PLoS Genetics, 14, e1007419. |
[26] | DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence space: A biophysical view of protein evolution. Nature Reviews Genetics, 6, 678-687. |
[27] | Dickinson WJ (2008) Synergistic fitness interactions and a high frequency of beneficial changes among mutations accumulated under relaxed selection in Saccharomyces cerevisiae. Genetics, 178, 1571-1578. |
[28] | Dowle EJ, Morgan-Richards M, Trewick SA (2013) Molecular evolution and the latitudinal biodiversity gradient. Heredity, 110, 501-510. |
[29] | Drake JW (1966) Spontaneous mutations accumulating in bacteriophage T4 in the complete absence of DNA replication. Proceedings of the National Academy of Sciences, USA, 55, 738-743. |
[30] | Drake JW (2012) Contrasting mutation rates from specific-locus and long-term mutation-accumulation procedures. G3: Genes, Genomes, Genetics, 2, 483-485. |
[31] | Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, Marquis RJ, Ricklefs RE, Greeney HF, Wagner DL, Morais HC, Diniz IR, Kursar TA, Coley PD (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature, 448, 696-699. |
[32] | Echave J, Wilke CO (2017) Biophysical models of protein evolution: Understanding the patterns of evolutionary sequence divergence. Annual Review of Biophysics, 46, 85-103. |
[33] | Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Molecular Ecology, 17, 1170-1188. |
[34] | Fischer AG (1960) Latitudinal variations in organic diversity. Evolution, 14, 64-81. |
[35] | Foster PL, Lee H, Popodi E, Townes JP, Tang H (2015) Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proceedings of the National Academy of Sciences, USA, 112, E5990-E5999. |
[36] | Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227. |
[37] | Gillman LN, Wright SD (2014) Species richness and evolutionary speed: The influence of temperature, water and area. Journal of Biogeography, 41, 39-51. |
[38] | Gillooly JF (2000) Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research, 22, 241-251. |
[39] | Gillooly JF, Allen AP, West GB, Brown JH (2005) The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences, USA, 102, 140-145. |
[40] | Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature, 417, 70-73. |
[41] | Goho S, Bell G (2000) Mild environmental stress elicits mutations affecting fitness in Chlamydomonas. Proceedings of the Royal Society B: Biological Sciences, 267, 123-129. |
[42] | Gugi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens. Journal of Bacteriology, 173, 3814-3820. |
[43] | Halligan DL, Keightley PD (2009) Spontaneous mutation accumulation studies in evolutionary genetics. Annual Review of Ecology, Evolution, and Systematics, 40, 151-172. |
[44] | Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793. |
[45] | Heller KB, Höfer M (1975) Temperature dependence of the energy-linked monosaccharide transport across the cell membrane of Rhodotorula gracilis. The Journal of Membrane Biology, 21, 261-271. |
[46] | Hirao AS, Watanabe M, Tsuyuzaki S, Shimono A, Li X, Masuzawa T, Wada N (2017) Genetic diversity within populations of an arctic-alpine species declines with decreasing latitude across the Northern Hemisphere. Journal of Biogeography, 44, 2740-2751. |
[47] | Hochachka PW, Somero GN (2002) Biochemical Adaptation:Mechanism and Process in Physiological Evolution. Oxford University Press, New York. |
[48] | Huang JH (1994) The spatial pattern of species diversity and its forming mechanism. Chinese Biodiversity 2, 103-107. (in Chinese with English abstract) |
[黄建辉 (1994) 物种多样性的空间格局及其形成机制初探. 生物多样性, 2, 103-107.] | |
[49] | Huston M (1979) A general hypothesis of species diversity. The American Naturalist, 113, 81-101. |
[50] | Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145-159. |
[51] | Igea J, Tanentzap AJ (2020) Angiosperm speciation cools down in the tropics. Ecology Letters, 23, 692-700. |
[52] | Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science, 314, 102-106. |
[53] | Janzen DH, Naturalist TA, Dec NN (1970) Herbivores and number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
[54] | Kawecki TJ, Barton NH, Fry JD (1997) Mutational collapse of fitness in marginal habitats and the evolution of ecological specialisation. Journal of Evolutionary Biology, 10, 407-429. |
[55] | Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK. |
[56] | Kondrashov FA, Kondrashov AS (2010) Measurements of spontaneous rates of mutations in the recent past and the near future. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 1169-1176. |
[57] | Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proceedings of the National Academy of Sciences, USA, 104, 15388-15393. |
[58] | Lindgren D (1972) The temperature influence on the spontaneous mutation rate. Hereditas, 70, 165-178. |
[59] | Liu H, Sun M, Zhang J (2023) Genomic estimates of mutation and substitution rates contradict the evolutionary speed hypothesis of the latitudinal diversity gradient. Proceedings of the Royal Society B: Biological Sciences, 290, 20231787. |
[60] | Lodish H, Berk A, Kaiser CA, Kreiger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (2008) Molecular Cell Biology. W.H. Freeman, New York. |
[61] | Lynch M, Butcher D, Bürger R, Gabriel W (1993) The mutational meltdown in asexual populations. Journal of Heredity, 84, 339-344. |
[62] | MacArthur RH (1969) Patterns of communities in the tropics. Biological Journal of the Linnean Society, 1, 19-30. |
[63] | MacArthur RH (1972) Geographical Ecology. Harper & Row, New York. |
[64] | MacLean RC, Millan AS (2019) The evolution of antibiotic resistance. Science, 365, 1082-1083. |
[65] | Malerba ME, Marshall DJ (2019) Testing the drivers of the temperature-size covariance using artificial selection. Evolution, 74, 169-178. |
[66] | Mannion PD, Upchurch P, Benson RBJ, Goswami A (2014) The latitudinal biodiversity gradient through deep time. Trends in Ecology and Evolution, 29, 42-50. |
[67] | Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences, USA, 90, 4087-4091. |
[68] | Martin PR, McKay JK (2004) Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution, 58, 938-945. |
[69] | Meyer JR, Kassen R (2007) The effects of competition and predation on diversification in a model adaptive radiation. Nature, 446, 432-435. |
[70] | Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science, 337, 349-351. |
[71] | Novick A, Szilard L (1950) Experiments with the chemostat on spontaneous mutations of bacteria. Proceedings of the National Academy of Sciences, USA, 36, 708-719. |
[72] | Ohta T (1992) The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics, 23, 263-286. |
[73] | Oppold A-M, Pedrosa JAM, Bálint M, Diogo JB, Ilkova J, Pestana JLT, Pfenninger M (2016) Support for the evolutionary speed hypothesis from intraspecific population genetic data in the non-biting midge Chironomus riparius. Proceedings of the Royal Society B: Biological Sciences, 283, 20152413. |
[74] | Padfield D, Castledine M, Buckling A (2020) Temperature- dependent changes to host-parasite interactions alter the thermal performance of a bacterial host. The ISME Journal, 14, 389-398. |
[75] | Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G (2016) Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecology Letters, 19, 133-142. |
[76] | Pianka ER (1966) Latitudinal gradients in species diversity: A review of concepts. The American Naturalist, 100, 33-46. |
[77] | Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, Friedman M, Kaschner K, Garilao C, Near TJ, Coll M, Alfaro ME (2018) An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559, 392-395. |
[78] | Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature, 394, 69-72. |
[79] | Reboud X, Bell G (1997) Experimental evolution in Chlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time. Heredity, 78, 507-514. |
[80] | Rensch B (1959) Evolution above the Species Level. Methuen, London. |
[81] | Rohde K (1992) Latitudinal gradients in species diversity: The search for the primary cause. Oikos, 65, 514-527. |
[82] | Roles AJ, Conner JK (2008) Fitness effects of mutation accumulation in a natural outbred population of wild radish (Raphanus raphanistrum): Comparison of field and greenhouse environments. Evolution, 62, 1066-1075. |
[83] | Ryan FJ, Kiritani K (1959) Effect of temperature on natural mutation in Escherichia coli. Journal of General Microbiology, 20, 644-653. |
[84] | Salisbury CL, Seddon N, Cooney CR, Tobias JA (2012) The latitudinal gradient in dispersal constraints: Ecological specialisation drives diversification in tropical birds. Ecology Letters, 15, 847-855. |
[85] | Schemske DW (2002) Ecological and evolutionary perspectives on the origins of tropical diversity. In: Foundations of Tropical Forest Biology (eds Chazdon RL, Whitmore TC), pp. 163-173. University of Chicago Press, Chicago. |
[86] | Schemske DW (2009) Biotic interactions and speciation in the tropics.In: Speciation and Patterns of Diversity (eds Roger Butlin RK, Bridle JR, Schluter D), pp. 219-239. Cambridge University Press, Cambridge, UK. |
[87] | Shigenaga MK, Gimeno CJ, Ames BN (1989) Urinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proceedings of the National Academy of Sciences, USA, 86, 9697-9701. |
[88] | Sun M, Folk RA, Gitzendanner MA, Soltis PS, Chen Z, Soltis DE, Guralnick RP (2020) Recent accelerated diversification in rosids occurred outside the tropics. Nature Communications, 11, 3333. |
[89] | Susila H, Nasim Z, Ahn JH (2018) Ambient temperature- responsive mechanisms coordinate regulation of flowering time. International Journal of Molecular Sciences, 19, 3196. |
[90] | Szafraniec K, Borts RH, Korona R (2001) Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, USA, 98, 1107-1112. |
[91] | Tang ZY, Wang ZH, Fang JY (2009) Historical hypothesis in explaining spatial patterns of species richness. Biodiversity Science, 17, 635-643. (in Chinese with English abstract) |
[唐志尧, 王志恒, 方精云 (2009) 生物多样性分布格局的地史成因假说. 生物多样性, 17, 635-643.] | |
[92] | Tokuriki N, Tawfik DS (2009) Stability effects of mutations and protein evolvability. Current Opinion in Structural Biology, 19, 596-604. |
[93] | Travisano M, Lenski RE (1996) Long-term experimental evolution in Escherichia coli. IV. Targets of selection and specificity of adaptation. Genetics, 143, 15-26. |
[94] | Trindade S, Perfeito L, Gordo I (2010) Rate and effects of spontaneous mutations that affect fitness in mutator Escherichia coli. Philosophical transactions of the Royal Society B: Biological Sciences, 365, 1177-1186. |
[95] | Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecology Letters, 8, 767-781. |
[96] | Vermeij GJ (2005) From phenomenology to first principles: Toward a theory of diversity. Proceedings of the California Academy of Sciences, 56, 12-23. |
[97] | Waldvogel AM, Pfenninger M (2021) Temperature dependence of spontaneous mutation rates. Genome Research, 31, 1582-1589. |
[98] | Wang ZH, Tang ZY, Fang JY (2009) The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science, 17, 613-624. (in Chinese with English abstract) |
[王志恒, 唐志尧, 方精云 (2009) 物种多样性地理格局的能量假说. 生物多样性, 17, 613-624.] | |
[99] | Witkin EM (1953) Effects of temperature on spontaneous and induced mutations in Escherichia coli. Proceedings of the National Academy of Sciences, USA, 39, 427-433. |
[100] | Woolfit M, Bromham L (2005) Population size and molecular evolution on islands. Proceedings of the Royal Society B: Biological Sciences, 272, 2277-2282. |
[101] | Wright DH (1983) Species-energy theory: An extension of species-area theory. Oikos, 41, 496-506. |
[102] | Wright SD, Gillman LN, Ross HA, Keeling DJ (2009) Slower tempo of microevolution in island birds: Implications for conservation biology. Evolution, 63, 2275-2287. |
[103] | Wu CI, Li WH (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences, USA, 82, 1741-1745. |
[104] | Yang YH, Rao S, Hu HF, Chen AP, Ji CJ, Zhu B, Zuo WY, Li XR, Shen HH, Wang ZH, Tang YH, Fang JY (2004) Plant species richness of alpine grasslands in relation to environmental factors and biomass on the Tibetan Plateau. Biodiversity Science, 12, 200-205. (in Chinese with English abstract) |
[杨元合, 饶胜, 胡会峰, 陈安平, 吉成均, 朱彪, 左闻韵, 李轩然, 沈海花, 王志恒, 唐艳鸿, 方精云 (2004) 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系. 生物多样性, 12, 200-205.] | |
[105] | Zhang QG, Buckling A, Godfray HCJ (2009) Quantifying the relative importance of niches and neutrality for coexistence in a model microbial system. Functional Ecology, 23, 1139-1147. |
[106] | Zhang QG, Lu HS, Buckling A (2018) Temperature drives diversification in a model adaptive radiation. Proceedings of the Royal Society B: Biological Sciences, 285, 20181515. |
[107] | Zheng J, Payne JL, Wagner A (2019) Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science, 365, 347-353. |
[1] | 曹东, 李焕龙, 彭扬, 魏存争. 植物基因组大小与性状关系的研究进展[J]. 生物多样性, 2025, 33(2): 24192-. |
[2] | 陈楠, 张全国. 实验进化研究途径[J]. 生物多样性, 2024, 32(9): 24171-. |
[3] | 李佳琪, 冯一迪, 王蕾, 潘盆艳, 刘潇如, 李雪阳, 王怡涵, 王放. 上海城市环境中貉的食性分析及家域范围内的栖息地选择[J]. 生物多样性, 2024, 32(8): 24131-. |
[4] | 王瑞武, 于云云, 朱其凯, 王超, 李敏岚, 韩嘉旭. 路径依赖的选择——统一自然选择与中性选择[J]. 生物多样性, 2024, 32(7): 24120-. |
[5] | 张明军, 王合升, 颜文博, 符运南, 王琦, 曾治高. 海南大田国家级自然保护区小灵猫的活动节律与栖息地选择[J]. 生物多样性, 2024, 32(6): 23420-. |
[6] | 吕燕文, 王子韵, 肖钰, 何梓晗, 吴超, 胡新生. 谱系分选理论与检测方法的研究进展[J]. 生物多样性, 2024, 32(4): 23400-. |
[7] | 王鹏, 隋佳容, 丁欣瑶, 王伟中, 曹雪倩, 赵海鹏, 王彦平. 郑州城市公园鸟类群落嵌套分布格局及其影响因素[J]. 生物多样性, 2024, 32(3): 23359-. |
[8] | 张梓欣, 张承云, 郝泽周, 何凯莹, 黄泳桥, 肖治术. 陆地生物声学数据采集设备的进展及展望[J]. 生物多样性, 2024, 32(10): 24265-. |
[9] | 何远思, 张轶宣, 王代平. 配偶行为相容性对动物繁殖的影响[J]. 生物多样性, 2023, 31(6): 22534-. |
[10] | 曾青, 熊超, 尹梅, 葛安辉, 韩丽丽, 张丽梅. 植物微生物组生态功能与群落构建过程研究进展[J]. 生物多样性, 2023, 31(4): 22667-. |
[11] | 蒋景龙, 颜文博, 胡凤成, 王琦, 孙旺, 李耘, 王勇. 濒危植物秦岭石蝴蝶野外回归早期探索[J]. 生物多样性, 2023, 31(3): 22520-. |
[12] | 王怡涵, 赵倩倩, 刁奕欣, 顾伯健, 翁悦, 张卓锦, 陈泳滨, 王放. 基于红外相机调查上海市区小灵猫的活动节律、栖息地利用及其对人类活动的响应[J]. 生物多样性, 2023, 31(2): 22294-. |
[13] | 金恒镳. 从天择到人择: 在华莱士的肩膀上看地球的未来[J]. 生物多样性, 2023, 31(12): 23267-. |
[14] | 李婷婷, 朱锡红, 吴光年, 宋虓, 徐爱春. 镇海棘螈产卵场微生境选择[J]. 生物多样性, 2023, 31(1): 22293-. |
[15] | 董浩, 柯子怡, 武亚涛, 苗珺琪, 张方. 雄性凹耳蛙不同合唱期鸣声特征的变化[J]. 生物多样性, 2023, 31(1): 22217-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn