生物多样性 ›› 2025, Vol. 33 ›› Issue (1): 24228. DOI: 10.17520/biods.2024228 cstr: 32101.14.biods.2024228
陈自宏1,2(), 张翼飞1,2(
), 陈凯1,2(
), 陈见影3, 徐玲1,2,*(
)(
)
收稿日期:
2024-06-11
接受日期:
2024-09-09
出版日期:
2025-01-20
发布日期:
2024-12-20
通讯作者:
* E-mail: 基金资助:
Zihong Chen1,2(), Yifei Zhang1,2(
), Kai Chen1,2(
), Jianying Chen3, Ling Xu1,2,*(
)(
)
Received:
2024-06-11
Accepted:
2024-09-09
Online:
2025-01-20
Published:
2024-12-20
Contact:
* E-mail: Supported by:
摘要:
高黎贡山南段立体气候明显、生境复杂多样, 生物多样性较高, 但目前对其昆虫病原真菌资源的关注较少。为了解高黎贡山南段昆虫病原真菌的物种多样性及分布格局, 本研究在该区域不同海拔生境中进行了昆虫病原真菌资源的调查。于2019-2021年在该区域沿海拔(700-3,100 m)梯度每上升100 m设置样地, 采集土样和受感染昆虫标本, 分离昆虫病原真菌菌株和鉴定物种; 将样区分为5个海拔段(I-V), 用α多样性分析昆虫病原真菌的物种多样性和分布特征, 用β多样性分析其群落结构, 通过Pearson相关性和冗余分析(redundancy analysis, RDA)分析生境生态因子对其物种多样性的影响。结果表明, 从高黎贡山南段共获得昆虫病原真菌菌株2,175株, 隶属于5科20属78种, 其中从土壤样品中获得24种1,331株昆虫病原真菌, 从昆虫样品中获得66种844株昆虫病原真菌。中海拔段III (中山湿性常绿阔叶林)中昆虫病原真菌物种丰富度(49种)和菌株数(766株)最高; 中海拔段II (亚热带雨林)和Ⅲ的Shannon-Wiener多样性指数(分别为2.686和2.677)和Simpson多样性指数(分别为0.884和0.876)最高; 高海拔段V的Simpson优势度指数(0.615)最高; 低海拔段I (干热河谷)的Pielou均匀度指数(0.790)最高。海拔对两种来源(土壤和昆虫)的昆虫病原真菌物种多样性均有显著影响; 来自土壤的昆虫病原真菌受土壤温度的影响较大, 而来自昆虫的昆虫病原真菌受空气湿度的影响较大; 土壤pH值对该区域昆虫病原真菌多样性的影响较小。研究结果表明, 高黎贡山南段的昆虫病原真菌资源丰富, 广泛分布于各海拔段。
陈自宏, 张翼飞, 陈凯, 陈见影, 徐玲 (2025) 高黎贡山南段昆虫病原真菌物种多样性及影响因素. 生物多样性, 33, 24228. DOI: 10.17520/biods.2024228.
Zihong Chen, Yifei Zhang, Kai Chen, Jianying Chen, Ling Xu (2025) Species diversity of entomopathogenic fungi and the influencing factors in the Southern Gaoligong Mountains. Biodiversity Science, 33, 24228. DOI: 10.17520/biods.2024228.
海拔段 Altitude sections | 植被类型 Vegetation type | 采样地 Sampling location | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil humidity (%) | 空气温度 Air temperature (℃) | 空气湿度 Air humidity (%) | pH值 pH value |
---|---|---|---|---|---|---|---|
I (700-1,100 m) | 干热河谷 Dry-hot vally | 潞江坝 Lujiang Dam | 23.3-27.3 | 14.5-25.9 | 26.5-31.1 | 59.1-67.4 | 6.2-6.6 |
II (1,200-1,600 m) | 亚热带雨林 Subtropical rain forest | 澡塘河、鱼洞河、旱龙寨 Zaotang River, Yudong River, and Hanlong village | 16.8-23.7 | 41.5-60.7 | 17.9-29.6 | 63.0-71.3 | 6.3-6.9 |
III (1,700-2,100 m) | 中山湿性常绿阔叶林 Middle mountain wet evergreen broad-leaved forest | 旧街子、二台坡、林家铺 Jiujiezi, Ertaipo, and Linjiapu | 16.1-20.2 | 55.6-62.6 | 17.4-26.3 | 67.5-74.8 | 6.0-6.4 |
IV (2,200-2,600 m) | 针阔混交林 Mixed broadleaf-conifer forest | 赧亢、黄竹河 Nankang and Huangzhu River | 14.2-15.1 | 47.9-59.9 | 15.7-16.7 | 65.0-72.1 | 6.5-6.7 |
V (2,700-3,100 m) | 针叶林 Coniferous forest | 南斋公房 South Zhaigongfang | 11.0-13.2 | 56.9-71.8 | 13.7-15.7 | 70.1-76.0 | 6.2-6.7 |
表1 高黎贡山南段不同海拔段的生态因子(2019-2021年6-9月)
Table 1 Ecological factors at different altitude sections along the Southern Gaoligong Mountains (June-September 2019-2021)
海拔段 Altitude sections | 植被类型 Vegetation type | 采样地 Sampling location | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil humidity (%) | 空气温度 Air temperature (℃) | 空气湿度 Air humidity (%) | pH值 pH value |
---|---|---|---|---|---|---|---|
I (700-1,100 m) | 干热河谷 Dry-hot vally | 潞江坝 Lujiang Dam | 23.3-27.3 | 14.5-25.9 | 26.5-31.1 | 59.1-67.4 | 6.2-6.6 |
II (1,200-1,600 m) | 亚热带雨林 Subtropical rain forest | 澡塘河、鱼洞河、旱龙寨 Zaotang River, Yudong River, and Hanlong village | 16.8-23.7 | 41.5-60.7 | 17.9-29.6 | 63.0-71.3 | 6.3-6.9 |
III (1,700-2,100 m) | 中山湿性常绿阔叶林 Middle mountain wet evergreen broad-leaved forest | 旧街子、二台坡、林家铺 Jiujiezi, Ertaipo, and Linjiapu | 16.1-20.2 | 55.6-62.6 | 17.4-26.3 | 67.5-74.8 | 6.0-6.4 |
IV (2,200-2,600 m) | 针阔混交林 Mixed broadleaf-conifer forest | 赧亢、黄竹河 Nankang and Huangzhu River | 14.2-15.1 | 47.9-59.9 | 15.7-16.7 | 65.0-72.1 | 6.5-6.7 |
V (2,700-3,100 m) | 针叶林 Coniferous forest | 南斋公房 South Zhaigongfang | 11.0-13.2 | 56.9-71.8 | 13.7-15.7 | 70.1-76.0 | 6.2-6.7 |
图1 高黎贡山南段部分虫草标本的形态。A: 蛹虫草; B: 白斑橙头虫草; C: 蝉花; D: 环链虫草; E. 玫烟色虫草; F: 细脚虫草; G: 蜂头线虫草; H: 沫蝉虫草; I: 拟下垂线虫草; J: 紫色野村菌; K: 淡紫紫孢菌; L: 汤普森线虫草; M: 金龟子绿僵菌; N: 贵州绿僵菌; O: 瘿绵蚜绿僵菌; P: 莱氏绿僵菌; Q: 棕色绿僵菌; R: 毒蛾绿僵菌。标尺 = 1 cm。
Fig. 1 Morphology of some Cordyceps specimens from Southern Gaoligong Mountains. A, Cordyceps militaris; B, C. albocitrina; C, C. cicadae; D, C. cateniannulata; E, C. fumosorosea; F, C. tenuipes; G, Ophiocordyceps sphecocephala; H, O. tricentric; I, O. neonutans; J, Nomuraea atypicola; K, Purpureocillium lilacinus; L, O. thompsonii; M, Metarhizium anisopliae; N, M. guizhouense; O, M. pemphigi; P, M. rileyi; Q, M. brunneum; R, M. lymantriidae. Bars = 1 cm.
图2 高黎贡山南段昆虫病原真菌多基因(nrSSU, nrLSU, EF-1α, RPB1和RPB2)最大似然法(ML)系统发育树。来自高黎贡山南段的材料被标为红色加粗字体。外圈相同颜色的区域为同一科的物种。科和属的中文名见附录1。物种后的序号为该菌株 GenBank登录号。分支节点上的数字表示支持度。标尺表示遗传距离。“*”表示该物种的模式菌株。
Fig. 2 Maximum likelihood (ML) tree of entomopathogenic fungi in the Southern Gaoligong Mountains based on multigene (nrSSU, nrLSU, EF-1α, RPB1 and RPB2) dataset. Those from the Southern Gaoligong Mountains are marked in red and bold. The regions of the same color in the outer circle represent species belonging to the same family. The Chinese names of the families and the genera are shown in Appendix 1. The serial numbers after the species name are the GenBank accession numbers of the strains. The number above each branch node represents the support value. The scale bar indicates the genetic distance. Asterisk indicated the type strains in the species.
图3 高黎贡山南段不同海拔段昆虫病原真菌群落的稀疏曲线。实线部分是利用个体数和物种数实测值的内插值, 虚线部分是利用个体数和物种数实测值外延的预测值。I-V为不同海拔段。
Fig. 3 The rarefraction curves of entomopathogenic fungi at different altitude sections along the Southern Gaoligong Mountains. The solid line represents the internal interpolation of measured values using the number of individuals and species; the dashed line represents the predicted value using the epitaxy of measured values of the number of individuals and species. I‒V are different altitude sections.
海拔段 Altitude sections | 菌株数 Strain number | 物种丰富度 Species richness | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson多样性指数 Simpson diversity index | Simpson优势度指数 Simpson dominance index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|---|---|
I (700-1,100 m) | 218 | 12 | 1.962 | 0.799 | 0.201 | 0.790 |
II (1,200-1,600 m) | 491 | 38 | 2.686 | 0.884 | 0.116 | 0.738 |
Ⅲ (1,700-2,100 m) | 766 | 49 | 2.677 | 0.876 | 0.124 | 0.688 |
IV (2,200-2,600 m) | 447 | 20 | 1.960 | 0.782 | 0.218 | 0.654 |
V (2,700-3,100 m) | 253 | 6 | 0.807 | 0.385 | 0.615 | 0.450 |
表2 高黎贡山南段不同海拔区域昆虫病原真菌的垂直分布
Table 2 Vertical distribution of entomopathogenic fungi at different altitude sections along the Southern Gaoligong Mountains
海拔段 Altitude sections | 菌株数 Strain number | 物种丰富度 Species richness | Shannon-Wiener多样性指数 Shannon-Wiener diversity index | Simpson多样性指数 Simpson diversity index | Simpson优势度指数 Simpson dominance index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|---|---|
I (700-1,100 m) | 218 | 12 | 1.962 | 0.799 | 0.201 | 0.790 |
II (1,200-1,600 m) | 491 | 38 | 2.686 | 0.884 | 0.116 | 0.738 |
Ⅲ (1,700-2,100 m) | 766 | 49 | 2.677 | 0.876 | 0.124 | 0.688 |
IV (2,200-2,600 m) | 447 | 20 | 1.960 | 0.782 | 0.218 | 0.654 |
V (2,700-3,100 m) | 253 | 6 | 0.807 | 0.385 | 0.615 | 0.450 |
图4 不同海拔段来自土壤和昆虫的昆虫病原真菌菌株(A)和物种数(B)变化。I-V为不同海拔段。I: 700-1,100 m; II: 1,200-1,600 m; III: 1,700-2,100 m; IV: 2,200-2,600 m; V: 2,700-3,100 m。
Fig. 4 Variation in the number of strains (A) and species (B) of soil- and insect-derived entomopathogenic fungi from different altitude sections. I-V are different altitude sections. I, 700-1,100 m; II, 1,200-1,600 m; III, 1,700-2,100 m; IV, 2,200-2,600 m; V, 2,700-3,100 m.
图5 高黎贡山南段不同海拔段昆虫病原真菌群落聚类图。A: 来自土壤; B: 来自昆虫。标尺表示样本间的距离或差异程度,数值越接近0, 说明对应海拔段的样本在物种组成上相似度越高。
Fig. 5 Community cluster map of entomopathogenic fungi at different altitude sections in the Southern Gaoligong Mountains. A, From soil; B, From insect. The scale represents the distance or degree of difference between samples. The closer the value is to 0, the higher the similarity in species composition of the samples corresponding to the altitude sections.
海拔段 Altitude sections | 相似性系数 Similarity coefficient | ||||
---|---|---|---|---|---|
I | II | III | IV | ||
来自土壤 Soil-derived | II | 0.564 | |||
III | 0.385 | 0.505 | |||
IV | 0.398 | 0.553 | 0.527 | ||
V | 0.221 | 0.214 | 0.255 | 0.452 | |
来自昆虫 Insect-derived | II | 0.054 | |||
III | 0.037 | 0.295 | |||
IV | 0.078 | 0.092 | 0.082 | ||
V | 0.020 | 0.008 | 0.016 | 0.065 |
表3 高黎贡山南段不同海拔段昆虫病原真菌群落的相似性分析。I-V为不同海拔段, I: 700-1,100 m; II: 1,200-1,600 m; III: 1,700-2,100 m; IV: 2,200-2,600 m; V: 2,700-3,100 m。
Table 3 Community similarity analysis of entomopathogenic fungi at different altitude sections in the Southern Gaoligong Mountains. I-V are different altitude sections. I, 700-1,100 m; II, 1,200-1,600 m; III, 1,700-2,100 m; IV, 2,200-2,600 m; V, 2,700-3,100 m.
海拔段 Altitude sections | 相似性系数 Similarity coefficient | ||||
---|---|---|---|---|---|
I | II | III | IV | ||
来自土壤 Soil-derived | II | 0.564 | |||
III | 0.385 | 0.505 | |||
IV | 0.398 | 0.553 | 0.527 | ||
V | 0.221 | 0.214 | 0.255 | 0.452 | |
来自昆虫 Insect-derived | II | 0.054 | |||
III | 0.037 | 0.295 | |||
IV | 0.078 | 0.092 | 0.082 | ||
V | 0.020 | 0.008 | 0.016 | 0.065 |
图6 高黎贡山南段不同海拔昆虫病原真菌物种相对丰度。A: 来自土壤; B: 来自昆虫。I-V为不同海拔段。I: 700-1,100 m; II: 1,200-1,600 m; III: 1,700-2,100 m; IV: 2,200-2,600 m; V: 2,700-3,100 m。各物种中文名见附录1。
Fig. 6 Relative abundance of entomopathogenic fungi species at different altitudes in the Southern Gaoligong Mountains. A, From soil; B, From insect. I-V are different altitude sections. I, 700-1,100 m; II, 1,200-1,600 m; III, 1,700-2,100 m; IV, 2,200-2,600 m; V, 2,700-3,100 m. The Chinese names of each species are shown in Appendix 1.
菌株来源 Strain source | 优势种 Dominant species | 菌株数 Strain number | 菌株数百分比 Percentage (%) | 各海拔段菌株数占比 Percentage of strain number in each altitude section (%) | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | ||||
土壤 Soil | 球孢白僵菌 Beauveria bassiana | 588 | 44.18 | 40.80 | 28.93 | 32.73 | 42.48 | 79.27 |
棕色绿僵菌 Metarhizium brunneum | 410 | 30.80 | 34.48 | 41.74 | 42.12 | 30.97 | 2.03 | |
平沙绿僵菌 M. pingshaense | 94 | 7.06 | - | 4.55 | 1.21 | 13.57 | 13.41 | |
昆虫 Insects | 球孢白僵菌 Beauveria bassiana | 153 | 18.13 | - | 16.06 | 20.64 | 21.30 | - |
蝉花 Cordyceps cicadae | 103 | 12.20 | - | 16.87 | 13.99 | - | - | |
垂头线虫草 Ophiocordyceps nutans | 74 | 8.77 | - | 17.27 | 7.11 | - | - |
表4 高黎贡山南段优势种分布特征。“-”表示该海拔段没有发现此物种。I-V为不同海拔段, I: 700-1,100 m; II: 1,200-1,600 m; III: 1,700-2,100 m; IV: 2,200-2,600 m; V: 2,700-3,100 m。
Table 4 Distribution characteristics of dominant species in the Southern Gaoligong Mountains. “-” means the species has not been found at the altitude sections. I-V are different altitude sections. I, 700-1,100 m; II, 1,200-1,600 m; III, 1,700-2,100 m; IV, 2,200-2,600 m; V, 2,700-3,100 m.
菌株来源 Strain source | 优势种 Dominant species | 菌株数 Strain number | 菌株数百分比 Percentage (%) | 各海拔段菌株数占比 Percentage of strain number in each altitude section (%) | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | ||||
土壤 Soil | 球孢白僵菌 Beauveria bassiana | 588 | 44.18 | 40.80 | 28.93 | 32.73 | 42.48 | 79.27 |
棕色绿僵菌 Metarhizium brunneum | 410 | 30.80 | 34.48 | 41.74 | 42.12 | 30.97 | 2.03 | |
平沙绿僵菌 M. pingshaense | 94 | 7.06 | - | 4.55 | 1.21 | 13.57 | 13.41 | |
昆虫 Insects | 球孢白僵菌 Beauveria bassiana | 153 | 18.13 | - | 16.06 | 20.64 | 21.30 | - |
蝉花 Cordyceps cicadae | 103 | 12.20 | - | 16.87 | 13.99 | - | - | |
垂头线虫草 Ophiocordyceps nutans | 74 | 8.77 | - | 17.27 | 7.11 | - | - |
图7 高黎贡山南段昆虫病原真菌物种多样性与生态因子的冗余分析(RDA)排序。A: 来自土壤; B: 来自昆虫。蓝色实心箭头为昆虫病原真菌多样性指标, 红色空心箭头为环境影响因子。
Fig. 7 Redundancy analysis (RDA) ranking on species diversity of entomopathogenic fungi and ecological factors in the Southern Gaoligong Mountains. A, From soil; B, From insect. The blue solid arrow represents the diversity index of entomopathogenic fungi, and the red hollow arrow represents the environment influencing factors.
生态因子 Ecological factor | 解释度 Explanation degree (%) | F检验 F test | P | |
---|---|---|---|---|
来自土壤的昆虫病原真菌 Soil-derived entomopathogenic fungi | 海拔 Altitude | 14.8 | 4.0 | 0.020 |
土壤温度 Soil temperature | 14.0 | 3.7 | 0.024 | |
空气温度 Air temperature | 12.3 | 3.2 | 0.060 | |
空气湿度 Air humidity | 6.7 | 1.7 | 0.194 | |
土壤湿度 Soil humidity | 5.6 | 1.4 | 0.266 | |
pH值 pH value | 1.4 | 0.3 | 0.744 | |
来自昆虫的昆虫病原真菌 Insect-derived entomopathogenic fungi | 海拔 Altitude | 23.8 | 8.8 | 0.002 |
空气湿度 Air humidity | 16.4 | 4.5 | 0.038 | |
pH值 pH value | 3.3 | 1.2 | 0.276 | |
空气温度 Air temperature | 3.0 | 1.1 | 0.324 | |
土壤湿度 Soil humidity | 2.1 | 0.8 | 0.356 | |
土壤温度 Soil temperature | 0.3 | 0.1 | 0.770 |
表5 高黎贡山南段环境因子对昆虫病原真菌物种多样性指数的解释率和显著性检验
Table 5 Interpretation rate and significance test of environmental factors on the species diversity indices of entomopathogenic fungi in the Southern Gaoligong Mountains
生态因子 Ecological factor | 解释度 Explanation degree (%) | F检验 F test | P | |
---|---|---|---|---|
来自土壤的昆虫病原真菌 Soil-derived entomopathogenic fungi | 海拔 Altitude | 14.8 | 4.0 | 0.020 |
土壤温度 Soil temperature | 14.0 | 3.7 | 0.024 | |
空气温度 Air temperature | 12.3 | 3.2 | 0.060 | |
空气湿度 Air humidity | 6.7 | 1.7 | 0.194 | |
土壤湿度 Soil humidity | 5.6 | 1.4 | 0.266 | |
pH值 pH value | 1.4 | 0.3 | 0.744 | |
来自昆虫的昆虫病原真菌 Insect-derived entomopathogenic fungi | 海拔 Altitude | 23.8 | 8.8 | 0.002 |
空气湿度 Air humidity | 16.4 | 4.5 | 0.038 | |
pH值 pH value | 3.3 | 1.2 | 0.276 | |
空气温度 Air temperature | 3.0 | 1.1 | 0.324 | |
土壤湿度 Soil humidity | 2.1 | 0.8 | 0.356 | |
土壤温度 Soil temperature | 0.3 | 0.1 | 0.770 |
图8 高黎贡山南段昆虫病原真菌物种多样性与生态因子的Pearson相关性。A: 来自土壤; B: 来自昆虫。各图右侧刻度条中数值为Pearson相关系数; 红色圆圈为正相关, 蓝色圆圈为负相关, 颜色越深相关性越强。* P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 8 Pearson correlation between species diversity of entomopathogenic fungi and ecological factors in the Southern Gaoligong Mountains. A, From soil; B, From insect. The values in the scale bar represents the correlation coefficients. The red color represents Positive correlation; The blue color represents Negative correlation. The darker the color is, the stronger the correlation is. * P < 0.05, ** P < 0.01, *** P < 0.001.
[1] | Bai Y, Cui YH, Cao N, Liu YH, Bugti GA, Wang B (2016) Effects of humidity and temperature on the pathogenecity of Beauveria bassiana against Stephanitis nashi and Locusta migratoria manilensis. Chinese Journal of Biological Control, 32, 735-742. (in Chinese with English abstract) |
[白云, 崔雨虹, 曹娜, 刘义豪, Ghulam Ali Bugti, 王滨 (2016) 球孢白僵菌对东亚飞蝗和梨冠网蝽侵染的温湿度效应. 中国生物防治学报, 32, 735-742.]
DOI |
|
[2] | Chen ZH, Chen K, Dai YD, Zheng Y, Wang YB, Yang XN, Yu H, Yang YM, Xu L (2019) Beauveria species diversity in the Gaoligong Mountains of China. Mycological Progress, 18, 933-943. |
[3] | Chen ZH, Yang XN, Sun NJ, Xu L, Zheng Y, Yang YM (2018) Species diversity and vertical distribution characteristics of Metarhizium in Gaoligong Mountains, southwestern China. Biodiversity Science, 26, 1308-1317. (in Chinese with English abstract) |
[陈自宏, 杨晓娜, 孙宁静, 徐玲, 郑元, 杨宇明 (2018) 中国西南高黎贡山绿僵菌物种多样性及其垂直分布特征. 生物多样性, 26, 1308-1317.]
DOI |
|
[4] | Guo XJ, Shen WF, Liu YJ, Chen MJ (2014) Species diversity and temporal niche of entomopathogenic fungi in the extensively managedtea plantation soil. Chinese Journal of Applied Ecology, 25, 3331-3336. (in Chinese with English abstract) |
[郭先见, 沈万芳, 刘玉军, 陈名君 (2014) 粗放经营茶园土壤昆虫病原真菌种群多样性及时间生态位. 应用生态学报, 25, 3331-3336.] | |
[5] | Jia CS, You SJ, Gao WT (2006) Tenebrio molitor as bait for isolation of entomopathogenic fungi isolated from soil. Chinese Bulletin of Entomology, 43, 260-261, 280. (in Chinese with English abstract) |
[贾春生, 由士江, 高文韬 (2006) 利用黄粉虫分离土壤昆虫病原真菌. 昆虫知识, 43, 260-261, 280.] | |
[6] | Jiang Y, Kang MY, Zhu Y, Xu GC (2007) Plant biodiversity patterns on Helan Mountain, China. Acta Oecologica, 32, 125-133. |
[7] | Jin YH (2012) Variations of Soil Microbial Diversity along an Altitude Gradient in the Wuyi Mountains. PhD dissertation, Nanjing Forestry University, Nanjing. (in Chinese with English abstract) |
[金裕华 (2012) 武夷山不同海拔土壤微生物多样性的变化特征. 博士学位论文, 南京林业大学, 南京.] | |
[8] | Kamga SF, Ndjomatchoua FT, Guimapi RA, Klingen I, Tchawoua C, Hjelkrem AGR, Thunes KH, Kakmeni FM (2022) The effect of climate variability in the efficacy of the entomopathogenic fungus Metarhizium acridum against the desert locust Schistocerca gregaria. Scientific Reports, 12, 7535. |
[9] |
Keyser CA, De Fine Licht HH, Steinwender BM, Meyling NV (2015) Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark. BMC Microbiology, 15, 249.
DOI PMID |
[10] | Li BQ, Gao G, Li JH, Duan SZ, Fan SX, Zhang JS, Luo X (2022) Avian and mammalian diversity in alpine habitats at southern Gaoligong Mountains, Yunnan Province. Chinese Journal of Zoology, 57, 528-543. (in Chinese with English abstract) |
[李斌强, 高歌, 李家华, 段绍忠, 范仕祥, 张健嵩, 罗旭 (2022) 云南高黎贡山南段高山生境的鸟兽多样性. 动物学杂志, 57, 528-543.] | |
[11] | Li YF, Zheng YQ, Xu TM, Chanhom L, Souksamone P, Xie ZF, Su ZT, Fan QY, Chen B (2018) Diversity of entomogenous fungi of Beauveria in the Xishuangbanna Nature Reserve. Chinese Journal of Biological Control, 34, 559-567. (in Chinese with English abstract) |
[李亦菲, 郑亚强, 徐天梅, Loinheuang Chanhom, Phangthavong Souksamone, 谢志福, 苏造堂, 樊清艳, 陈斌 (2018) 西双版纳自然保护区白僵菌属虫生真菌多样性. 中国生物防治学报, 34, 559-567.]
DOI |
|
[12] |
Li YH, Zhu QD, He S, Yang H, Pian L, Tao H, Liu Q, Tang GW (2024) The diversity of locusts and katydids and its relationship with environmental factors at different altitudes in the Gaoligong Mountains. Chinese Journal of Ecology, 43, 1928-1936. (in Chinese with English abstract)
DOI |
[李勇辉, 朱启迪, 和珊, 杨卉, 胼立, 陶宏, 柳青, 唐国文 (2024) 高黎贡山不同海拔蝗虫和螽斯类多样性及其与环境因子的关系. 生态学杂志, 43, 1928-1936.] | |
[13] | Liu BR, Zhang XZ, Hu TH, Li WJ (2013) Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains. Acta Ecologica Sinica, 33 7211-7220. (in Chinese with English abstract) |
[刘秉儒, 张秀珍, 胡天华, 李文金 (2013) 贺兰山不同海拔典型植被带土壤微生物多样性. 生态学报, 33, 7211-7220.] | |
[14] | Liu D, Liu GH, Chen L, Wang JT, Zhang LM (2018) Soil pH determines fungal diversity along an elevation gradient in Southwestern China. Science China: Life Sciences, 61, 718-726. |
[15] | Ma JP, Pang DB, Chen L, Wan HY, Chen GL, Li XB (2022) Characteristics of soil microbial community structure under vegetation at different altitudes in Helan Mountains. Acta Ecologica Sinica, 42, 667-676. (in Chinese with English abstract) |
[马进鹏, 庞丹波, 陈林, 万红云, 陈高路, 李学斌 (2022) 贺兰山不同海拔植被下土壤微生物群落结构特征. 生态学报, 42, 667-676.] | |
[16] |
Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Leff JW, Salinas N, Silman MR, Kruuk LEB, Meir P (2018) Microbes follow Humboldt: Temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology, 99, 2455-2466.
DOI PMID |
[17] |
Qi HD, Zhang DH, Shan LS, Chen GP, Zhang B (2023) Advances in the mechanisms of entomopathogenic fungi infecting insect hosts and the defense strategies of insects. Biodiversity Science, 31, 23273. (in Chinese with English abstract)
DOI |
[戚海迪, 张定海, 单立山, 陈国鹏, 张勃 (2023) 昆虫病原真菌感染昆虫宿主的机制和宿主昆虫的防御策略研究进展. 生物多样性, 31, 23273.]
DOI |
|
[18] | Rousk J, Brookes PC, Bååth E (2011) Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiology Ecology, 76, 89-99. |
[19] | Sharma L, Oliveira I, Torres L, Marques G (2018) Entomopathogenic fungi in Portuguese vineyards soils: Suggesting a ‘Galleria- Tenebrio-bait method’ as bait- insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys, 6, 1-23. |
[20] | Sinha KK, Choudhary AK, Kumari P (2016) Entomopathogenic fungi. In: Ecofriendly Pest Management for Food Security (ed. Omkar), pp. 475-505. Academic Press, New York. |
[21] | Su WP, Du F, Yang YM, Wang J (2014) The flora on mid-mountain humid evergreen broadleaf forest of the southern part of Mt. Gaoligongshan. Journal of Yunnan Agricultural University, 29, 792-798. (in Chinese with English abstract) |
[苏文苹, 杜凡, 杨宇明, 王娟 (2014) 高黎贡山南段中山湿性常绿阔叶林植物区系研究. 云南农业大学学报, 29, 792-798.] | |
[22] | Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, 5-59. |
[23] | Tian JQ, Wu B, Chen H, Jiang N, Kang XM, Liu XZ (2017) Patterns and drivers of fungal diversity along an altitudinal gradient on Mount Gongga, China. Journal of Soils and Sediments, 17, 2856-2865. |
[24] | Tian Z, Ao SC, Li XF, Liu SR, Tan L, Yang RL, Cai QH (2023) Health assessment of river ecosystem of the southern Gaoligong Mountains. Journal of Hydroecology, 44(1), 25-33. (in Chinese with English abstract) |
[田震, 敖偲成, 李先福, 刘硕然, 谭路, 杨荣龙, 蔡庆华 (2023) 高黎贡山南段河流生态系统健康评价. 水生态学杂志, 44(1), 25-33.] | |
[25] | Wang SB, Liu JN, Huang B, Fan MZ, Li ZZ (2004) The community structure and ecological distribution of entomogenous fungi in Dabie Mountains. Mycosystema, 23, 195-203. (in Chinese with English abstract) |
[王四宝, 刘竞男, 黄勃, 樊美珍, 李增智 (2004) 大别山地区虫生真菌群落结构与生态分布. 菌物学报, 23, 195-203.] | |
[26] | Xu XT, Ren G, Liu Y, Ma K, Li XT, Fang LD, Yang JY, Liu GG (2023) Advances in the effects of environmental heterogeneity on soil microbial communities. Ecological Science, 42(5), 247-256. (in Chinese with English abstract) |
[徐新涛, 任歌, 刘延, 马克, 李小亭, 方立德, 杨佳怡, 刘格格 (2023) 环境异质性影响土壤微生物群落的研究进展. 生态科学, 42(5), 247-256.] | |
[27] | Zhao PP, Zhou JC, Lin KM, Zhang QF, Yuan P, Zeng XM, Su Y, Xu JG, Chen YM, Yang YS (2019) Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone. Acta Ecologica Sinica, 39, 2215-2225. (in Chinese with English abstract) |
[赵盼盼, 周嘉聪, 林开淼, 张秋芳, 袁萍, 曾晓敏, 苏莹, 徐建国, 陈岳民, 杨玉盛 (2019) 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响. 生态学报, 39, 2215-2225.] |
[1] | 吴昱萱, 王平, 胡晓生, 丁一, 彭甜恬, 植秋滢 , 巴德木其其格, 李文杰, 关潇, 李俊生. 呼伦贝尔草地退化现状评估与植被特征变化[J]. 生物多样性, 2025, 33(2): 24118-. |
[2] | 尚华丹, 张楚晴, 王梅, 裴文娅, 李国宏, 王鸿斌. 中国杨树害虫物种多样性及其地理分布[J]. 生物多样性, 2025, 33(2): 24370-. |
[3] | 谭珂, 宁瑶, 王仁芬, 王晴, 梁丹萍, 辛子兵, 温放. 中国苦苣苔科植物名录与地理分布数据集[J]. 生物多样性, 2025, 33(1): 23275-. |
[4] | 韩佳楠, 苏杨, 李霏, 刘君妍, 赵依林, 李琳, 赵建成, 梁红柱, 李敏. 河北省苔藓植物多样性[J]. 生物多样性, 2024, 32(9): 24096-. |
[5] | 李东红, 郝媛媛, 甘辉林, 张航, 刘耀猛, 他富源, 胡桂馨. 祁连山北麓中段不同类型草地蝗虫种类及分布[J]. 生物多样性, 2024, 32(9): 24119-. |
[6] | 牛红玉, 陈璐, 赵恒月, 古丽扎尔·阿不都克力木, 张洪茂. 城市化对动物的影响: 从群落到个体[J]. 生物多样性, 2024, 32(8): 23489-. |
[7] | 白雪, 李正飞, 刘洋, 张君倩, 张多鹏, 罗鑫, 杨佳莉, 杜丽娜, 蒋玄空, 武瑞文, 谢志才. 西江流域大型底栖无脊椎动物物种多样性及维持机制[J]. 生物多样性, 2024, 32(7): 23499-. |
[8] | 许佳, 崔小娟, 张翼飞, 吴昌, 孙远东. 南岭地区鱼类多样性及其地理分布[J]. 生物多样性, 2024, 32(7): 23482-. |
[9] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[10] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[11] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[12] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[13] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[14] | 徐智超, 朱美慧, 毛子昆, 王绪高. 氮添加对东北温带阔叶红松林幼苗动态的影响[J]. 生物多样性, 2024, 32(12): 24255-. |
[15] | 杜晴晴, 任思远, Nicole Tsz Shun Yuan, 祝燕. 北京东灵山暖温带落叶阔叶林幼树及成树生产力的影响因素[J]. 生物多样性, 2024, 32(12): 24284-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn